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Abstract

This paper concerns a quantity which is equal to the norm of the smallest structured
perturbation to a Hermitian matrix that makes the perturbed matrix singular. This
quantity of course then gives an indication on how much such structured perturbation
the Hermitian matrix can tolerate before becoming singular. For some structures, this
quantity can be computed explicitly. For some more general structures, only the lower
bound on this quantity is given. © 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

For M € C™", the Schmidt-Mirsky theorem says (among other things) that
inf {||A]]: A e C™™, det(I + AM) =0} = |M| " (1)
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Here and in the sequel, the matrix norm used is the spectral norm, i.e., the larg-
est singular value. '

Formula (1) has found wide applications in engineering problems, see for ex-
ample [1,2]. However, in many applications, the perturbation A is often re-
stricted to a subset of C"*". One interesting subset is R**™. It is shown in [3]
that

inf {||A: A€ R™™ det(I + AM) = 0}

. Re M — ImMJ}_l
= inf [e3] .
w01 [y ImM Re M

In studying robust control of linear systems under structured perturbation,
the following subset is of interest

Ay - 0
Xg = o], Aeltm
0 - Ag
It is shown in [4] that

-1
inf {||All: A€ Zx,det(I + AM) =0} > [[i)lelgﬂD"MDHJ ,

where
dl - 0

0 - dil
and this inequality is actually an equality if K < 3.
Recently, it was discovered in [5] that the solution to certain robust perfor-

mance problem for linear systems requires computing the following quantity
for a given Hermitian matrix

M= S N:I e C(n+m)x(n+m),
N* R

0 A
W(M) = inf{||A||: A e C™", det ([ + [A* O}M) = O}. (2)
In [5], a formula for computing /(M) in the special case when S = 0and R > 0
was obtained. In this paper, we will extend the formula to the general case.
We will also study the following generalized quantity.

V(M) = inf{||A||: A € Ty, det (1+ [f* ﬂM) = o}. (3)
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A lower bound on (M) will be obtained. This lower bound will be shown to
be equal to ¥, (M) if K < 2.

The paper is organized as follows. Section 2 studies y(M). An explicit for-
mula for /(M) is obtained. Section 3 considers the general case. A lower bound
on (M) is obtained. This lower bound, when specialized to the case when
K =1, gives the formula obtained in Section 2 and hence is equal to . (M).
Section 4 shows that the lower bound obtained in Section 3 is also equal to
Y (M) when K = 2.

In the following, we define some notation used in this paper. For X € C™",
the singular values of X are denoted by ¢,(X), assuming nonincreasing order.
The largest singular value of X is also denoted by &(X). We always set
[IX)| = &(X). If X is Hermitian, then the eigenvalues of X are denoted by
4;(X), also assuming nonincreasing order, and the inertia of X is denoted by
{m (X),m(X), n_{X)}, representing the number of positive, zero, and negative
eigenvalues of X, respectively.

2. Formula for computing (M)

Note that for all y > 0,

wfro[2 2

o4 18 S0 )

0 I/ A0 0 I/
_ 0 Al||lyS N
—aa{re ]2 88 A o
An immediate application of the Schmidt—Mirsky theorem gives
S N .
>
van= ([ 0]} ®
If
o )
M = ,
0 -1

then (M) = oo but the right hand side of (5) is 1. This shows that the inequal-
ity (5) can be very loose.
Note that the inertia of

UVS R]\/]v}

is invariant of y, and is equal to the inertia of M.
Define:
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s N
. 1ng 21 if m,. (M) > 0,
7>

re = N* R/y
50 if 7. (M) = 0.
7§ N -
{im“(— ;,mﬂ{’ D} if 7 (M) >0,
r_ = >0 N* R/'y .
o0 ifn_(M)=0.

Theorem 1. (M) = min{r,,r_}.
Several lemmas are needed for the proof of Theorem 1.

Lemma 1 ([6], p. 149). Let F(y) € C"" be a Hermitian matrix function analytic
on an open set I' CR. Then there exist a unitary matrix function
Vi) =[B1(y)...5()] €C™"  and a  diagonal — matrix  function
A(y) = diag|A(y),... ,/1,,(}')] € R™", both analytic on I', such that

F(y) = V@A)V (y).

Furthermore,

—,

) )L, )

Lemma 2. Let F(y) € C"" be a Hermitian matrix function analytic on an open
set T CR Let 4(y) = A(y) = -+ = 2(y) be its ordered eigenvalues. If 4;(y)
has a local extremum at vy, €I, then F(y,) has an eigenvector v C"
corresponding to 4;(yy) such that v*(dF(yy)/dy)v = 0.

Proof. If the multiplicity of /;(y,) is one, then /,(7) is equal to some A () given
in Lemma 1 in an open neighborhood of y,. Thus 7, is also a stationary point
of 4;(y). Let #,(y) be the analytic eigenvector corresponding to 4;(y). Then (6)
gives:

dF(y,)
dy

If instead the multiplicity of 4;(y,) is greater than one, then we can assume,
without loss of generality, that in an open neighborhood of y,, 4:(y) = 4;,(y)
for y <ypand A;(y) = ij(y) fory = v,. If j1 = j», then 4,(y,) must be a local ext-
remum of 4;(y), so we get the result by applying (6). Otherwise let (),
k = ji, j», be the analytic eigenvectors of F(y) corresponding to A;(y). Then
(6) gives:

5;'(?0) %;(y0) = 0.
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A (o) _ oy dF () -
) ) S, ),

ddy (o) _ o\ dF ()
_jéy“o— =, (%0) _7170_%())0)'
Put v, = af;, + (1 —a?)"?5;, for « € [0,1]. Then v,(7,) is also a unit length
eigenvector of F(y,) corresponding to A;(y,). Define

7100 = 7000, )

Since y, is a local extremum of Z;(y), we must have

_ d2;,(0) dAy(3)
dy dy
By continuity, f(«) = 0 has a solution in [0, 1]. This proves the lemma. []

<0.

