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On Performance Limitation in Tracking a Sinusoid

Weizhou Su, Li Qiu, and Jie Chen

Abstract—This note studies the performance limitation of a feedback
system with a given linear time-invariant (LTI) plant in tracking a sinu-
soidal signal. It continues and goes beyond some recent studies in the same
topic in which it is assumed that the controller can access all the past and
future values of the reference signal. In this note, we consider the more re-
alistic (and more difficult) situation where the controller only accesses the
current and past values of the reference. An explicit formula of the best at-
tainable performance is obtained for a single-input–single-output (SISO)
system which depends on the nonminimum phase zeros of the plant and
the frequency of the reference sinusoid. Compared to the previously studied
case when the future of the reference is available, this formula clearly shows
the extra effort one has to pay due to the lack of the reference information. A
partial result for a multiple-input–multiple-output (MIMO) system is also
given.

Index Terms—Linear system structure, nonminimum phase, optimal
control, performance limitation, tracking.

I. INTRODUCTION

In this note, we study the performance limitation of a feedback
system with a given linear time-invariant (LTI) plant in tracking a si-
nusoidal signal. The main issue in such a study is to find the analytical
relationship, hopefully simple and insightful, between the best tracking
error attainable by designing the controller and the properties of the
plant and the reference. In our previous study [12], it was assumed that
the dynamic controller not only had the access of the instantaneous
values of the reference signal and hence its past history, but also the
instantaneous values of all state variables of the exogenous reference
generator and, hence, all the past and future values of the reference.
Under this complete or full information assumption, the best attainable
tracking error over all possible controller designs was given in terms
of the inherent properties, mainly the nonminimum phase zeros, of
the plant and the frequency of the reference signal. Although this best
attainable performance, called the performance limit, obtained under
the complete reference information assumption is more fundamental
than that under any other incomplete or partial information assumption
where the controller does not have all the past and future values of
the reference, it is an ideal case. In real applications, however, it is
often the case that the controller can only access the current value of
the reference signal. It is then of interest to consider the performance
limit under this information constraint. It will be shown that for a
single-input–single-output (SISO) plant this performance limit can
also be expressed in terms of the nonminimum phase zeros of the plant
and the frequency of the reference in a rather simple way. Compared
with the performance limit in the complete reference information case,
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Fig. 1. Two-parameter control structure with incomplete reference informa-
tion.

the limiting tracking error contains an extra nonnegative term which
is the price we need to pay for the lack of enough information. For
a multiple-input–multiple-output (MIMO) plant, the same problem
is also addressed with less generality. Only a MIMO system with at
most two nonminimum phase zeros will be studied. The performance
limit in this special MIMO case exhibits in one hand some interesting
insightful features and on the other hand the difficulty in deriving a
performance limit for a general MIMO plant.

The studies on performance limitation of feedback systems provide
deep understandings to inherent constraints on the best achievable per-
formance of the systems due to the structures and characteristics of the
plants. It has been attracting a growing amount of interest in the con-
trol community. The type of works related to our study can be traced
back to the early 1970s when optimal cheap LQ control was studied
by Kwakernaak and Sivan in [8] and later by Francis in [6]. It was
shown that perfect regulation can be achieved for right-invertible min-
imum phase systems but not for general nonminimum phase systems.
The performance limitation in tracking/disturbance rejection was first
studied by Davison and Scherzinger in [4] where it was shown that per-
fect tracking/disturbance rejection can be achieve for right-invertible
minimum phase systems but not for general nonminimum phase sys-
tems. The recent trend is more on the quantitative limits in the achiev-
able performance for nonminimum phase systems. Morari and Zafiriou
[9], Qiu and Davison [10] gave simple expressions of the performance
limits in tracking step signals for a right invertible plant. A more refined
study for multivariable plants was given in [1]. These works have since
been extended to [2], [3], [10], [12], discrete time systems [7], [13],
[15], nonlinear systems [11], and systems with uncertainties [5], [14].

The organization of this note is as follows. In Section II, the problem
under consideration in this note is precisely formulated based on our
previous works. In Section III, we present our main result for a SISO
LTI system and the its proof. Then we discuss the relationship between
the main result and our previous results. Section IV extends the main
result for the SISO system in Section III to a special class of MIMO
systems with at most two nonminimum phase zeros. Section V is the
conclusion.

