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Abstract. In this paper, we address the performance limitation issues in estima-
tion problems. Our purpose is to explicitly relate the best achievable estimation
errors with simple plant characteristics. In particular, we study performance limi-
tations in achieving two objectives: estimating a signal from its version corrupted
by a white noise and estimating a Brownian motion from its version distorted by
an LTI system.

1 Introduction
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Fig. 1. A general estimation problem

A standard estimation problem can often be schematically shown by
. G
Fig. 1. Here P = [H
measurement noise, z is the signal to be estimated, y is the measured signal,
Z is the estimate of z. Often u and n are modelled as stochastic processes
with known means and covariances. We can assume, without loss of gener-
ality, that the means of the stochastic processes are zero. The objective is
to design LTI filter F' so that the steady state error variance

V= :llglo Ele(t) e(t)]

] is an LTI plant, u is the input to the plant, n is the
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is small. Clearly, for V to be finite for nontrivial v and n, it is necessary
that FF € RH, and H — FG € RH - This condition is also necessary and
sufficient for the error to be bounded for arbitrary initial conditions of P
and F, i.e., for the filter to be a bounded error estimator (BEE). There is
an extensive theory on the optimal design of the filter F' to minimize V, see
for example [1,2,6]. The optimal error variance is then given by

V* = inf
FH-FGER Mo
QOur interest in this paper is not on how to find the optimal filter F', which is
addressed by the standard optimal filtering theory. Rather, we are interested
in relating V* with some simple characteristics of the plant P in some im-
portant special cases. Since V* gives a fundamental limitation in achieving
certain performance objectives in filtering problems, the simple relationship
between V* and the plant characteristics, in addition to providing deep un-
derstanding and insightful knowledge on estimation problems, can be used
to access the quality of different designs and to ascertain impossible design
objectives before a design is carried out.

The variance V gives an overall measure on the size of the steady state
estimation error. Sometimes, we may wish to focus on some detailed fea-
tures of the error. For example we may wish to investigate the variance of
the projection of the estimation error on certain direction. This variance
then gives a measure of the error in a particular direction. Assume that
z(t), 2(t),e(t) € R™. Let £ € R™ be a vector of unit length representing a
direction in R™. Then the projection of e(t) to the direction represented by
& is given by £’e(t) and its steady state variance is given by

roo_ . ! 2
Ve = Jim B[(¢'e(t)?]
The best achievable error in £ direction is then given by

Ve = inf Ve.

F,H-FGERH o
The optimal or near optimal filter in minimizing V¢ in general depends on
&. This very fact may limit the usefulness of V7, since we are usually more
interested in the directional error information under an optimal or near
optimal filter designed for all directions, i.e., designed to minimize V. Let
{F:} be a sequence of filters satisfying Fy, H — FiG € R'Hoo such that the

corresponding sequence of errors {ex} satisfies

V= lim lim Elex(t)ex(t)'].

k—oo t—

Then we are more interested in

Ve (&) = lim E[('ex(t))’]:
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In this paper, we will also give the relationship between V*, V*(£) and
simple characteristics of the plant P for the same cases when that for V* is
considered.

The performance limitations in estimation have been studied recently
in [4,5,9,10] in various settings. In [4,5,9], sensitivity and complimentary
sensitivity functions of an estimation problem are defined and it is shown
that they have to satisfy certain integral constraints independent of filter
design. In [10], a time domain technique is used to study the performance
limitations in some special cases when one of n and u is diminishingly small
and the other one is either a white noise or a Brownian motion.

This paper addresses similar problems as in {10], but studies them from
a pure input output point of view using frequency domain techniques. We
also study them in more detail by providing directional information on the
best errors. The results obtained are dual to those in [3,7] where the perfor-
mance limitations of tracking and regulation problems are considered. The
new investigation provides more insights into the performance limitations
of estimation problems.

This paper is organized as follows: Section 2 provides background mate-
rials on transfer matrix factorizations which exhibit directional properties
of each nonminimum phase zero and antistable pole. Section 3 relates the
performance limitation in estimating a signal from its corrupted version by
a white noise to the antistable modes, as well as their directional properties,
of the signal. Section 4 relates the performance limitation in estimating a
Brownian motion from its version distorted by an LTI system to the non-
minimum phase zeros of the system, as well as their directional properties.
Section 5 gives concluding remarks.