JACOTALY

Lemma 3 ([7], p. 203). Let M,A € C™" be Hermitian matrices. Denote the
eigenvalues of M as wizm= - 2n, and those of M+A as
St28 = 2, Then

& —ml < N|A]]
fori=12...n

Lemma 4. For A € C"*" B € C™",

n —rank[/ + AB] = m — rank([] + BA].
Proof. It can be verified that

{I —A} I+AB 0 _[1 0 I -4
0 I B I| |B I+BAJ|0 1]
Hence

I+4B 0 1 0
rank = rank .
B ! B I+ B4

This last equation implies that rank(/ + 4B)+ m = rank(I + BA) +n, or
equivalently m — rank([/ + BA] = n — rank[/ + 4B]. [

Lemma 5. Let F(y) = A(y) +y 'B € C"" where A(y) is a Hermitian matrix
Sunction analytic on an open interval I around 0 and B is a constant Hermitian
matrix with rank B = r < n. Assume that B has a spectral decomposition

A 0

i mr,
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where Ay € R™" is diagonal and [Vi V| is unitary. Then as vy approaches 0,
7, (B) eigenvalues of F(y) go to oo, m_(B) eigenvalues of F(y) to —oo, and the
rest to the eigenvalues of VyA(0)V5.

Proof. Without loss of generality, assume that an analytic spectral decompo-

sition of yF(y) is

A () 0
0 A2(y)

such that 4,(0) = A; and A,(0) = 0. Then

F() =[N Vz(?)]ly /(1)1(?) yl;?z(y)

Clearly as y goes to 0, r eigenvalues of F(y) go to the diagonal elements of
lim, o y~'A4,(y), n..(B) and n_(B) of which are equal to oo and —oo, respective-
ly, and the other eigenvalues of F(y) go to those of lim, oy '4,(y). Observe
that:

() = [Ti() Vz(?)}[ }[Vx(“/) 200N

~ *

EAOIRAGIE

Hence
T (DBR(y) = 37 ()Vi(0) A1 (0) 7 (0) Fa(y).

Since ¥;*(0)¥5(y) is analytic and vanishes at y = 0, it follows that
lim 5!V (7)BVa(y) = 0.

This shows

tim ' 23() = 75 (0)4(0) 5(0).

Since V> and ¥5(0) are isometries with the same image, the result follows. [

Proof of Theorem 1.
Denote

Fo =0 o]

N* R/y
First we show that (M) > min{r,,7_}. To simplify notation, we abbreviate
{m, (M), me(M),n_(M)} to {n,,mp,n_}. By Lemma 1 and the fact that the in-

ertia of F(y) is a constant, there exist V(y)€ Cm*@+m) apd
E(y) € ClmFmx(mim)  both  analytic  on  (0,00), such that
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F(y) = V(y)E(y)V*(y), where V*(y)¥V(y) = I,E(y) is Hermitian and the eigen-
values of E(y) are equal to the nonzero eigenvalues of F(y). Hence

s[5 o S
0
—raak{r+ [\ 0 lvoEnr o)

=m+n—m, —T7_

+ rank{l+V*(y) {2* é} V(V)E(V)}-

> o

The last equality follows from Lemma 4. Denote

HO) = B0+ 70 o] 7o) )

then rank H{y, A) is independent of 7y and

dt{1+ 0 A}M} 0
e =
A" 0

if and only if det H(y,A) =0 for all y € (0, 00).

Since E(y) is analytic and nonsingular, and V(y) is analytic, it follows that
for a fixed A, the eigenvalues of H(y, A) are continuous in y on (0, cc). Since
rank [H(y,A)] is independent of y, we conclude that for a fixed A, the inertia
of H(y,A) is independent of y. Consequently, this inertia can be denoted by
{n®, n}, 7%}

Assume now that =, >0 and =n_>0. Then the eigenvalues of
H(3,0) = E-1(3) are

LEM Z - 24 FO>0> 4 LIFO) = - 24 1 FG).

If [JAll <ry=sup,, A'[F(7)], then there exists a 7y, such that
1Al < £7'F (3)]. Since

0
I
it follows from Lemma 3 that z% > n,. Similarly, if A < r_, then 7% > n_.
Obviously these reasonings also hold if 7, =0 or n_ = 0.

Hence, if ||A|| < min{ry,r_}, then rank[H(y,A)]=7%+7*>n, +7_.
This forces rank[H(y,A)] ==n, +n_, ie., det[H(y,A)] # 0. This shows that
Y(M) 2 min{r,,r_}.

Notice that the converse inequality y(M)< min{r,,r_} follows from the
following claim:

o [rewn<ial
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Claim 1. (a) If ALF(Y)] has a local extremum iy at vy, € (0,00), then
WM< ol (b) If lim,_g LIF(y)] = Ao or lim,_ A[F(y)] = Ao for some
|%0] < oo, then (M) < |49 .

