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A b s t r a c t .  In this paper,  we address the performance l imitat ion issues in estima- 
tion problems. Our purpose is to explicitly relate the  best achievable est imation 
errors with simple plant characteristics. In part icular,  we s tudy performance limi- 
tations in achieving two objectives: est imating a signal from its version corrupted 
by a white noise and est imating a Brownian motion from its version distorted by 
an LTI system. 

1 I n t r o d u c t i o n  
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Fig .  1. A general est imation problem 

A s t a n d a r d  e s t i m a t i o n  p r o b l e m  can of ten be  s c he ma t i c a l l y  shown by 

Fig. l. HereP= [GH] isanLTIplant, uistheinputtotheplant,  nisthe 

m e a s u r e m e n t  noise,  z is the  s ignal  to  be e s t i m a t e d ,  y is the  m e a s u r e d  s ignal ,  
5 is the  e s t i m a t e  of  z. Often u and  n are  m o d e l l e d  as  s t ochas t i c  processes  
wi th  known m e a n s  and  covar iances .  We can a s sume ,  w i t h o u t  loss of  gener-  
ali ty,  t h a t  t he  m e a n s  of the  s tochas t i c  processes  a r e  zero.  T h e  o b j e c t i v e  is 
to  design LTI  fi l ter F so t h a t  the  s t e a d y  s t a t e  e r r o r  va r i ance  

V = lim E[e(t)'e(t)] 
t - - - ~ o o  
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is small. Clearly, for V to be finite for nontrivial  u and n, it is necessary 
tha t  F C T~7-/oo and H - F G  E TC'rtoo. This condition is also necessary and 
sufficient for the error to be bounded for a rb i t ra ry  initial conditions of P 
and F,  i.e., for the filter to be a bounded error es t imator  (BEE).  There  is 
an extensive theory on the optimal  design of the filter F to minimize V, see 
for example [1,2,6]. The opt imal  error variance is then given by 

V* = inf V. 
F , H -  FG~7~Tto~ 

Our interest in this paper  is not on how to find the opt imal  filter F ,  which is 
addressed by the s tandard  opt imal  filtering theory. Rather,  we are interested 
in relating V* with some simple characterist ics of the plant P in some im- 
por tant  special cases. Since V* gives a fundamental  l imitation in achieving 
certain performance objectives in filtering problems, the simple relationship 
between V* and the plant characteristics, in addition to providing deep un- 
derstanding and insightful knowledge on est imation problems, can be used 
to access the quality of different designs and to ascertain impossible design 
objectives before a design is carried out. 

The variance V gives an overall measure on the size of the s teady s ta te  
est imation error. Sometimes, we may wish to focus on some detailed fea- 
tures of the error. For example  we may  wish to investigate the variance of 
the projection of tile est imation error on certain direction. This variance 
then gives a measure of the error in a part icular  direction. Assume tha t  
z(t),  5(t),  e(t) C ll~ TM. Let ~ E II~ m be a vector of unit length representing a 
direction in ll~ m. Then the projection of e(t) to the direction represented by 

is given by ~'e(t) and its steady s ta te  variance is given by 

~/~ = lim E[(~'e(t))2]. 
t ,--r o o  

The best achievable error in ~ direction is then given by 

V~* = inf V~. 
F , H -  FG6"RT~oo 

The optimal  or near opt imal  filter in minimizing Vr in general depends on 
~. This very fact may limit the usefulness of V~*, since we are usually more 
interested in the directional error information under an opt imal  or near  
optimal filter designed for all directions, i.e., designed to minimize V. Let 
{Fk} be a sequence of filters satisfying Fk, H - FaG E 7r such tha t  the 
corresponding sequence of errors {ek} satisfies 

V = lim lira E[e~(t)ek(t) '] .  
k - - ~  o o  t ---+ o o  

Then we are more interested in 

V*(~)  = l im E[(~'ek(t))2]. 
k---+cx) 
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In this paper,  we will also give tile relationship between V~*, V*(~) and 
simple characteristics of the plant P for the same cases when tha t  for V* is 
considered. 

