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Keywords: Hermite-Fegr interpolation, multirate sys- of this connection can be found in [6, 13]. Recently, the an-
tems, nest operator, matrix positive completion. alytic function interpolation problems were used extensively
in robust model validation and identification [14, 15, 16].

In this paper, we study the tangential Hermite&renter-
polation problem with a structural constraint which requires
) ) ) . the value of the interpolating functions at the origin to belong
In this paper we consider the tangential HermitegF@jter- (4 5 gpecified nest operator set. We present the necessary and
polation problem with a structural constraint which requires g ricient solvability conditions and the parameterization of

the value of the interpolating functions at the origin to be- 5y solutions explicitly. The interpolation and distance prob-
long to a specified nest operator set. Necessary and sufficiefiéms jnvolving analytic functions with such structural con-

conditions fgr the _splvability of .this problem are given br_;lsed straints were first discussed in [6], but explicit solutions to
on the matrix positive completion. We also present a lineary,q problem considered in this paper were not given there.
fractional transformation (LFT) characterization of all solu- o, study is motivated by the control and identification of

tions. multirate systems [17, 18, 19]. The constrained interpolation
problem studied in this paper plays the same role to multirate
systems as the unconstrained counterpart plays to single rate
systems. The paper is organized as follows. The next section
Analytic function interpolation problems have a very rich introduces some usefull results about ”e?t opergtors_ and nest
history in mathematics and there has been a large Iiteraturglgebra' Thg mterpolaﬂon proplem considered in this paper
IS proposed in section Ill. Section IV addresses the solvabil-

on this area, see recent books [1, 2, 3]. Many successfut diti d Section V ides the ch terizati ¢
approaches have been proposed to solve the analytic fund conaition and Section vV provides the characterization o
Il solutions. Finally, the paper is concluded in Section VI.

tion interpolation problem since the theory was first proposeda

at the beginning of this century. In particular, Sarason [4]

encompassed different classical interpolation problems in & Nest Operators and Nest Algebra

representation theorem of operators commuting with special

contractions, which was later developed into a general framey ot 7/ pe a finite dimensional Hilbert space. A nestin,

work built on the commutant lifting theorem [2]. On the denoted{t(;}, is a chain of subspaces i, including {0}

other hand, using the realization method from the system theandu, with the nonincreasing ordering

ory, Ball et. al. presented another systematic way to deal with

the interpolation of rational matrix functions [1]. Recently, U=Uy DU D DU_1 DU = {0}

Foias et. al. combined the commutant lifting theorem from

operator theory and state space method from system theolyet 1/, ) be both finite dimensional vector spaces. Denote

to provide a unified approach for a more general setup byhy (74, ') the set of linear operatots — ) and abbreviate

operator-valued functions with operator arguments [3]. itasL(U) if U = Y. Assume that/ and) are equipped,
The increasing research interest on analytic function interrespectively, with nest&4, } and{);} which have the same

polation theory is also partly due to its wide applications in number of subspaces, séy- 1 as above. A linear map
a variety of engineering problems such as in control, circuitg(u, ) is said to be a nest operator if

theory and digital filter design [5, 6, 7]. The Nevanlinna-Pick

interpolation theory was first brought into system theory by TU, C Vi k=0,1,...,1. (1)
Youla and Saito, who gave a circuit theoretical proof of the

Pick criterion [8]. In the early stage of the development of It is said to be a strict nest operator if

‘H o control theory, the analytic function interpolation theory

played a fundamental role [9, 10, 11, 12]. A detailed review TUy € V41, k=0,1,...,1—1. (2)

Abstract

1 Introduction



Let Iy, : U — U, andIly, : Y — V) be orthogonal
projections. Then the condition (1) is equivalent to

(I =Ty, )Ty, =0, k=0,...,1
and (2) is equivalent to

(I =Ty, )Ty, =0, k=0,...,0—1.