It remains to prove this claim. If A, = 0, we certainly have y(M) < ||™". So
we assume |4g| > 0.

First we show (a). Since Zy is a local extremum of A4,[F(y)] at y, € (0,0c), it
follows from Lemma 2 that there exists

-[)

where x € C" and y € C” such that F(y,)v = 4o, 1.e.,

Yo3X + Ny = Jox, (8)
; 1
Nx+‘_‘Ry:il')y7 (9)
7o
* dF(’})O)

1
v ~—v=x"Sx — 5 )"Ry=0.
. 7

Multiplying (8) and (9) from the left by x* and »*, respectively, subtracting the
resulting equations, and noting that x* Ny must be real, we get

- * * * 1 *
2o(x’x = y'y) = yx"Sx — —y'Ry =0,
70

which implies x*x = y*y. Let A = —ig'xy*/x*x. Then it is easy to verify that
1A} = |%| ™", and

{e ol lil-o

which means that

d t{] + 0 A]M } 0
e A0 = 0.
By definition, we have (M) < 4| ™"
Next we show (b). It suffices to do this for the case when
lim,_y 4,[F(y)] = 40. The proof for the other case can be obtained similarly

by permuting the four blocks in F(y) and exchanging A and A",
First, suppose that R is nonsingular. By applying Lemma 5 with

»S N 00
Aly) = and B = )
N* 0 0 R
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we see that as y — 0, m eigenvalues of F(y) go to £oc and the others to zero.
Hence 4 can only be zero. This leads to the trivial case. Therefore, we can as-
sume that R is singular and R has spectral decomposition.

A4 0 R
R=1[U U] u U,
L0 0
where A is nonsingular. By Lemma 5, 4, is equal to an eigenvalue of
0 NU;T
Uusne 0|

or equivalently, 79 is equal to a singular value of NU,. Therefore. there exist
unit vectors x and y such that NUsx = 2gy. Let A= A(/'.(}'U; v}, Then
|A|} = |4 and

{oele o]l & lHed o

which implies (M) < |4, O

The computation of (M) involves two univariate minimizations. The fol-
lowing proposition says that any local minimization algorithm can be applied
to find ¥ (M) accurately.

Proposition 1. (a) If r. <r_, then A[F(y)] is unimodal and any local infimum of
—lmen|F ()] must be equal or smaller than (r+)71. (b) If r.<ry, then
—tm=n[F (7)) is unimodal and any local minimum of i\ [F(;)] must be equal or
smaller than (r_)™"

Here, by unimodality, we mean that a function has only one local infimum.

Proof. Again write
S N
For= [ el
/7
Assume r, < #_, then (M) = r,. Recall that r, = {inf,. 4, [F(7)]}"". Suppose
that 2, [F(y)] is not a unimodal function, then between any two local minima,
A[F(y)] must have a local maximum, say at <, € (0,0c), with
M[F(3)] > (r.)”'. From the claim in the proof of Theorem 1, we have
W(M) <A '[F(y))] < r. = ¥ (M), which is a contradiction. For the same rea-
son, any local infimum of —A4,.,,[F(y)] must be equal to or smaller than
(r,)"'. This proves (a).
Statement (b) follows from the same argument. [
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In general
[»S N »S N
Al and  — Apia| )
LN R/y N R/y
are not both unimodal. For example,
3
al’ ]
L3 1y

is unimodal whereas

_AZB ljv]

is not. Proposition 1 says that although local minimization algorithms cannot
guarantee to find both . and r_, they can find (M) accurately.

3. Lower bound for ¥, (M)
For a given matrix
ol
M pnd
N* R

and a subspace Zx of C™":

Xx:={AeC"™A

= block diag[Ay,...,Ak], A, € C™}. (10)
This section concerns
. 0 A
WM = 1nf{|iA||: Ae.%",(,det{l—i- A0 M>=0;. (11)

For y € RX :={{y),7,,...,7|:7: > 0}, define scaling matrix

D(y) = diag[\v 1, ...,V I/ I/ 7k

It is easy to verify that for A € %,

o]y oo ={ 4 o]

dt{1+[0 A]M}—O
© AT 0 -

if and only if
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det{l + m ﬂD(y)MD(y)} =0.

Note that for all y € R¥, D(y)MD(y) have the same inertia. Similarly from
Section 2, define:

. [{infcor kDGO it () >
Tl if 7, (M) =

e @

. i {= A [ DOMDE i 7 (M) > 0,
Tl if (M) =0

Theorem 2. Y/, (M) = min{r,,r_}.

Proof. Again abbreviate {n, (M),no(M),n_(M)} to {mny,m,mn_}. Since
rank(M) = ny + n_, it follows that M can be decomposed as M = UAU*
where A € R=+m)%(®+7-) i< diagonal and nonsingular, U € CimH> (w7
and U*U = 1.

Let X(y) = D(y)U. Then X(y) has full column rank. By carrying out the
Gram-Schmidt orthonormalization on the columns of X(y), we get
X(y) = V(y)R(y) where V*(y)V(y) = I and R(y) is nonsingular. It is easy to see
from the orthonormalization process that the maps from X to ¥ and to R are
analytic when X has full column rank. Hence, V() and R(y) are analytic in y.

Let E(y) = R(y)AR*(7y), then E(y) is Hermitian, nonsingular and analytic.
Furthermore

D(y)MD(y) = D(y)UAU"D(y) = V())E(V™ (7).