The notation used throughout this note is fairly standard. For any
complex number, vector and matrix, denote their conjugate, conjugate
transpose, real, and imaginary parts by �(�), (�)�, Re(�), and Im(�), re-
spectively. The phase or argument of a nonzero complex number is de-
noted by 6 (�). Denote the expectation of a random variable by EEEf�g.
Let the open right- and left-half plane be denoted by + and �, re-
spectively. L2 is the standard frequency domain Lebesgue space. H2

and H?2 are subspaces of L2 containing functions that are analytical in
+ and �, respectively. It is well-known that H2 and H?2 constitute

orthogonal complements in L2. RH1 is the set of all stable, rational
transfer matrices. Finally, the inner product between two complex vec-
tors u, v is defined by hu; vi := u�v.

II. PROBLEM STATEMENTS

The system under consideration in this note is shown in Fig. 1. Here,
P (s) is the transfer function of a given plant whose output z(t) and
measurement y(t)may not be the same,K(s) is the transfer function of
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Fig. 2. Two-parameter control structure with complete reference information.

a two-degrees-of-freedom (2DOF) controller (for details, see, e.g., [16,
pp. 141–150]) which is to be designed. We write P (s) = G(s)

H(s)
where

G(s) is the transfer function from u(t) to z(t) and H(s) is the transfer
function from u(t) to y(t). One typical sinusoidal tracking problem is
to design a controller K(s) so that the closed-loop system is internally
stabilized and the plant output z(t) asymptotically tracks a sinusoidal
reference signal r(t) of the form

r(t) = �ve�j!t + ve
j!t = 2Re(v) cos!t+ 2Im(v) sin!t: (1)

In [12], a more general version of the sinusoidal tracking problem
is studied in which the reference might be a linear combination of a
step and several sinusoidal waves of different frequencies. More im-
portantly, in [12], the controller is assumed to know the magnitude and
phase information of all harmonics of the reference r(t) in advance.
Such a case will be called the complete reference information case. Spe-
cialized to the single frequency sinusoid tracking where the reference
signal is given in (1), the complete reference information case is equiv-
alent to the case when the controller K(s) also takes the derivative of
r(t), in addition to the reference r(t) itself, as one of its input, as shown
in Fig. 2. In this note, we will assume that the controller does not know
the magnitude and phase of r(t), i.e., the vector v, and it can only access
the instantaneous values of r(t). If the controller finds that the informa-
tion on vector v is needed, it has to spend time and effort to estimate
it. This latter case will be called the incomplete reference information
case. The intuition tells us that the lack of complete information in the
incomplete reference information case would likely result in perfor-
mance deterioration, but how much deterioration will be resulted ex-
actly? This is precisely the question that we try to answer in this note.

The transient tracking error is measured by its energy

J(v) =

1

0

kr(t)� z(t)k2 dt =

1

0

ke(t)k2 dt: (2)

In order for the tracking problem to be meaningful and solvable, we
make the following assumptions throughout this note.

Assumption 1:
1) P (s), G(s) and H(s) have the same unstable poles.
2) G(s) has no zero at �j!, j!.

The first item in the assumption means that the measurement can be
used to stabilize the system and at the same time does not introduce any
additional unstable modes. It is satisfied in the special cases of output
feedback, where y(t) = z(t), and state feedback, where y(t) is the
state vector of systemG(s). A more precise way of stating this is that if
P (s) = N(s)

L(s)
M�1(s) is a coprime factorization, then we assume that

N(s)M�1(s) and L(s)M�1(s) are also coprime factorizations. The
second item is of course necessary for the solvability of the tracking
problem.

In the complete reference information case, J(v) can be minimized
for each individual v. The best achievable performance is then given
by

Jopt(v) = inf
K
J(v)

which depends on v of course. One possible assessment and the stan-
dard practice [8] of the overall performance limitation is given by the

average of Jopt(v) when v is taken as a random vector with zero mean,
unit covariance, and uncorrelated conjugate

Jopt = EEE Jopt(v) : EEE(v) = 0; EEE(vv�) = I;EEE(vvT ) = 0 :

The statistical properties of the coefficient v mean that the terms sin!t
and cos!t in (1) are uncorrelated and have the normalized magnitude
variances. The explicit expressions for Jopt(v) and Jopt were obtained
in [12].