The next two lemmas address the following matrix prob-
lem: for a givenT € L(U,)), characterize allN €
N({U}, {Vx}) such that||T + N| < 1. We need more
notations. Withi/ and)’ as before, introduce two more fi-
nite dimensional Hilbert spaces andW. A linear operator
TelLUd)Y,ZdW)is partitioned as

T Tia
T =
[ Toy Too }

The set of all nest operators (with given nests) is denoted

N({Uy}, {Vx}) and abbreviated/ ({U4y. }) if {Uy} = {Vk};

with 71, € L(U,2), Ty € LU, W), etc. For nests

The set of all strict nest operators (with given nests) is de-{/x}: (Y}, {2}, (Wi} In U, Y, Z, WV, respectively, all

noted\; ({Ux }, { ) }) and abbreviated/; ({U. }) if {Ux} =
{Vx}. If we decompose the spacésand) in the following
way:

U=UoUh)D U SU)D---d U clU) (3)
Y=o ed)d - dV_10)) @)

then a nest operatdf € N ({Uy},{Vx}) has the following
block lower triangular form

T, 0 - 0

T_ To1 T : )
: : 0
Ty T -+ Ty

Next, we list some useful lemmas in [20] without proof for such that[ T+ P Pro
completeness. These lemmas will be used in the later section

frequently. For simplicity, we restrict our discussion to finite
dimensional spaces although some of them hold in a more

general case.

Lemma 1.

1) Ty € N({Up}, {V}) and Ty € N({ Dk}, {2k }), then
2Ty € N({Uy}, {Zk}).

2) If Tl € N({uk}a {yk}) andT2 S Ns({yk}v{zk})v or
if Ty € NS({Uk},{yk}) andT, € N({yk},{Zk}), then
T,T € Ns({Z/{k}, {Zk})

3) N({Uy}) forms an algebra, called aest algebra

Lemma 2.

1) f T € Ns({Uy}), thenI — T is always invertible.

2) If T € N({Uy}) and T is always invertible, the~! €
NS({uk})

Lemma 3 (Generalized QR Factorization).

LetT € L(U).

1) There exist a unitary operato€; on U/ and R, €
N({Uy}) such thatl = Q1 R;.

2) There exisRR, € N ({U4x}) and a unitary operator), on
U such thatl’ = RyQ-.

Lemma 4 (Generalized Cholesky Factorization).LetT €
L(U) and assum@ is self-adjoint and nonnegative.

1) There exist€; € N'({Uy}) such thatl’ = C7C.

2) There exist€’, € N'({Uy.}) such thatl” = C>C’5.

with [ + 1 subspaces, the ned;, ® Vi } and{Z; & Wy}
are defined in the obvious way. Hence writing

[ Ty Tio

Toy  Tho } e N({U ® Vi}. {2k ® Wi})

meansli; € N({Us}, {Zx}), Tor € N({Us}, {Wk}), etc.

Lemma 5. LetT € L(U,Y). The following statements are
equivalent.

1) There existsV € N ({Uy}, {Vx}) suchthal| T+ N|| < 1.
2) maxy ||(I — Hyk)THuk || S 1.

3) there exists

P [ oo b ] e N({U} ® (D}, (0} @ U )

with Py, and P; both invertible andPs € N ({Vk}, {Ux})

is unitary.
Py Py ] 4

A way to find P from T was given in [21].

Lemma 6. LetT € L(U,Y) and assume condition 3) in
Lemma 5 is satisfied. Then the set offéle N ({Uy }, {Vx})
such that|T + N|| < 1is given by

{N=F(P,R): ReN({U},{V:}) and|R| < 1}.

3 Problem Statement

Let X;,7 = 1,...,n, be finite dimensional Hilbert spaces.
Also let &4/ and Y be finite dimensional Hilbert spaces
equipped with nest§i/, } and{))} respectively. LeU, ;
andY; ;,j =0,...,r,—1, belinear bounded operators from
X; toUd and fromX; to ) respectivelyLet \;,i =1,...,n,
ben distinct complex numbers on the open unit dixkcDe-
note H (U4, Y) the Hardy class of all uniformly bounded
analytic functions o with values inL(i/,Y). Denote by
Hoo({Uy.}, {V}}) the set of functions? € Ho.(U,)) sat-
isfying G(0) € N({U},{V:}). The tangential Hermite-
Fejer interpolation problem with nest operator constraint
N({Uy},{Vx}) for the data);, U, ;, andY;; is to find
(if possible) a functionG' in Ho, ({Uy}, {Vx}) such that
[Gllee <1,and

J
k=0

| —

!é(k)()\i)Ui,(jfm =Yi;

o~



forj=0,....,r;,—landi=1,...,n.
In particular, ifr; = 1 for all 4, the problem then becomes

the following constrained tangential Nevanlinna-Pick inter-

polation problem: Given linear operatais from &X; to U,
Y; from X; to ) andn distinct complex numbers; on D,
find (if possible) a functior?(\) in Heo ({Ui }, {Ji }) satis-
fying ||Gllso <1, andG(\)U; = Y; fori=1,... n.