Since V*(y)¥V (y) = I, the eigenvalues of E(y) are the same as the nonzero eigen-
values of D(y)MD(y). The rest is completely analogous to the proof of
W(M) =z min{r,,r_} in Theorem 1, by replacing the scalar y with the vector
7, F(7) with D(y)MD(7), and y(M) with Y (M). O

Under some conditions, the inequality in Theorem 2 can be proved to be an
equality. For example, suppose that r, <r_ and inf g 4,[D(y)MD(y)] is at-
tained at y,€ RY. If A4[D(y)MD(y)] is a simple eigenvalue, then
V(M) =r,. A more general result is as follows.

Theorem 3. Suppose A;[D(y)MD(y)] has a local extremum o at 7y € RX, and iy is
a simple eigenvalue of D(y,)MD(y,), then (M) < 7| ™.

Proof. If 4y = 0, the assertion is obvious. Hence we assume that iy # 0 in the
following proof. Since 4y is a simple eigenvalue and is a local extremum, it
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follows  that  A4[D(y)MD(y)] must be analytic at 1y, with
O4;[D(y0)MD(y)] /0y = 0.

Let v be the eigenvector of D(y,)MD(y,) corresponding to Ay, then
D(7,)MD(y,)v = Zgv and

AX[D(ye)MD aD(y aD(y
[ (}0) (VO)] =" OO)MD('}’Q)%‘D(?Q)M (}O) L= O,
0, oy, &
j=12....K
Partition v accordin% to the structure of D(y),
v=1[o], 0}, ... vf,vk.,,....v]] . Notice that
OD(y) 1 .. -1/ -32
03,',-0 = zdlag[O, . ,”,V'Ojl 1,....0,0,..., —yof’ I1,...,0]
/
1
= diagl0,...,1,..., 0,0,...,~1,...,0]D(y,)
270
| .
= — D(y,)diag[0, ..., 1,...,0,0,..., —I, ..., 0]
27y
where 7,; denotes the jth element of y,, we get,
04Dy IMD(ye)] Ao, . . .
[ (gi 0 }:”—;(U_ju,-—v/.*,(v,-”():o, j=12,....K, (12)
J ()
which implies vjv; = v}, 04 for j=1,2,... . K.

Let A = diag[A,, ..., Ax] where
A — —ig v/ lloll® i (] # 0,
Colo if Jlul| = 0,
then ||A[| = | 4| and
Moy + AoAjvgs ]

0 A} vk + AoAgvag
U=
A" 0 Vg+1 + l()ATUl

{140 §|PooMDG fo =0 ia]

L vak + AoAg v
This shows

ke I+ 0 AM<+
ran A 0 n+m.
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Therefore, Y, (M) < |4|™'. O

Corollary 1. Let /., be a local infimum of 1, [D(y)MD(y)] at y, and i_ be a local
infimum of — A mD()MD(y)] at y_, then Y (M) > min{(A,)~" (A_)7"}.
Suppose Ay = A and i, is a simple eigenvalue of i [D(y,)MD(y.)], then
W (M) = ()" A4 similar result holds when A, < i._.

When A is a full block, (M) can be exactly computed by any one-dimen-
sional local optimization method. When A is of block diagonal structure, a
lower bound of (M) can be obtained by minimizing 4,[D(y)MD(7)] and
—Amin[D(y)MD(y)]. An interesting question that follows is if the global infima
of 4,[D(y)MD(y)] and —4,,,,[D(7)MD(y)] are easily computable. The answer for
the general case is not available yet, but under some conditions, min{r,,r_}
can be reliably computed.

In some applications, the given Hermitian matrix

S N }
N R
satisfies S, R > 0. In this case, r. <r_, and A,[D(y)MD(y)} is unimodal.

|

Proposition 2. Suppose S,R = 0. Then 21[D(y)MD(y)] = — Amin[D(y)MD(7)]
and ry <r_.

Proof. Partition

D(y)MD(y) = [Fu(v) F,z(}.)]

() Fo(y)
consistently with M and denote

Fiu(y) 0
0 Fxn(y)

Then D(y)MD(y) = Fi(y) + F2(7) and
M) = =2l P2 (0)] = IR (D).

Since Fi(y) = 0, it follows from [8] Theorem 1.3.14 that for i=1,2,....m+n

fio-| o)

4D(IMD(y)] 2 AlF (7))
Therefore,
MDMD(Y)] = AlFB0)] = —dnalF2(7)] = — Zmra[D(7)MD()],

which implies »,. <r.. [
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From Proposition 2, we only need to compute
ry = {inf,pe A[DMD()]} " A continuous multivariate function is said
to be unimodal if the inverse image of (—oc,y) is connected for all y € R.

Propesition 3. If S.R = 0, then A|[D(y)MD(y)] is a unimodal function.