In the incomplete reference information case, since the magnitude
and phase of the reference are not available to the feedback controller,
it is only meaningful to consider the averaged tracking performance
of the system over a reasonable set of magnitudes and phases. Here,
we again take the average when v is considered as a random vector
with zero mean, unit covariance, and uncorrelated conjugate. Hence,
the averaged performance is given by

E = EEE J(v) : EEE(v) = 0;EEE(vv�) = I;EEE(vvT ) = 0 : (3)

The limit of E, under any controller design, is given by

Eopt = inf
K
E: (4)

Mathematically, the difference between Jopt and Eopt lies in the order
of the expectation over v and the infimum over the controllerK . Imme-
diately, we know Eopt � Jopt from their definitions. It is the purpose
of this note to derive an explicit formula for Eopt, hence a good under-
standing of the exact amount of Eopt in excess of Jopt.

To find an explicit formula for Eopt and compare it with Jopt, some
preliminary results in [12] are reviewed. Let us consider the frequency
! of the reference signal. We first find a unit zero vector �!1 of G(s)
corresponding to z1 and define

G!1(s) = I � �!1
2Re(z1)

z1 � j!

s� j!

z�1 + s
�
�

!1

=U!1

z +j!

z �j!

z �s

z +s
0

0 I
U
�

!1

where U!1 is a unitary matrix with the first column equal to �!1. Here,
G!1(s) is so constructed that it is inner, has the only zero at z1 with
�!1 as a corresponding zero vector, and G!1(j!) = I . Since G!1(s)
is a generalization of the standard scalar Blaschke factor, we call it a
matrix Blaschke factor at the frequency ! and �!1 a corresponding
Blaschke vector. Also notice that the choice of other columns in U!1 is
immaterial. Now, G�1!1 (s)G(s) has zeros z2; z3; . . . ; zm. Find a zero
vector �!2 of G�1!1 (s)G(s) corresponding to z2 and define

G!2(s) = I � �!2
2Re(z2)

z2 � j!

s� j!

z�2 + z
�
�

!2

=U!2

z +j!

z �j!

z �s

z +s
0

0 I
U
�

!2

where U!2 is a unitary matrix with the first column equal to �!2. Then,
G�1!2 (s)G

�1
!1 (s)G(s) has zeros z3; z4; . . . ; zm. Continue this process

until Blaschke vectors �!1; . . . ; �!m and factorsG!1(s); . . . ; G!m(s)
are all obtained. This procedure shows that G(s) can be factorized as

G(s) = G!1(s) � � �G!m(s)G!0(s) (5)

where

G!i(s) = I � �!i
2Re(zi)

zi � j!

s� j!

z�i + s
�
�

!i

=U!i

z +j!

z �j!

z �s

z +s
0

0 I
U
�

!i (6)
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andG!0(s) has no nonminimum phase zero. In this factorization, each
Blaschke vector and factor correspond to one nonminimum phase zero.
Keep in mind that these vectors and factors depend on the order of the
nonminimum zeros, as well as on the frequency !. Moreover, it is ob-
tained in [12] that, for given unit directional vectors �!i, i = 1; . . . ;m,
there exist ��!i, i = 1; . . . ; m, such that

��!i = �!i and ��!i = G!1(�j!) � � �G!i�1(�j!)�!i;
i = 2; . . . ;m: (7)

Consequently, N(s) can be factorized into

N(s) = G!1(s) � � �G!m(s)N0(s) (8)

where N0(s) is an outer function, i.e., it belongs to RH1 and has no
zero in + (for details see, e.g., [16]).

The results in [12], when specialized to the single frequency refer-
ence given by (1), give the explicit expressions for Jopt(v) and Jopt.

Lemma 1: [12] Let G(s) have nonminimum phase zeros
z1; z2; . . . ; zm. Then, the tracking performance limit is given by

Jopt(v) =

m

i=1

2Re(zi)
h��!i; �vi
zi + j!

+
h�!i; vi
zi � j!

2

and

Jopt = 2

m

i=1

1

z�i + j!
+

1

zi � j!
:

III. SISO SYSTEMS

In this section, we give a rather complete answer for the case when
G(s) is a SISO system. In this case, item 1 in Assumption 1 simply
means that G(s) and H(s) have the same unstable poles.

Theorem 1: Let G(s) have nonminimum phase zeros
z1; z2; . . . ; ; zm. Then

Eopt = 2

m

i=1

1

z�i + j!
+

1

zi � j!