2 Preliminaries

Let G be a continuous time FDLTI system. We will use the same notation
G to denote its transfer matrix. Assume that G is left invertible. The poles
and zeros of G, including multiplicity, are defined according to its Smith-
McMillan form. A zero of G is said to be nonminimum phase if it has positive
real part. GG is said to be minimum phase if it has no nonminimum phase
zero; otherwise, it is said to be nonminimum phase. A pole of G is said to
be antistable if it has a positive real part. G is said to be semistable if it
has no antistable pole; otherwise strictly unstable.

Suppose that G is stable and z is a nonminimum phase zero of G. Then,
there exists a vector u of unit length such that

G(z)u = 0.



150 Zhiyuan Ren et al.

We call u a (right or input) zero vector corresponding to the zero z. Let the

nonminimum phase zeros of G be ordered as 2y, z22,...,2,. Let also 11 be a
zero vector corresponding to z;. Define
2Rez, .
Gl(s) = I _ - 7)17’}1 .
s+ z
Note that G is so constructed that it is inner, has only one zero at z; with
71 as a zero vector. Now G’G’l‘1 has zeros z3, 23,...,2,. Find a zero vector
12 corresponding to the zero zp of G’Gl_l, and define
2Re z22
G2 s)y=1—-—~= 73 o
(s) s+ 2 272

It follows that G’GI_IG’;1 has zeros 23, 24, ..., 2,. Continue this process un-
til ny,...,m, and Gy,...,G, are obtained. Then we have one vector cor-
responding to each nonminimum phase zero, and the procedure yields a
factorization of G in the form of

G =GoG, -Gy, (1)

where Gp has no nonminimum phase zeros and

QRCZ,'
s+z]

Gi(s)=1- 7:7); - (2)
Since G; is inner, has the only zero at z;, and has 7; as a zero vector
corresponding to z;, it will be called a matrix Blaschke factor. Accordingly,
the product

G.=G, G

will be called a matrix Blaschke product. The vectors 7y,...,7, will be
called zero Blaschke vectors of G corresponding to the nonminimum phase
2eros 2),22,...,2,- Keep in mind that these vectors depend on the order
of the nonminimum phase zeros. One might be concerned with the possible
complex coeflicients appearing in G; when some of the nonminimum phase
zeros are complex. However, if we order a pair of complex conjugate non-
minimum phase zeros adjacently, then the corresponding pair of Blaschke
factors will have complex conjugate coefficient and their product is then
real rational and this also leads to real rational Gg.

The choice of G; as in (2) seems ad hoc notwithstanding that G; has to be
unitary, have the only zero at 2; and have 7; as a zero vector corresponding
to z;. Another choice, among infinite many possible ones, is

2Re Zi S

— i, 3
- s+4nm (3)

G,(S) =1

and if this choice is adopted, the same procedure can be used to find a
factorization of the form (1). Of course, in this case the Blaschke vectors



On Performance Limitations in Estimation 151

are not the same. We see that for the first choice G;(00) = I, whereas for
the second choice G;(0) = I. We will use both choices in the following. For
this purpose, we will call the factorization resulting from the first choice of
Type I and that from the second choice of type II.

For an unstable GG, there exist stable real rational matrix functions

o} V]

such that
G=NM"'=M1N

and

w ][ ] =

This is called a doubly coprime factorization of G. Note that the nonmin-
imum phase zeros of G are the nonminimum phase zeros of N and the
antistable poles of G are the nonminimum phase zeros of M. If we order
the antistable poles of G as p1,p2,...,p, and the nonminimum phase zeros
of G as z1,29,...,2,, then M and N can be factorized as

M = MoM, --- M,
N

with
M) = 1 - B
Ni(s) = 1- 2225 e
where (1,(,...,(, are zero Blaschke vectors of M and n,,7,,...,7n, are

those of N. Here also Ny and Mo have no nonminimum phase zeros. Notice
that we used type I factorization for M and type II factorization for N.
The reason for this choice is solely for the convenience of our analysis in the
sequel.