Proof. The unimodality can be proved by showing that the following set
Qo) == {y € RE: 4 [D()MD(y)] < o}

is convex for all o« > 0.
For the simplicity of notation, we assume that each block of A is square. In
this case, D(y) can be written as

r'z. o
D(v)={ o el

where I' = diag[y,/, 7,1, ..., 7¢I]. The following proof can be easily generalized
to the case when the blocks are nonsquare.
Notice that 2, [D(y)MD(y)] < « if and only if

D(y)MD(y) =

I"I/ZSI'VI/Q I—*l/lNI-'fl/z
-\2N«p2 prl2pr-i2 <o,

which in turn is equivalent to

I'Ssit I'N I 0
<u .
N*I' R 0 r

Suppose that y,,7, € Q(a), then:

r,Sr, r,N r, o
<a : (13)

N*T, R 0 I,

r.Sr, T,N r, o

[ peTh R }ga{ b } (14)

NIy R 0 I,

Multiplying (13) with r and (14) with 1 — 1, r € [0, 1], and adding the two re-
sulting inequalities, we have
{tFaSFa + (0 =0)WSry, [tr,+ {1 — z)I"b]N}
N*UL, + (1 — )] R
[tF,,Jr(l—z)Fh 0 ]
<o .
0 tr,+ (1 =0rI,

Let X = S'?r,, Y = 8§21, Then from
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X+ (A=Y [tX+(1-0)Y] - [tX'X+ (1 —1)Y"Y]
=—t(l-X -Y)"(X - Y)<0,
we get
[tr,+ (1 = O)S[tr, + (1 = )T) <tTeST, + (1 — 6)T,ST,

which implies that ty, + (1 — t)y, € (). Therefore, Q(«) is convex. It follows
that A,[D{y)MD(y)] is unimodal. [J

4. The two block case

In this section, we will show that the lower bound of (M) given by The-
orem 3 is actually the exact value of Y (M) when K = 2.

For the sake of clarity, we replace /7, and /7, in D(y) with « and f, respec-
tively, and replace D(y) with D(a, f) = diag[a/, fI,(1/a)I,(1/B)I]. Denote
P(a, ) = D(a, IMD(a, B). Then:

- {{Ii}goil[P(a, B} if n (M) >0,
R if 7 (M) = 0.

N { {ai;}fo{_j'M-M[P(av P it m_(M) >0,
Tl if 7 (M) = 0.

Theorem 4. When K =2, Y (M) =min{r,,r_}. If r, <r_, then any local
infimum of A [P(a,B)] is its global infimum. Furthermore, let Jo be a local
infimum of —Amyn|P(a, B)], then ry < Ay'. A similar result holds when r, > r_.

This theorem says that, in the two block case, the maximum of a local infi-
mum of 2;[P(a, f)] and a local infimum of —A4,,,[P(«, B)] also exactly gives
' (M). Thus (M) can be reliably computed by any reasonable nonlinear
programming method. Before the proof of Theorem 4, we state a lemma which
is a sort of extension of Lemma 5.

Lemma 6. Let F(y) = A(y) +y !B+ y72C € C"" where A(y) is a Hermitian
matrix function analytic on an open interval I around 0 and B, C are constant
Hermitian matrices. Assume that C has a spectral decomposition,

A4, 0

c=n m[o 0

[ wr,

where Ay € R™" is nonsingular and also assume that VyBV> = 0. Then as y ap-
proaches 0, n,.(C) eigenvalues of F(y) go to oo, n_(C) eigenvalues of F(y) to
—oo, and the rest to the eigenvalues of V;[A(0) — BV, A['V;B]V;.
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Proof. Without loss of generality, assume that an analytic spectral decompo-
sition of y2F(y) is

such that 4,(0) = A, and A,(0) = 0. Then
A0
0

F(;) =[Pk h)] EP

Clearly as y goes to 0, r eigenvalues of F(;) go to the diagonal elements of
lim,_ 77%4,(y), n.(C) and n_(C) of which are cc and —oc, respectively,
and the other eigenvalues of F(y) go to those of lim,_y 7724,(y). Note that

E(DF)A()
= VXA + 7 (BAG) + 17 (0)Ch ().
Since ¥, (0)BV5(0) = 0, it follows that

2 Ma(y) =

i o L N BTL () —
!,IEI(}) V2 (y)BVZ(/) d}y

lim 3275 (1)CTa () = %% 7 (0)CTA(0)
1d :.
:Ea;[Vz(O)CVz(O)+ (0)CV»(0)]
= %[V;(O)CIZ(O) £ 2P5(0)CV2(0) + V5 (0)CV(0)]

Observe that
PEG () = B(y) Aa(y).

Differentiating both sides, we obtain
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29A(y) + 7A() + BIA(y) + [124() + 9B + CIVa(7)
= Pa(3)Aa(3) + () A().
Evaluating at y = 0, we obtain
BVA(0) + CV(0) = F5(0)A5(0).

Notice that

As(0) = lim 7 Ay ) = lim V (n)lA(y) + B+ CIA)
= 75 (0)BV(0) + lim ™' 7 (7) CVa(y) = 0.
We then have
BP(0) + CV»(0) = 0.
From C = V;(0)A4,(0)7(0), we get
BF5(0) + 71(0)4,(0)7 (0)7(0) = 0.
This leads to
7 (0)72(0) = — A7 (0) 7 (0)BY4(0).
Therefore,
lim 72 42(7) = V5 (0)4(0)74(0) + V' (0)BV»(0)
V7 ()BIA(0)77(0) + Fa(0)75 (0 )172(0

)B
BV (0)7;(0)72(0)
‘<o>V*<o>B]Vz<o>.

= 7,(0)4(0

= 172*(0) 2 “(0

= V57 (0)[4(0) - BVI(O)A
7 (0) =

Note that #,(0)4,(0)7;(0
image. The result follows. [

Proof of Theorem 4. It suffices to prove that if n, (M) > 0 and 49 is a local
infimum of 4, [P(a, §)], then ¥, (M) < 45" and if n_(M) >0 and 4 is a local
infimum of —,...,[P(a, B)], then Y (M) < i;'. By symmetry, we only need to
prove the first statement. Typically, we have the following four cases:

Case 1: The local infimum 4, is attained at a, , € (0, 00).