+
2

!
sin2 2

m

i=1

6 (zi � j!) : (9)

Proof: Let G(s) = N(s)M�1(s) be a coprime factorization.
Then by using the parameterization of all stabilizing 2DOF controllers
as in [16], we see that the achievable transfer function from r(t) to z(t)
is N(s)Q(s) where Q(s) is an arbitrary H1 transfer function which
can be designed. Hence, for a fixed v, the tracking performance J(v)
defined in (2) is written to

J(v) = k[1�N(s)Q(s)]R(s)k2
2

= [1�N(s)Q(s)]
1

s+ j!

1

s� j!

�v

v

2

2

:

The averaged cost function E is then given by

E = [1�N(s)Q(s)]
1

s+ j!

1

s� j!

2

2

= [1�N(s)Q(s)]

p
2(s+ !)

s2 + !2

� s� j!p
2(s+ !)

s+ j!p
2(s+ !)

2

2

= [1�N(s)Q(s)]

p
2(s+ !)

s2 + !2

2

2

:

The last equality follows from the fact that [(s� j!)=
p
2(s+!) (s+

j!)=
p
2(s+!)] is co-inner. Hence, the averaged tracking performance

E is equal to the performance of the system in tracking the signal

r(t) =

p
2

2
(1 + j)e�j!t +

p
2

2
(1� j)ej!t

=
p
2 cos!t+

p
2 sin!t

i.e., E = J((
p
2=2)(1� j)). It follows from Lemma 1 that the per-

formance limit is given by

Eopt = Jopt

p
2

2
(1� j) =

m

i=1

2Re(zi)

�
��!i;

p
2

2
(1 + j)

zi + j!
+

�!i;
p
2

2
(1� j)

zi � j!

2

: (10)

For the SISO system G(s), we select the unit directional vectors �!i
and the inner functions G!i(s), i = 1; . . . ; m, associated with zi,
i = 1; . . . ;m, as follows:

�!i = 1 and G!i(s) =
z�i + j!

zi � j!

zi � s

z�i + s
; i = 1; . . . ;m:

Then, following (7), we have

��!i =
z�1 + j!

z1 � j!

z1 + j!

z�1 � j!
� � � z

�
i�1 + j!

zi�1 � j!

zi�1 + j!

z�i�1 � j!
;

i = 2; . . . ;m:

Expanding (10) gives Eopt = Ea + Eb where

Ea =

m

i=1

2Re(zi)

(z�i � j!) (zi + j!)
+

2Re(zi)

(z�i + j!) (zi � j!)

= 2

m

i=1

1

z�i + j!
+

1

zi � j!

and

Eb =

m

i=1

� j2Re(zi)��!i��!i
(z�i � j!) (zi � j!)

+
j2Re(zi)�!i�

�
�!i

(z�i + j!) (zi + j!)
:

In the remaining part of this proof, induction is used.
First of all, denote 6 (z�i � j!)(zi � j!) by �i. Then

(z�i � j!) (zi � j!) = jz�i � j!j jzi � j!jej�

and

�2Re(zi)! = jz�i � j!j jzi � j!j sin�i:

The first term of Eb can then be written as

� j2Re(z1)

(z�1 � j!) (z1 � j!)
+

j2Re(z1)

(z�1 + j!) (z1 + j!)

=
j sin�1

!
e�j� � ej� =

2

!
sin2 �1: (11)

Assume that

k�1

i=1

� j2Re(zi)��!i��!i
(z�i � j!) (zi � j!)

+
j2Re(zi)�!i�

�
�!i

(z�i + j!) (zi + j!)

=
2

!
sin2(�1 + � � �+ �k�1):
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Notice the fact that ��!k��!k = e�j2(� +���+� ) and �!k�
�
�!k =

ej2(� +���+� ): Then, it holds

k

i=1

� j2Re(zi)��!i��!i
(z�i � j!) (zi � j!)

+
j2Re(zi)�!i�

�
�!i

(z�i + j!) (zi + j!)

=
2

!
sin2(�1 + � � �+ �k�1)

� j

!

2Re(zk)!e
�j2(� +���+� )

(z�k � j!) (zk � j!)

+
j

!

2Re(zk)!e
j2(� +���+� )

(z�k + j!) (zk + j!)