The performance limitations in est imation have been studied recently 
in [4,5,9,10] in various settings. In [4,5,9], sensitivity and compl imentary  
sensitivity functions of an est imation problem are defined and it is shown 
that  they have to satisfy certain integral constraints  independent of filter 
design. In [10], a t ime domain technique is used to s tudy the performance  
limitations in some special cases when one of n arid u is diminishingly small  
and the other one is either a white noise or a Brownian motion. 

This paper  addresses similar problems as in [10], but studies them from 
a pure input output  point of view using frequency domain techniques. We 
also s tudy them in more detail by providing directional information on the 
best errors. The results obtained are dual to those in [3,7] where the perfor-  
mance limitations of tracking and regulation problems are considered. The  
new investigation provides more insights into the performance l imitations 
of estimation problems. 

This paper  is organized as follows: Section 2 provides background mate -  
rials on transfer matr ix  factorizations which exhibit directional propert ies  
of each nonminimum phase zero and antistable pole. Section 3 relates the 
performance limitation in est imating a signal from its corrupted version by 
a white noise to the antistable modes, as well as their directional propert ies,  
of the signal. Section 4 relates the performance l imitation in es t imat ing a 
Brownian motion from its version distorted by an LTI system to the non- 
minimum phase zeros of the system, as well as their directional properties.  
Section 5 gives concluding remarks.  

2 P r e l i m i n a r i e s  

Let G be a continuous time FDLTI system. We will use the same nota t ion  
G to denote its transfer matrix.  Assume tha t  G is left invertible. The poles 
and zeros of G, including multiplicity, are defined according to its Smith-  
McMillan form. A zero of G is said to be nonminimum phase if it has posit ive 
real part .  G is said to be minimum phase if it has rio nonminimum phase  
zero; otherwise, it is said to be nonminimum phase. A pole of G is said to 
be antistable if it has a positive real part .  G is said to be semistable if it 
has no antistable pole; otherwise strictly unstable. 

Suppose that  G is stable and z is a nonminimum phase zero of G. Then,  
there exists a vector u of unit length such tha t  

a ( z ) u  = O. 
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We call u a ( r ight  or  inpu t )  zero vec tor  c o r r e s p o n d i n g  to  the  zero z. Let  the  
n o n m i n i m u m  phase  zeros of G be  o rde r ed  as z l ,  z2, �9 �9 �9 z~. Let  a lso  7it be a 
zero vec to r  c o r r e s p o n d i n g  to  z l .  Define 

2 Re Zl 
Gl ( s )  = I - - r l l r ] ~ .  

s + z ~  

Note  t ha t  G1 is so cons t ruc t ed  t h a t  it is inner ,  has  only  one zero a t  zl wi th  
r]l as a zero vector .  Now GG~ 1 has zeros z2, z 3 , . . . ,  z~. F i n d  a zero vec tor  
772 c o r r e s p o n d i n g  to the  zero z2 of GG~ 1, and  define 

2 Re z2 

It  follows t h a t  G G T 1 G ~  1 has zeros z3, z 4 , . . . ,  z , .  Con t inue  this  p rocess  un- 
til 711,. . . ,r]~ and  G 1 , . . . , G ,  are  ob t a ined .  T h e n  we have  one vec to r  cor- 
r e s pond ing  to each n o n m i n i m u m  phase  zero, and  the  p r o c e d u r e  y ie lds  a 
f ac to r i za t ion  of G in the  form of 

G = GoG,, . . . G 1 ,  (1) 

where  Go has  no n o n m i n i m u m  phase  zeros a n d  

2 Re z i  7 * 

Gi(s)  = I - s + z" i r]i h . (2) 

Since Gi is inner ,  has  the  only  zero a t  zi, a n d  has  rli as a zero vec to r  
c o r r e s p o n d i n g  to  zi, it  will be cal led a m a t r i x  Blaschke  fac tor .  Accord ing ly ,  
the  p r o d u c t  