Case 2. iy = limy_, 41 [P(a, kott)], ko € (0, 00).

Case 3: iy = lim, ., A1[P(a, By)], By € (0,00).

Case 4: Ay = limg,/p— M[P(2, B)).
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Other cases such as «, #, and (or) («/f) — 0 can be converted to one of the
above cases by exchanging o with 1/a, § with 1/8, « with 8, or o with 1/8, etc.
and permuting

OC2S| O(ﬂSz Nl %Nz 0 0 AI 0
P, ) = 0% B2S3 gN} N and 00 0 4
Ny ING AR LR A, 0 0 0
IN; N LR kR 0 4 0 0

accordingly. Noticing the symmetry of the structure of P(«, §) with respect to
a, B,1/a and 1/B. For example, suppose 4y = limg_o 41 [P(o%, B)]. This case can
be converted to case 3 by exchanging « with 1/8, 1/a with §, A, with Aj, A}
with A, and permuting P(«, 8) accordingly.

We can assume the above cases since from the following discussion, we see
that the limits exist if they do not go to infinity.

The following proof is long and dry. The main idea is to construct a

A
[0 2
0 A

by using the eigenvector of P(a, ) and to show that ||A|| = ;' and

de{re | glmb=o
e =
A" 0

by exploiting the special properties of the local infima. This leads to
Ue(M) < A5

Case 1 occurs generally as we shall see later from the conditions under which
cases 2-4 occur. The proof for case 1 is relatively simple. Most part of the proof
1s dedicated to cases 2-4.

Case 1: The local infimum 4, is attained at o, f; € (0, 00).

Let the multiplicity of iy be » and let the corresponding eigenspace be
spanned by the columns of ¥ € C"*"*" with *¥ = I. Then in a neighborhood
of g, iy, Z1[P(e, B)] can be written as

* 6P(a07 ﬁO)
O

+O[(x — ao)’ + (B~ o))"

OP (2, By)

op d

A[P(o, BY] = Ao + Amax [(a ~ag)V V+(B-p)V*

Denote

_ aP(g(:ﬂ L cnelC pp=1
v rl* V* ap(g(;ivﬂo) V',I - T ’
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then by the corollary of [4], p. 246, ¥/ is convex. By Theorem 2 and Lemma 4 of
[4], pp. 245-246, 1 is a local infimum of 4, [P(«, $)] if and only if 0 € 7. Which
means that there exists a unit vector v=V¥ne C"" such that
v (OP(0g, By)/0o)v = v*(OP(ao, By)/OB)v = 0. Partition v in accordance with
the structure of D(«, ) as

Uy

(2]

U=

U3

22
Then P(og, f;)v = Agv and

U*MU = %(UTUI — vivs) =0,

Ou o
.* aP(a()?ﬁO) _ 210 * * _
; op v= 5 (v302 —V304) =0

(cf. (12), notice the slight difference). We get vjv; = vivs, v3v, = vjvs.
Let

e

A= ,

0 A

where
A = =25 oty /Nlol® i (ol # 0,
Tl if [|o;]| = 0.

Then ||A| = 4, and

(]2 4 ranole=o

Therefore, Y (M) <2,
Case 2: dg = lim,_.. 4[P(a, k)], ko € (0,00).
Notice that

a0 0 0 o 0 0 0
0 kad 0 O S NJ|O0 kad O O
Pk =146 o 1u o {N* R} 0 0 i1 o
0 0 0 LI 0 0 0 LI

_ «*S(k) N(k)
[N ER() |

where
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s<k>=[(’) f]]s[(’) f]]
wo=[o olxlo b]

r o] [r o
RO =10 171Rlo 1l

It follows from Lemma 5 with v = o> that, for a given k, lim,_ A, [P(a, ko)
exists if and only if S(k) <0, or equivalently if and only if § <0. It follows that
if lim, ., 2;[P(e, kx)] exists for one k, then the limit exists for all k € (0, oc).
Let A(k) = lim,_, A[P(x, ka)]. Then it is easy to see that i(k) has a local in-
fimum 4, at kp. By Lemma 5, A(k) = ||[N*(k)U(k)|| where the columns of U (k)
form an orthonormal basis of the kernel of S(k).
Let

)

U =

Us

be an isometry onto the kernel of S. Then

U

1 —172
wm+—@w> :
al

kl
E 09 o AN
0 %] U ) 1+E2‘ 1% .
Denote

Flk) = N*()U(K)IN" (k) U (k)]

1 0 * U] * 1 * - * * 1 0
= O%IN[UJ<MUHjﬂ5%>[U,(@W’O%] .