=
2

!
sin2(�1 + � � �+ �k�1)

+
j sin�k

!
e
�j2(� +���+� )�� ]

� e
j2(� +���+� )+� ]

=
2

!
sin2(�1 + � � �+ �k�1)

+
2

!
sin [2(�1 + � � �+ �k�1) + �k] sin�k

=
2

!
sin2(�1 + � � �+ �k):

Here, in the last step, we used elementary trigonometrical identities.
Therefore

Eb =
2

!
sin2(�1 + � � �+ �m) =

2

!
sin2 2

m

i=1

6 (zi � j!) :

This completes the proof.
Notice that in the complete reference information case we have the

following performance limit, as stated in Lemma 1:

Jopt = 2

m

i=1

1

z�i + j!
+

1

zi � j!
:

Theorem 1 gives an exact picture on how the lack of the reference state
information affects the best tracking performance. Compared with the
performance limit in the complete reference information case, the per-
formance limit in the incomplete reference information case has an
extra nonnegative term which is caused by the constraint on the ref-
erence information structure. As it is known that Jopt is the energy of
the error between the reference and the output generated by the best
possible control input, the extra term is the energy of the error due to
the mismatch between the best control input and ones which can be
generated by an incomplete information controller. In the complete in-
formation case, this mismatch is zero since the best control input can
be produced by the optimal complete information controller while in
the incomplete information case the mismatch is nonzero since the best
control input and ones which can be generated by any controller under
this information constraint are not equal in general.

Finally, we present an extended version of Theorem 1 to the case
when G(s) contains a time delay.

Theorem 2: Let G(s) = e��sGr(s) where Gr(s) is a real rational
transfer function with nonminimum phase zeros z1; . . . ; zm. Then

Eopt = 2� + 2

m

i=1

1

z�i + j!
+

1

zi � j!

+
2

!
sin2 �!� + 2

m

i=1

6 (zi � j!) :

The proof is omitted since it is just a minor modification of that of
Theorem 1.

IV. MIMO SYSTEMS

It appears that extending the SISO result in the last section to the
case when G(s) is MIMO is difficult in general. Here, we consider a
special case of MIMO systems with no more than two nonminimum
phase zeros z1 and z2. This special case is manageable and the result
reveals some interesting insights and also the possible difficulties in
the general case. The directional vectors associated with z1 and z2 are
denoted by �!1 and �!2, respectively. Assume that P (s), G(s), H(s)
satisfy Assumption 1.

Theorem 3: Let G(s) have two nonminimum phase zeros z1, z2 and
let � be the angle between the associated directional vectors �!1 and
�!2. Then

Eopt =2

2

i=1

1

z�i + j!
+

1

zi � j!

+
2

!
sin2 �

2

i=1

sin2 [ 6 (zi � j!) (z�i � j!)]

+
2

!
cos2 � sin2

2

i=1

6 (zi � j!) (z�i � j!) :

Proof: By the same procedure as that used for a SISO LTI system
in the last section, we have

E = [I �N(s)Q(s)]

p
2(s+ !)

s2 + !2

2

2

: (12)

Suppose that the output dimension is n. Denote the ith column of the
n� n identify matrix by ei, i = 1; . . . ; n. It follows from (12) that

E =

n

l=1

[I �N(s)Q(s)]el

p
2(s+ !)

s2 + !2

2

2

: (13)

From (13), we can see that the averaged tracking performance E is
equal to a sum of the performances of the system in tracking n different
references

r(t) = el

p
2

2
(1 + j)e�j!t +

p
2

2
(1� j)ej!t ;

l = 1; . . . ; n:

Since the terms in (13) depend on different columns ofQ(s), the overall
optimum over Q(s) is equal to the sum of the optimal values of the
individual terms. Applying Lemma 1, we get

Eopt =

n

l=1

Jopt

p
2

2
(1� j)el

=

n

l=1

2

i=1

2Re(zi)
��!i;

p
2
2
(1 + j)el

zi + j!

+
�!i;

p
2
2
(1� j)el

zi � j!

2

: (14)

Expanding (14) and noticing that n

l=1 ele
T
l = I , we have

Eopt =

2

i=1

2Re(zi)

� h��!i; ��!ii
(zi + j!) (z�i � j!)

+
h�!i; �!ii

(zi � j!) (z�i + j!)

+
�jh�!i; ��!ii

(zi � j!) (z�i � j!)
+

jh��!i; �!ii
(zi + j!) (z�i + j!)