G :  = G , , - - - G 1  

will be ca l led  a m a t r i x  Blaschke  p r o d u c t .  T h e  vec tors  r h , . . . , r ] ,  will be 
cal led zero Blaschke  vec tors  of G c o r r e s p o n d i n g  to the  n o n m i n i m u m  phase  
zeros Z l , Z 2 , . . . ,  z,,. Keep  in mind  t h a t  these  vec tors  d e p e n d  on the  o rde r  
of the  n o n m i n i n m m  phase  zeros. One  migh t  be conce rned  wi th  t i le  poss ib le  
complex  coefficients a p p e a r i n g  in Gi when some  of the  n o n m i n i m u m  phase  
zeros are  complex .  However ,  if we o rde r  a pa i r  of  c omp le x  c o n j u g a t e  non- 
m i n i m u m  p h a s e  zeros ad jacen t ly ,  then  the  c o r r e s p o n d i n g  pa i r  of  Blaschke  
fac tors  will have complex  con juga t e  coefficient and  the i r  p r o d u c t  is then  
real  r a t i ona l  and  this  also leads  to real  r a t i o n a l  Go. 

The  choice of Gi as in (2) seems ad hoc n o t w i t h s t a n d i n g  t h a t  Gi has  to  be 
uni ta ry ,  have  t i le  only  zero a t  zi and  have  r]i as a zero vec to r  c o r r e s p o n d i n g  
to zi. A n o t h e r  choice, a m o n g  inf ini te  marly  poss ib le  ones,  is 

2 Re z i  s 
Gi(8) = I . l ] i l ] i ,  (3) 

zi s + z i 

and  if th is  choice is a d o p t e d ,  the  s ame  p r o c e d u r e  can  be  used to  find a 
f ac to r i za t ion  of  the  form (1). Of  course ,  in th i s  case the  B laschke  vec to rs  
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are not the same. We see tha t  for the first choice Gi(oo)  = I ,  whereas  for 
the second choice Gi(O) = I .  We will use bo th  choices in the following. For 
this purpose,  we will call the factor izat ion result ing from the first choice of 
T y p e  I and tha t  f rom the second choice of type  II. 

For an unstable  G, there  exist s table real ra t ional  ma t r ix  funct ions  

such tha t  

G = N M  - j  = 5 4 - a N  

and 

2 -1> 

This is calle.d a doubly  coprime factor izat ion of G. Note  t h a t  the nonmin-  
imum phase zeros of  G are the nonmin imum phase zeros of  N and  the 
ant is table poles of G are the n o n m i n i m u m  phase zeros of  5I .  If  we order  
the antis table poles of  G as P t , P 2 , . .  �9 Pu and the n o n m i n i m u m  phase  zeros 
of G as z l , z 2 , . . . , z ~ ,  then M and N can be factorized as 

5I  = 5 I o 5 t .  . . .  

= N O N . ' "  " &  

with 

5[i (s )  = I 2 R e p ~ i ~  
s + p ~  

1Vi(s) = 1 2 R e z i  s . 
zi s q- z i ~irli 

w h e r e  ( 1 ,  ( 2 , .  �9 �9 , ~v are zero Blaschke vectors  of M and  r/l, r12, �9 �9  fly are 
those of N.  Here also N0 and 5Io have no n o n m i n i m u m  phase  zeros. Notice 
tha t  we used type  I factor izat ion for 117/ and type  II  fac tor iza t ion  for N.  
The reason for this choice is solely for the convenience of  our  analysis  in the 
sequel. 

Consequently,  for any real ra t ional  mat r ix  G with nonrn in imum phase 
zeros zt, z 2 , . . . ,  zv and  ant is table  poles P l , P 2 , . . .  ,Pt,, it can a lways be fac- 
torized to 

G = G ~ I G o G . ,  (4) 



152 Zhiyuan Ren et al. 

as shown in Fig. 2, where 

= , = 1  

G:(s)= lYI [ I - 2 R e z /  s ~] 
i=1 zi s + z 77irl 

and G0 is a real rational matrix with neither nonminimum phase zero nor 
antistable pole. Although coprime factorizations of G are not unique, this 
nonuniqueness does not affect factorization (4). Here r/l, r/2,. �9 r]~ are called 
zero Blasehke vectors and ~l, ~2,. �9 �9 ft, pole Blaschke vectors of G. 