On the other hand, if we take = 1 and A\, = 0,

the problem becomes the following constrained tangen-

tial Caratheodory-Féj interpolation problem: Given lin-
ear operatord/; from &; to ¢/ andY; from X; to ) for
j = 0,...,r — 1, find (if possible) a function3(\) :=
S0 o GrAF in Hoo ({Un }, { W4 }) satisfying|| G| < 1,and

Y, Go 0 o0 U
Y, - G4 Go : U,
1 : : 0 :
Y Gr—1 Groo Go Ur—1

For the constrained tangential Hermite-&rejnterpolation
data, denote

N1 o 0
z = |0 .
: . o1
0 o 0 N,
zZ = dadZ,...,Z,) (6)
U = [Uyo U Uir,—1 |
U o= [U U U, ] 7)
Y, = [Yio Yia Yir—1 |
Y = [ Y, Yo | (8)

It is shown that( in Hoo(U,Y) is a solution to the above
Hermite-Fegr interpolation problem without nest operator
constraint if and only ifG is a solution to the so-called

generalized Nevanlinna-Pick problem, which is defined by
operator-valued function with operator arguments for the

dataz,U,Y [3].

4 Solvability Conditions

Before giving the necessary and sufficient conditions of the

constrained Hermite-Fej interpolation problem, we need to
state a result on matrix positive completion.

The matrix positive completion problem is as follows [22]:
Given Byj, 7 —i| < g, satisfyingB;; = B, find the re-
maining matricesB;;, |j — ¢| > ¢, such that the block matrix
B = [B;]; ._, is positive semi-definite. The matrix positive

2]

solution if and only if

Bi; Biivq
: : >0 )
Bi+q,i Bi+q,i+q
fori=1,...,n—q.

Reference [23] gave a detailed discussion of such problem
and presented an explicit description of the set of all solutions
via a linear fractional map of which the coefficients are given
in terms of the original data. However, Lemma 7 is enough
for us. We are now in a position to give the main result of
this section.

Theorem 1. There exists a solution to the tangential
Hermite-Fegr interpolation problem with nest operator con-
straint V' ({Ux }, { V% }) for the data);, U; ; andY; ;, where
i=1,...,nandj =0,...,r; — 1, ifand only if

Q- Q+Y Iy, Y — Ul U >0 (10)
forall & = 1,...1, whereQ and Q are respectively the
unique solutions of Lyapunov equations

Q

Q

whereZ, U andY are defined in (6-8).

7*QZ +U*U
Z*QZ +Y*Y

(11)
12)

Proof. The nest operator constraint on the interpolation func-
tion G can be viewed as an additional interpolation condition

GO)I=T

for someT € N({Up}, {Vk}). Setxg = 0, Uy = I
andYy, = T. By the solvability condition of the standard
Hermite-Fegr interpolation problem [3], the constrained in-
terpolation problem has a solution if and only if there exists
T € N({Uy},{V:}) such that

Qa—Qa >0 (13)
whereQ, andQ, satisfy
[ xl 01, [ Xl 0]
Qa - I 0 Z_ Qa- O Z_
+- ! -[I U | (14)
_U*_
=[xl 0] < [ Al 0]
Q(L - I 0 Z_ Qa- O Z_
e T
+_Y*_[T Y . (15)

problem was first proposed by Dym and Gohberg [22], wholt is easy to see from (14-15) that

gave the following result:

Lemma 7. The matrix positive completion problem has a

I U

Qa:|:U* Q

~ T*°T T*Y



SubstituteR, andQ, into the inequality (13), we have

I-T7"T U-T*Y
~ >
{U*Y*T 0-0 }0. (16)
The left-hand side of (16) can be rewritten as
I U T*
[U* Q—Q—FY*Y}_{Y*][T Y]
By Schur complement, (16) is equivalent to
I U T*
U Q-Q+Y*Y Y* | >0. (17)
T Y I

Corollary 1. There exists a solution to the tangential
Nevanlinna-Pick interpolation problem with nest operator
constraint V' ({Ux }, {Vx}) for the data);,U; andY;, i =
1,...,n,ifand only if

n

— Uy, Us + Y 11y, Y3 >0
a,B=0
(22)

UaUs — Yo¥s

1= X3

forall k =1,...,1.