:
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Denote

Ea=

2

i=1

2Re(zi)
h��!i; ��!ii

(zi+j!) (z�i �j!)
+

h�!i; �!ii

(zi�j!) (z�i +j!)

and

Eb=

2

i=1

2Re(zi)
�jh�!i; ��!ii

(zi�j!) (z�i �j!)
+

jh��!i; �!ii

(zi+j!) (z�i +j!)
:

It is clear that

Ea = 2
1

z�1 + j!
+

1

z1 � j!
+

1

z�2 + j!
+

1

z2 � j!
:

Due to ��!1 = �!1, it holds that

h�!1; ��!1i = h��!1; �!1i = 1: (15)

It follows from (7) that the vector ��!2 is given by

��!2 = I + �!1�
�
!1

z�1 + j!

z1 � j!

z1 + j!

z�1 � j!
� 1 �!2:

Define �i = 6 (z�i � j!)(zi � j!). Then, we have

h�!2; ��!2i =1 + cos2 �
z�1 + j!

z1 � j!

z1 + j!

z�1 � j!
� 1

= sin2 � + e�j2� cos2 �: (16)

Consequently, it holds that

h��!2; �!2i = sin2 � + ej2� cos2 �: (17)

It follows from (11) and (15) that

�
j2Re(z1)h�!1; ��!1i

(z�1 � j!) (z1 � j!)
+

j2Re(z1)h��!1; �!1i

(z�1 + j!) (z1 + j!)
=

2

!
sin2 �1:

Following (16), (17), and the discussion in the proof of Theorem 1, we
have

�
j2Re(z2)h�!2; ��!2i

(z�2 � j!) (z2 � j!)
+

j2Re(z2)h��!2; �!2i

(z�2 + j!) (z2 + j!)

=
2

!
sin2 � sin2 �2 +

2

!
cos2 � sin(2�1 + �2) sin�2:

Consequently, it holds that

Eb =
2

!
sin2 �(sin2 �1 + sin2 �2) +

2

!
cos2 � sin2(�1 + �2):

Plugging in the definitions of �1 and �2 gives the expression to be
proved.

This theorem shows that, in the incomplete reference information
case, the tracking performance limit Eopt depends on not only the
phases of z1�j! and z2�j! but also the angle � between �!1 and �!2.
There are two extreme cases. One is that �!1 and �!2 are in a common
one-dimensional subspace, i.e., � = 0 while the other is that �!1 and
�!2 are orthogonal, i.e., � = �=2. In the first case, the two nonmin-
imum phase zeros can be considered to appear in the same channel and
the performance limit is given by

Eopt = 2

2

i=1

1

z�i + j!
+

1

zi � j!

+
2

!
sin2

2

i=1

6 (zi � j!)(z�i � j!) :

In the second case, the two nonminimum phase zeros can be considered
to appear separately in two orthogonal channels and the performance
limit is given by

Eopt = 2

2

i=1

1

z�i + j!
+

1

zi � j!

+
2

!

2

i=1

sin2 [ 6 (zi � j!) (z�i � j!)] :

In general, the performance limit is a convex combination of the two
extreme cases depending on �.

It is worth mentioning that, if the plant has only one nonminimum
phase zero z1, the performance limit Eopt is given by

Eopt = 2
1

z1 + j!
+

1

z1 � j!
+

2

!
sin2 [2 6 (z1 � j!)] :

Notice that z1 is a real number in this case. Then, we can obtain this
result by straightforwardly following the proof of Theorem 3.

Theorem 3 also shows the potential difficulty in extending the re-
sult further to MIMO systems with more than two nonminimum phase
zeros since the relative angles between each pair of the directional vec-
tors associated with the nonminimum phase zeros will come into the
picture. The number of such pairs grows combinatorially as the number
of nonminimum phase zeros grows.

V. CONCLUSION

In this note, the performance limitation of a feedback system in
tracking a sinusoidal signal is studied under the assumption that the
controller can only access the instantaneous value of the reference
signal. This is in contrast to the previous study where the controller is
assumed to have the complete information (past and future values) of
the reference signal. A formula for the best achievable average tracking
error, depending on the nonminimum phase zeros of the plant and their
interactions with the reference frequency, is obtained for general SISO
systems, with or without time delay. The worsening of the performance
limitation due to the insufficient information is clearly shown. The
study is also extended to a class of MIMO systems. It is shown that
for MIMO systems, not only the plant nonminimum phase zeros but
also the relative directions of the directional vectors associated with
these zeros play a key role in the performance limitation. We believe
that the results are significant in further understanding linear system
structures and their effects on achievable control performances.
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Analysis of a Second-Order Sliding-Mode Algorithm in
Presence of Input Delays