Fig. 2. Cascade factorization 

3 E s t i m a t i o n  under  W h i t e  M e a s u r e m e n t  N o i s e  

Fig. 3. Estimation under white measurement noise 

e 
D 

Consider tile estimation probleln shown in Fig. 3. Here G is a given 
FDLTI plant, and n is a s tandard white noise. Tile purpose is to design a 
stable LTI filter F such that it generates all estimate 5 of the true ou tpu t  z 
using the corrupted output  y. This problem is clearly a special case of tile 

g e n e r a l e s t i m a t i o n p r o b l e m s t a t e d i n S e c t ,  l w i t h P =  [GG] a n d u = 0 .  The 

error of estimation is given by F n .  Since n is a s tandard white noise, the 
steady state variance of the error is given by 

v = IIFII~ 

where [1" I]2 is the 7-/2 norm. I f  we want  V to be f in i te,  we need to have 
F(oc)  = 0, in addi t ion to F, G - F G  E 1~1-lo~. Therefore 

V" = in f  IIFII~. 
F,G-FGETr ,F(cr 
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Let  G = d~' / -1]Q be a left copr ime fac tor iza t ion  of G. T h e n  F �9 ~7/oo 
and G -  F G  = ( I -  F ) G  = ( I -  F)  IVI -1N �9 T~ Hoo if and only i f  I -  F = Q M 

for some Q �9 T~7/oo. There fore  

V *  = inf I[I -Q~rll ~. 
Q E "R T.i ~ , Q ( oo  ) J(4 ( oo  ) = l 

Now assume tha t  G has ant is table  poles Pl ,  P 2 , . . . ,  pu with ( i ,  (2, � 9  (u be 
the cor responding  pole Blaschke vectors of type  I. T h e n  ~ / h a s  factor izat ion 

where 

_/15/i(s ) = I 2 Rep_______~i ffi~/*. 
s + p ;  

Since A:/i(oo) = I ,  i = 1, 2 , . . . ,  p, it follows tha t  Q(oo)~/ ' (oo)  = I is equiva- 
lent to  Q(oo)./k/0(oo) = I.  Hence,  by using the facts t ha t  Mi, i = 1 , 2 , . . .  ,p ,  
are un i t a ry  opera to rs  in/::2 and tha t  ./17/1-1 ---.~/~- l - I  �9 7/~ and I -Q/l-d0 �9 
7/2, we obta in  

V" = inf  [[I - Q~Qo~rt,--- ~'kIl [l~ 
Q E ~ T t o o , Q ( o o ) A 7 l o ( o o ) = l  

= i n f  [ l ~ / t  - ~ - . -  IV/~-' - I + I - QYr 

IIMF 1 ~ r T 1  II1~ + inf III - 2 . . . . .  Q M o l h .  
O c "R "H cc , Q ( oo  ) l~l o ( Oo ) = l 

Since .37/0 is co-inner with invertible AT/0(oo), there  exists a sequence {Qk} E 
~7/o0 with Qk(oo)./l~/0(oo) = I such t ha t  limk-~oo 1[I - Q/15/0[I =: 0. This  
shows 

v *  = I IMF'  "'" M~- '  - Zlt~ 

I l l ~ / I 2 1  "1~;  1 I + I - 2 . . . . .  M i l l 2  

= II~r~ - ~ . .  - : ~ ; ~  - : l l~ + l it  - M~II~ 
# 

= ~ III - ~r ,  ll~ 
i=1 

/z 

= 2 ~-'~' pi. 
i=1 

Here the  first equal i ty  follows from tha t  _~rl is a un i t a ry  ope ra to r  in s 
the second from t h a t  d~2 "-1 . - - / ~ ; l  _ I G 7/~ and I - .liT/1 E 7/2, the third 
from repea t ing  the under ly ing  procedure  in the  first and second equalit ies,  
and the  last from s t ra ight forward  computa t ion .  T h e  above  der ivat ion shows 
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that  an arbitrari ly near optimal  Q can be chosen from tile sequence {Qk}. 
Therefore 

Y*(~) = lim [[~'(I-Qk2V/0/~l~,--..~/1)[[22. 
k-~oo 

The same reasoning as in the above derivation gives 

V'(~) = ~ II~(I - Mi)l[~- e = 2 __~7~' pi cos 2 Z(~,r  
i=1 i=1 

The last equality follows from straightforward computat ion.  
The directional s teady state error variance with an arb i t ra ry  F is 

vr = [l~'fll~ 

and the optimal directional steady s tate  error variance is 

V~* = inf II~'FII~ 
F,G- FGETV~7-loo 

= i n f  H ~ ' ( I  - Q~lol~I~,... 1f/1~)11~. 
QeTCT-l~,Q(oo)~Tlo(c~)=-I 

By following an ahnost  identical derivation as the non-directional case, we 
can show that  the same sequence {Qk} giving near opt imal  solutions there 
also gives near opt imal  solutions here for every ~ E IR m. Hence, 

/z 

v~" = v ' ( o  = 2 y~p~  cos'-' z(~,  Cd- 
i = l  

We |lave thus established the following theorem. 