Then 2*(k) = Ai[F(k)].
It is clear that A2(k) has a local infimum /j at k. The following is to con-
struct a desired

Al 0
A:
0 Al

satisfying ||Al| = 4, and

dt{l+[0 A]M} 0
e =
AT 0

WH=[

hence

Alk) = IN"(k)U(K)[| =
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by applying this property.
By Lemma 2, there exists a vector

[

such that F(ky)z = 2*(ko)z and z*(dF (k) /dk)z = 0, which implies,
O 0 [j1 1 -1
(21 23] 0 —1j N[U](UlUl-F%gUzUz) (Ur Us]

2
* Ul * 1 * -
Nl U1U1+k—§U2U2

Z 2 * ®
+Eg[zl z5 |

I 0z

0 kl”] L’z]

=

I 0

0 L7

2 ko

1
UZ*UZ(UI*UI.+

-
) U2*U2> Uy U3IN
ks

N A [
z 1 — 5
1 2 0 %I Uz 1 ké 2 1 2
0 i1 |[] "
Let
w] o] U Ui+ L Ui XI[U* IR
xz—vo kl(,UZ 'lkgzz 1 2 01\%] Zz~

Then the previous equality is equivalent to

zg[**[o OHZI +2/1§x* zg[“][o 0 21}
— 1z, Z — XXy — — 2725
P N A L P A L N I S P
notice that

0 o ] iyo o01fzr o] ifr o]ro o
0 —%I| k[0 7j|0 L1} k|0 llo 1

and F(ky)z = /l(z)z. Thus zZiz; =xix,. It is easy to verify that
x{x; + x3x; = zjz; + z3z,. Therefore zjz) = x}x,.
Let

A
[0 sl
0 A
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where
A= —)tglxiz;‘/(z;‘z,-) if z; £0,
"o if z,=0.
Then ||A|| = 4;". The following is to show that

de{re [, flu}=o
e A0 = 0.

Since
U
]
U,
we get
X1
S(ko)[ }:0.
X2
Furthermore,
N*(k()),:XI:I
X2
—1 1 O * Ul * 1 * - * * ] O
Sy (o] (o fun s sl 2]
:}tglF(ko)ZZ/lo[Zl].
23
Denote
0 0 A O
A—[O A}_ 0O 0 0 A
A 0] A0 0 o)
0 A 0 O

then from (15) and (16),

X1

[+ AP(1, ko) | 2 :{1+Aa[5(ko) N(ko)” X

0 N*(ko) R(ko)]S |0
0 0
X) 0
X2 O _
=10 +A, Iz, 0.
0 ),()Zz

(15)
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Hence det(I + A,M) = det[l + A,P(1,k)] = 0. Which implies (M) < 45"
Case 3: 2y = lim,_.o, L1[P(a, By)], Bo € (0,00).

Let
I 0 0 0 0 A 0 0
S 00 710 A= JTAL = AT 0 0 0
071 0 0} ¢ 0 0 0 A
0 0 0 [ 0 0 A, O

Partition S, R, N according to the dimensions of A; and A, we get

S5 N N, R Ry
S = . N= . R= .
S S Ny N Ry R

Denote

OCZSI Nl OC,BSZ %Ng

Ny ERING R
apS; ENy BSy N,
AN; GRSOND R

PZ(%B) :JTP(a’ﬁ)J =

then
det (I + AM) = det[I + A,P(a, B)]
= det[I + A,Pa(a, B)]

and 4[P(a, B)] = Mi[P(x, B)]. Since lim,_o 4([P2(2, By)] = 40 < 00, we must
have S| < 0. For simplicity, suppose that

S 0]
Sl = ’
0 0
S < 0 @if not so, a unitary similarity transformation can be applied without

changing the value of (M) and 4,[P:(«, B)]), and Ny, S,, N, are partitioned ac-
cordingly, such that P5(«, f§) takes the form,

EXT 0 Niuo afSa N2
0 0  No afSn FN»
Pyo, )= | Ny N, I]fR' €N3* ;‘,«;RZ
afSy  afSy, ENy BSy Ny
3V Ve RN AR

We conclude that S5, = 0, Ny = 0. If not so, the largest eigenvalue of the 4 x 4
blocks at the lower-right corner of P;(a, f) will go to infinity as & — oo for each
p. This is a contradiction. So we have,
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[«2S1 0 Ny afSy
0 0 N» 0
P f)=| N No o kRENG LR | (17)
afS;y, 0 LNy BSy A
RASE R OND bR

B2

It follows from Lemma 6 with y = o' that, as o — oc, the finite eigenvalues of
Py(a, ) approach the eigenvalues of

0 Np 0 0
N[, 0 0 0
Q(ﬁ) = 0 0 ))2 Sy — §* S_] Qo+ Sﬁl
/ ( 3 Szn 11521) Ny Szl 11N2I
0 0 Ny —Nz*lS[]‘Sg] /ilz(R3 —Nz*lSl’llNzl)
Denote
B (S5 — 83,8718, Ny — 85, S7'Ns
Ql(ﬂ): “ ( 3 21711 -l) 4 21911 1

N: —Nngﬁ]SZ] ‘ﬂl—z(R1 ——N;]SI‘IINN)

and 5, = infg.o 41[Q1(f)]. Since /g is a local infimum of 4 [P:(«, B)], it must be
a local infimum of 4,[Q(f)]. There are two possibilities,
L. Jo = [Nzl = no,
2. Ay =1y > ||Ni2|l, and #, is an infimum of 4,[Q;(f)] at ;.

In the following, we show (M) < A, in either case.

1. 2y = ||[Ni2|| = n,. Then there exist vectors x,y of unit length such that
Njyx = dgy. Let

li 1 }
A—
0 Ag

where

0
A =— P -
Ay XY

and A, = 0, it is easy to verify that ||A|| = 4;'and

0 A 0 0 Sn 0 Ny Sy Ny 0
A 0‘ o oll 0 0 M o0 0 x
I+ 0‘ 0 0 AN N2 RN R 0] =0
o 0 A ol|SH 0 MoS N 0
? N; O Ry N; R 0
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Hence det(7 + A, M) = det(] + Ay JTMJ) = 0, which shows that ¢, (M) < 4,
2. 4g =1y > N2l is an infimum of 4,[Q;(f)] at f3,. Since 4 1s a local
infimum of 4;[Q(f)] at i, it follows from Lemma 2 that there exists a vector

N

of unit length such that:

x L lx
Ql(ﬁo)[ } = ’»()li }
v v

- 2 () .