Consequently, for any real rational matrix G with nonminimum phase
7eros zy, 22,...,2, and antistable poles p;,pe,...,p,, it can always be fac-
torized to

G =G;'GoG., (4)
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as shown in Fig. 2, where

Goto) = 1 [1- 22|

ol s+ p;
Y 2Rez; s .
G.(s) = H [1 - P 7),-77,]

i=1

and Gy is a real rational matrix with neither nonminimum phase zero nor
antistable pole. Although coprime factorizations of G are not unique, this

nonuniqueness does not affect factorization (4). Here iy, m2, ..., 7, are called
zero Blaschke vectors and (i, (s, ...,{, pole Blaschke vectors of G.
G:l B qu GO G;“l s — G;ll —

Fig. 2. Cascade factorization

3 Estimation under White Measurement Noise

bars
G’zsz

S

Fig. 3. Estimation under white measurement noise

Consider the estimation problem shown in Fig. 3. Here G is a given
FDLTI plant, and n is a standard white noise. The purpose is to design a
stable LTI filter F' such that it generates an estimate Z of the true output 2
using the corrupted output y. This problem is clearly a special case of the

general estimation problem stated in Sect. 1 with P = [g] and u = 0. The

error of estimation is given by Fn. Since n is a standard white noise, the
steady state variance of the error is given by

vV =|IF|3
where || - [|2 is the H» norm. If we want V to be finite, we need to have
F(o0) =0, in addition to F,G — FG € RH . Therefore

V= inf I1F]I3.

T F,G=FGERHeo,F(c0)=0
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Let G = M~IN be a left coprime factorization of G. Then F € RH
and G—FG = (I-F)G=(I-F)M"'N € RHy ifandonly if [ - F = QM
for some @ € R'H . Therefore

V* = inf - QM||Z.
QERH 00 .Q(oo)M(00)=1

Now assume that G has antistable poles p1,p2,...,py With (1,(2,...,(, be
the corresponding pole Blaschke vectors of type I. Then M has factorization

M = MoM, --- M,

where

Since M;(o0) =1,1=1,2,...,pu, it follows that Q(00)M (00) = I is equiva-
lent to Q(oo)Mg(oo) = I. Hence, by using the facts that Mi,i=1,2...u,
are unitary operators in £y and that M;™? ---M;‘ —TeHyand] -QM, €
Ho, we obtain

V= inf I — QMoM,, --- M2
QGRHOO,Q(OO)A-Io(oo)zl
= inf MM - T+ — QMoll3
QERH,Q(00)Mp(o0)=1
=Mt M T+ inf 1] — QMoll3.

QERHoo,Q(00) Mo (00)=1

Since M is co-inner with invertible Mo (00), there exists a scquence {Qx} €
RHoo with Qi(00)Mp(oo) = I such that limg_,o {|I — QM| =: 0. This
shows
Ve iMet M - I
=||Myt M7 - T+ - M)
= 1My M = TG+ T = Myl

u ~—
= M- Ml
i=1

n
i=1

Here the first equality follows from that M, is a unitary operator in Lg,
the second from that My " ---M;' — I € Hy and I — M) € Ha, the third
from repeating the underlying procedure in the first and second equalities,
and the last from straightforward computation. The above derivation shows
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that an arbitrarily near optimal @ can be chosen from the sequence {Qy}.
Therefore

V(§) = lim |I€'(I - QeMoM, -~ My)|l3.
The same reasoning as in the above derivation gives
u : 1z ‘
V(€)= Y116 = MollF =2 picos® £(£,G).
i=1 i=1

The last equality follows from straightforward computation.
The directional steady state error variance with an arbitrary F is

2
Ve = I€'Fliz
and the optimal directional steady state error variance is

inf 'F||?
F.GoFGER o, 1€ 112

inf _ (I — QMoM,, - -- My)|I3.
QERHoo.Q(00) Mo (c0)=1

v =

By following an almost identical derivation as the non-directional case, we
can show that the same sequence {Qx} giving near optimal solutions there
also gives near optimal solutions here for every £ € R™. Hence,

In
Ve =V"(€) =2 picos® £(6,G)-

i=1

We have thus established the following theorem.

Theorem 1. Let G'’s antistable poles be p1,pa,...,pu with (1,2, -,(, be-
ing the corresponding pole Blaschke vectors of type I. Then

n
V= 22?;’
i=1

and

um
Ve =V(€) =2 picos £(6,G:).

i=1

This theorem says that to estimate a signal from its version corrupted
by a standard while noise, the best achievable steady state error variance
depends, in a simple way, only on the antistable modes of the signal to
be estimated. The best achievable directional steady state error variance
depends, in addition, on the directional characteristics of the antistable
modes.
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Fig. 4. Estimation of a Brownian motion process

4 Estimation of Brownian Motion

Consider the estimation problem shown in Fig. 4. Here G is a given FDLTI
plant, u is the input to the plant which is assumed to be a Brownian motion
process, i.e., the integral of a standard white noise, which can be used to
model a slowly varying “constant”. Assume that G(0) is left invertible. The
objective is to design an LTI filter F such that it measures the output of
G and generates an estimate i of w. This problem is clearly a special case

of the general estimation problem stated in Sect. 1 with P = [CI;] and

n = 0. The error of estimation is given by (I — FG)u. Since u is a Brownian
process, the variance of the error is given by