T h e o r e m  1. Let  G ' s  antistable poles be Pl, 192, . . .  ,p~, with r r �9 �9 r  be- 
ing the corresponding pole Blaschke vectors of type I. Then 

P 

V* = 2 ~ p i  
i=1 

and 

V~* = V*(~)  = 2 ~-~Pi  COS2 " / (~ ,  ~ i ) '  

i=1 

This theorem says tha t  to est imate a signal from its version corrupted 
by a s tandard while noise, the best achievable s teady s tate  error variance 
depends, in a simple way, only on tile antistable modes  of the signal to 
be estimated. The  best achievable directional s teady s ta te  error variance 
depends, in addition, on the directional characterist ics of the antis table 
modes. 
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Fig. 4. Estimation of a Brownian motion process 

4 E s t i m a t i o n  of  B r o w n i a n  M o t i o n  

Consider  the es t imat ion problem shown in Fig. 4. Here G is a given F D L T I  
plant, u is the input  to the plant  which is a s sumed  to be a Brownian  mot ion  
process, i.e., tile integral of  a s t anda rd  white  noise, which can be used to 
model a slowly varying "cons tant" .  Assume tha t  G(0) is left invertible. The  
objective is to design an LTI filter F such tha t  it measures  the o u t p u t  of 
G and genera tes  an es t imate  fi of u. This p rob lem is clearly a special case 

o f t h e g e n e r a l e s t i m a t i o n  p r o b l e m s t a t e d i n  Sect. 1 with P = [/GI and 

n = 0. The  error  of es t imat ion is given by ( I  - F G ) u .  Since u is a Brownian  
process, tile variance of the error is given by 

Y = I ! ( I -  FG)UII2 

where U(s)  = l-I is tile transfer  mat r ix  o f  rn channels  of  integrators .  If $ 

we want  V to be finite, we need to have I - F (0 )G(0)  = 0, in addi t ion to 
F,  I - F G  C TC]-I~. This requires G(0) to be left invertible, which will be 
assumed. Equivalently,  we need to have F, F G  E 7-l~ and F (0 )G(0)  = I.  
Therefore,  

V" = inf II(I - FG)UII" ~. 
F, FGcT~?too ,F(O)G(O)=I 

Let G = - ~ I - t N  be a left copr ime fac tor iza t ion  of G. Then  it is easy to see 
that  F, F G  E 74oo is equivalent to  F = Q . ~ / f o r  some Q E 7-/~. Hence 

V* = inf I;( I - Q1v)uI',~. 
Q( 7~7~,Q(O)IQ(o)=I 

Now let G have nonminimuln  phase zeros zl ,  z2 . . . .  , z~ with rh, r /2 , . . . ,  r/, 
being the  corresponding input  Blaschke vectors  of  type  II. Then  N has 
factor izat ions 

2 = N o ~ r , , . . . , 2 1  

where 

~r, = I - 2 R e z i  s 
Zi S + Z i  l]i?)i " 

Since N/(oo)  = I ,  i = 1, 2 , . . . ,  v, it follows t h a t  Q ( 0 ) N ( 0 )  = I is equivalent  
to Q(0)No(0)  = I .  Hence, by using the facts t ha t  Ni, i = 1 , 2 , . . . , v ,  are 
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un i t a ry  ope ra to r s  in s and t ha t  fi1-1 -- .  f i t  I - I �9 7-/~ and  I - QAro �9 7-/2, 
we obta in  

V* = inf I1(I - Q N 0 f i , , . . . ,  f i , )UI l~  
QET~Tt~,Q(O)IVo(O)=I 

= i n f  1 [ ( / ~ 1 1 j ~ 2 1 . . .  ~ r  _ I ) U  + (I  - QNo)UI[2 ~ 
Qef~,Q(o)fir  