(similar to (12)). Hence x*x = y*y.

For simplicity, assume that 7 1s a simple eigenvalue of Q,(f,). Then for «
large enough, A4,[P:(a, fi,)] is a simple eigenvalue of P (a, fi;), with a corre-
sponding analytic eigenvector of unit length. Denote this eigenvector by

X1 (O()
xa(2)
x(a) = | x3(a)
xq(ot)
xs(a)
partitioned in accordance with Py(2, ) in (17). In the following, the limit of
x;{(x) as x — oc will be used to construct a desired A.
Since Ay = lim,_., 41[P2(2, fiy)] is a local infimum of 2, [Py (. )], so there ex-

ists a positive number o, such that when x > a;, d4,[P(2, fy)]/dx <0, which
implies

,\j(O() dngxo; ﬁ())x(a) :2)“] [P ia ﬂ() } [ (OC)X}(O()
(@) — 5 (#hrs()] <O, (18)
From Py(x, fy)x(a) = 4 [P (%, Bo)x(2) and lim, .. A;[Py(z, By)] = 4o, One can
obtain

. 1
lim o (o) = =S, (/f(,Syx + FNg])/‘) =X,
A— X 0

lim ora () = Nia(dgl = NjpNia) ™' [By(Ny = N;y Sp Say )

1

+ E(Rz — N;\STIND )y =
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lim O(.)C3(OC) = ;uo()~(2)1 - N|*2N12)_1[ﬁ0(m

A=

_ 1 . o _
—NI*ISIIISZI)x—f_/T(RZ _N11S1I1N21)y] = X3,
0

lim x4(2) = x,

A—0C

lim xs5(a) = v.

From (18), we have
XX 4 X5x: < X3Xs. (19)
Let
X
&=’ [ s/
X2

Ay = —i5'xy* /(4y), then from (19) and x*x = y"y, we get [|A|]| < [|Aqf| = 45"
Furthermore, it can be verified that

% % 0
% i 0 A, 0 0
X2 X2 N 0
I+ AP(L B O =10+ SR [ P
b2t 5 o - 0 0 0 A |77
/.
X o 0o 0 A o)™
y loy

Hence (M) < 4, "

Case 4: ).0 = lim/;,,/,;%c /tl[P(O(,ﬁ)]

Since o/ — oo, Py(a, f) takes the same form as in (17). And as « — oo, the
finite eigenvalues approach the eigenvalues of Q(f). If #, < ||Ny2|, it can be
treated as in case 3. Hence we assume that #,> ||N;z| and
Ay = 1o = limp_.. 4/[Q1(B)]. By Lemma 5,

Sy = S5S01Sa <0, o= [|(N; — N385 Sa) U

where the columns of U form an orthonormal basis of the kernel of
Sy — 85,57'S21. For simplicity, assume that limg, s ... 42[Ps(a, B)] < A9. Then
for B.a/f large enough, 4;[P:(a, B)] is a simple eigenvalue of Py{a, ), with a
corresponding analytic eigenvector of unit length [8], p. 117. Denote this eigen-
vector by
xi(a, B)
x2(o, )
x(o, f) = | x3(t, B)
xq(a, B)
xs(at, )
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Then as in case 3, there exists Bi,6, such that when f > f,,a/f >4,
OM [P (a, B)]/Bx < 0, and 94, [Pa(a, B)]/0 <0, which implies:

Xy (o, B)xi (e, B) + x5 (a0, Bxa(e, B) — x3(a, B)xs (2, B) <O, (20)

x:(avﬁ)x4(a7ﬁ) _xg(“aﬁ)XS(“’ﬂ)go- (21)

From Py (a, B)x(a, B) = A1[P2(«, B)]x(2, B), one can obtain:
. 4 _ el =

ﬁ‘]%l_fflx‘ ’BXI(%/}) = -8, Sux =%y,
: x * - * * Q— =
/ilxlm Exz(“a B) = N12(’1§[ - lele) I(N3 _NllSHlSZl)x =Xy,

.E""Q

N o * - * * Q- =
lflxlm Bx3(°‘aﬂ) = /10(;%1 — Ni)Ni2) I(Ns - NuSlllSZl)X =X,

lim x4(2, f) = x,

f ;—;Ax

lim xs(x, B) =y,

pa—ac
where x, y satisfy xx + y'y =1 and
(S5 — 85,5, S2)x =0, (N7 = N3, S0 S )x = Aoy

Hence x = Uv for some v. Since A = ||(N} — N5, S;'Sa)U
must have ||x|| = ||y||. By noticing (21), we get x*x = y*y.
From (20) we have

,and U*U =1, we

XX + X < B (22)
Let
Y A N
A= —AOI {_ }x3/(x3x3),
X2

Ay = =75 'xy*/(»*p), then from (22) and x"x = y"y, we get [|A]] <||A; = Jy .
Furthermore, it can be verified that

X X 0
i T 0 A 0 0
X2 X2 . 0
Al 0 0 0 L
[I + Ath(l, 1)] 0 = 0|+ 0 0 0 Az A0X3 | = 0.
x x 0
0 0 A O
0 0 - Aoy
Hence ¢, (M) <A, O
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