V=|U-FGUl,

where U(s) = %I is the transfer matrix of m channels of integrators. If
we want V to be finite, we need to have I — F(0)G(0) = 0, in addition to
F,I - FG € RH. This requires G(0) to be left invertible, which will be
assumed. Equivalently, we need to have F, FG € Hy and F(0)G(0) = 1.
Therefore,
V= inf (I — FG)U||3.
F.FGERH oo, F(0)G(0)=1
Let G = M !N be a left coprime factorization of G. Then it is easy to see
that F, FG € H is equivalent to ¥ = QM for some @ € H,. Hence
Ve = inf (I - QN)UJ2.
Q¢ RHoo,Q(O)N(0)=1

Now let G have nonminimum phase zeros z,,zs,...,2, wWith n1,72,...,7,

being the corresponding input Blaschke vectors of type II. Then N has
factorizations

N =NoN,,..., N

where

~ 2Rez; s
Ny, =1- : .
Z; 8§+ 2]

ni7; -

Since N,-goo) =1I,i=1,2,...,v, it follows that Q(O)JSI(O) = I is equivalent
to Q(0)Ng(0) = I. Hence, by using the facts that N;, ¢ = 1,2,...,v, are
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unitary operators in £, and that Nl‘l ---1\7;1 -I€ Hé and I —QNp € Ha,
we obtain

V= inf I = QNoN,,...,N)U||2
QERH 06 Q(O)No(0)=T
= inf WN7INGE - N, — DU + (I - QNy)UJ|3
QGRH ,Q(O)No(0)=T
=l(NJ'N, BN, = DU + inf (I — QNo)U 3

QERH oo ,Q(0)No(0)=1

Since N is co-inner with invertible N(0), there exists a sequence {Q} €
RHo with Q(0)No(0) = I such that limg e |[(I — @No)U|| = 0. This
shows
N7t N7 = DU
= (N NS =T+ T = N)U

(N5 N7 = DUIE + I = $1) U

= Y - MUl

Here the first equality follows from that N; is a unitary operator in L2, the
second from that (N, '--- N, ! = I)U € Hy and (I — N;)U € Ha, the third
from repeating the underlying procedure in the first and second equalities,
and the last from straightforward computation.

The above derivation shows that an arbitrarily near optimal @ can be
chosen from the sequence {Q}. Therefore

V() = lim ||€(I — QeNoN, -+ N)U3.

The same reasoning as in the above derivation gives

V() = leé I-N)UI} = 22 —cos Z(&,m)-

i=1

The last equality follows from straightforward computation.
The directional steady state error variance with an arbitrary F is

Ve = |€'(I - FG)U|(3
and the optimal directional steady state error variance is

Ve = o il €U - FGUIS
= inf €' = QN N, --- N)UJI3.
QER”H«,,Q(O)NO(O) I
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By following an almost identical derivation as the non-directional case, we
can show that the same sequence {Q} giving near optimal solutions there
also gives near optimal solutions here for every £ € R™. Hence,

* L] ‘ - 1 p
Ve = Vi) =2 —cos” L(&m).
i=1 !

We have thus established the following theorem.

Theorem 2. Let G’s nonminimum phase zeros be 2y, 29, -, 2, with ny, 72,
-, 1, being the corresponding Blaschke vectors of type II, then

. =3!
1% :QZZ

1=1

and
x * ~ 1
Ve =V =2) ) ~cos” L(&m).
i=1 !

This theorem says that to estimate a Brownian motion from its version
distorted by an LTI system, the best achievable steady state error variance
depends, in a simple way, only on the nonminimum phase zeros of the LTI
system. The best achievable directional steady state variance depends, in
addition, on the directional characteristics of the nonminimum phase zeros.

5 Concluding Remarks

This paper relates the performance limitations in two typical estimation
problems to simple characteristics of the plants involved. By estimation
problems we mean actually filtering problems here. The general estimation
problems can include prediction and smoothing problems. We are now trying
to extend the results in this paper to smoothing and prediction problems.

In the problem considered in Sect. 3, the noise is modelled by a white
noise. In the problem considered in Sect. 4, the signal to be estimated is
modelled as a Brownian motion. We are trying to extending our results to
possibly other types of noises and signals.
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