Laura Levaggi and Elisabetta Punta

Abstract—In this note, a double integrator system under the action of
a second-order sliding-mode control algorithm is considered, and the re-
sulting closed-loop behavior in presence of an input delay is analysed. Due
to the delay, in the limit the system trajectories are periodic. Whenever the
control modulus is chosen to be constant, the amplitude and period of the
resulting oscillations are fixed for any initial value. If the control behaves
asymmetrically, it is shown that this is no more true, since the overall dy-
namical system can admit diverse limit cycles.

Index Terms—Delay effects, discontinuous control, input delay, second-
order systems, variable structure systems.

I. INTRODUCTION

In this note, it is investigated the closed-loop behavior of a double
integrator under the action of a second-order sliding-mode algorithm
in presence of an input delay.

When considering first-order sliding-mode control, the introduction
of input delays results in delay-relay type dynamical systems. These
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have been analysed from a mathematical point of view in [1] and also
in [2] and [3] from a different perspective. It has been shown that the
delay induces oscillations around the sliding surface with finite limit
frequency. Moreover, it has been proved that only zero limit frequency
trajectories are stable.

Second-order systems with input delay and relay control have also
been considered. In [4] it has been shown that the system’s behaviour
results in an oscillating motion and every trajectory has a finite limit
frequency. However, the class of slowly oscillating solutions (those
with zero limit frequency) is more complex in the second-order case.
In particular, the stability of zero limit frequency modes is only proved
under the uniqueness, up to time shifts, of slowly oscillating solutions.
In [5]–[8], it has been moreover shown that for this class of differen-
tial systems bifurcations phenomena and even chaotic behaviour can
happen.

We do not introduce here a new control algorithm in order to
counteract the presence of the input delay and stabilize the considered
system. This has been done for chain of integrators in [9] and [10] by
means of continuous control laws, which guarantee global asymptotic
stability. Here, we investigate the effect of an unknown (and disre-
garded) input delay on the behaviour of a closed-loop system resulting
from the application of an existing second-order sliding-mode control
algorithm [11]. This analysis should in fact answer the question
whether, and up to which extent, the input delays can be disregarded
in this control scheme. This issue is particularly interesting whenever
relay type controllers are (or have to be) exploited and it is not possible
to apply smooth feedbacks. Moreover, this analysis, which is con-
ducted considering a quite simple case, constitutes the necessary basis
in order to study more general systems with second-order sliding-mode
and input delays. Particularly, the recently introduced second-order
sliding-mode algorithms, the robustness of which have been studied
and analysed with respect to uncertainties and disturbances of various
nature, still need a systematic study of the input delay effects. In this
sense the analysis proposed here for the unperturbed double integrator
can be regarded as a first step in this direction and constitutes a theo-
retical novelty in the investigation of the second-order sliding-mode
control methods.

We consider an unperturbed double integrator under the action of a
control law designed according to the algorithm in [11] and analyse
how the dynamical behaviour of the closed-loop system is affected by
a disregarded input time delay. In this case, we can give an analyt-
ical description of the relevant terms governing the evolution of the
closed-loop and thus we are able to study the asymptotic properties of
the system trajectories. The presence of the delay deteriorates the per-
formances of the closed-loop system. The origin of the phase plane is
no longer reached, while the system’s trajectories tend to a limit cycle.
The new and interesting result is that, depending on the control parame-
ters, different initial conditions may lead to different limit cycles. In the
note we prove that the existence of a unique, globally attractive limit
cycle is guaranteed by the application of a symmetric control law. If in-
stead the control law is asymmetric, the limit behavior of the system’s
trajectories can depend on the initial value of the position. In the phase
plane, the situation is represented by the presence of limit cycles, not
necessarily centered in the origin. The method of the analysis is theo-
retical novel, since the investigation is performed taking into account
not the frequencies of the oscillating motions in the limit, but the se-
quences of the generated singular points (points with zero velocity).

In Section II, we briefly describe the structure of the existent control
algorithm. In Section III, we state our problem and study the effect of
the input delay on the system evolution. When the modulus of the con-
trol is constant we prove that, in the limit, the system state is periodic.
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