= [l(fi~-~N2 ~ . . - f i : ,  - I)UII ~ + inf I1(I - QNo)UII~. 
QenT/~,Q(O)No(O)=/ 

Since fio is co- inner  with inver t ible  f i (0 ) ,  there  exists  a sequence  {Qk} E 
7~7-/~ with Qk(0)/Qo(0) = I such t h a t  l i m k - ~  I[(I - QNo)UI[  = 0. Th is  
shows 

v*  = II(fi~ - ~ . . .  ~ ; -~  - I)UIIg 

= I I ( ~  - ~ . . .  ~ ; - '  - I + I - N , ) U l l ~  

= II(fi:; ~ '  fi:~-~ - I)Ullg + II(I  - AT/1)UII~ 

-- Z I1(1 - f i dg l lN  
i= l  

= 2 ~ - ~  1 
i= 1 2i 

Here the first equal i ty  follows f rom tha t  2Q1 is a un i t a ry  o p e r a t o r  in/22,  the  
second from tha t  (N2 -1 - . - ~ - t  _ I ) U  e 7t~ and ( I  - f i l ) U  �9 ~ 2 ,  the  th i rd  
f rom repea t ing  the  under ly ing  p rocedure  in the  first and  second equali t ies ,  
and the last f rom s t r a igh t fo rward  compu ta t i on .  

T h e  above der iva t ion  shows tha t  an a rb i t ra r i ly  nea r  op t ima l  Q can be 
chosen from the sequence  {Qk}. There fo re  

V*(~) = lim I I ~ ' ( I - Q k N o f i , , ' " f i : l ) S l [ ~ .  
k--~ oo 

The  same reasoning  as in tile above  der ivat ion gives 

v * ( ~ )  = ~ II~(I - N,)UII~ = 2 1 cos2 L ( ( ,  r/i). 
i=1 i=1 z i  

T h e  last  equal i ty follows f rom s t ra igh t fo rward  c o m p u t a t i o n .  
T h e  direct ional  s t eady  s ta te  error  var iance  with an  a r b i t r a r y  F is 

v~ = I1~'(1 - FG)UIIg 
and the op t imal  d i rec t ional  s t eady  s ta te  error  var iance  is 

I.)* = inf  I I ~ ' ( t  - FG)UII~ 
F , G -  F GET~ 74~ 

= inf 115'(X - Q f i 0 f i , " " "  JY1)UII~. 
QET~Tt,,~,Q(O)No(O)=I 
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By following an almost identical derivation as the non-directional case, we 
carl show tha t  the same sequence {Qk} giving near opt imal  solutions there 
also gives near opt imal  solutions here for every ~ E IR m. Hence, 

V~* = Y*(~) = 2~--~ 1 cos" Z(~,~,) .  
i = 1  z i  

We have thus established the following theorem. 

T h e o r e m  2. Let  G ' s  n o n m i n i m u m  phase zeros be z l ,  z2," �9 ", z~ wi th  ~ll, 72, 
. .  �9 71~ being the corresponding Blaschke  vectors  o f  type II,  then 

1 
V * = 2 ~ - ~ - -  

i= 1 z i  

and 

= = 2 
l 

- cos  2 Z(~,  rl,). 
i = 1  z i  

This theorem says that  to es t imate  a Brownian motion from its version 
distorted by an LTI system, the best achievable s teady s ta te  error variance 
depends, in a simple, way, only on the nonminimum phase zeros of the LTI 
system. The best achievable directional s teady s tate  variance depends,  in 
addition, on the directional characterist ics of the nonminimum phase zeros. 

5 C o n c l u d i n g  R e m a r k s  

This paper  relates the performance l imitations in two typical es t imat ion  
problems to simple characteristics of the plants involved. By es t imat ion  
problems we mean actually filtering problems here. The general es t imat ion  
problems can include prediction and smoothing problems. We are now t rying 
to extend the results in this paper  to smoothing and prediction problems.  

In the problem considered in Sect. 3, the noise is modelled by a white 
noise. In the problem considered in Sect. 4, the signal to be es t imated  is 
modelled as a Brownian motion. We are trying to extending our results to 
possibly other types of noises and signals. 
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