Proof. ¢From (6), we hav&=diag A1, . . .

If we decompose the spaces as in (3-4), then a nest opera-

tor T € N({Ux},{V:}) has a block lower triangular form
shown in (5). Therefore, the constrained HermiteeFé)-
terpolation problem has a solution if and only if (17) holds
for a block lower triangular matri{’. This is a matrix posi-
tive completion problem. By Lemma 7, there is a block lower
triangular? for (17) if and only if

I My, U 0
(M, U)* Q=Q+Y*Y (Il Y)* | >0 (18)
0 My, Y I
fork=0,...,l, where
HUkU [ HukUl HUkUrL ]
My Y = [y My, Y, |
Note that

Y7 = VP, Y 4 VoI, Y

n n

UaUs

1—=2AaAs

VY3

1—=XaAs

,An). Itis easy to
check that
0 |

| |

are solutions of the Lyapunov equations (11) and (12) respec-

tively. The results then follows from Theorem 1 directy]

andQ = [

a,f=0 a,3=0

Corollary 2. There exists a solution to the tangential
Caratheodory-Fegr interpolation problem with nest opera-
tor constraint\ ({U }, {Vx}) for the datal; andYj, j =
0,...,r—1,ifand only if

Using Schur complement twice, we can easily show that (18)

is equivalent to

Q- Q+Y'y,Y - Uy, U >0 (19)

for k = 0,...,1. We claim that inequalities (19) when
k = [ implies the case wheh = 0. In fact, whenk = 0,
inequality (19) gives

Q-Q+Y'Y-UU>0. (20)
Note that the inequality (20) is equivalent to
Z°(Q-Q)Z >0.
Whenk = [, inequality (19) gives
Q-Q=>0. (21)
It is obvious that inequality (21) implies (20). O

To verify the conditions in Theorem 1, we need to solve
the Lyapunov equations (11-12). Howevérand(Q can be
given directly from the original data in the case of the con-
strained Nevanlinna-Pick and CaratheodoryeF@jterpola-
tion problems. We end this section by providing the explicit
formula for the two special cases.

forall k =1,...,1, where
[ Uy 0 0
= | W (24)
: : 0
| Ur—1 Ur_2 Uy
[ Yy 0 0
= | 0 (25)
: : 0
| Y1 Yoo Yo
Proof. It follows from (6-8) that
0 1
7z = 0
1
0
U = [ U() Ul Urfl ]
Y = [ Yo 1 Y1 ]



Hence@ can be computed by

00 r—1
Q = Y ZrUtUze =Y Z*°UUz®
a=0 a=0
[0
= | o0 0 Uy |+-+UT
0
L Us
F 0 0 Ug
o 0o Up - *
L Us Ur - Ury
0 - 0 U
0o .- Uo U,
Uo ce Ur—2 Ur—l
Similarly, we can ge® as follows
0o 0 - Yy
O = : : -' :
0 }/0* . Yr*—Q
Yoo ¢ Yo,
0o --- 0 Y,
0 - Yy, Y
Yo -+ Yo Y.
The condition (10) then becomes
Q—Q+Y* Iy, Y — U*Ily, U > 0. (26)

By pre- and post-multiplying inequality (26) by
o --- 1
1 . 0
we obtain another equivalent condition as follows:

TiTy — TETy

_Yr*fl
+ : H)ik[Yr—l Yo]
L Yo
[ Uy
—| ¢ | My [ Uy - Up ]20
L Us
which is exactly (23). O

5 Parameterization of All Solutions

In this section, we will characterize all the solutiofisfor

the constrained Hermite-Fjinterpolation problem. Since

the characterization for the case without constraint has been
given in [3], our strategy in solving this problem is then to
choose, if possible, from this characterization all those satis-
fying the nest operator constraint.

The same notation is used as in section Il. Besides, we
need more notation. Given an operaforand two operator
matrices

Py Ppo 'y T
p= r—
|: P21 P22 1—‘21 1_\22

the linear fractional transformation associated witAnd &
is denoted

f(P,K) = Pll +P12K(I— PQQK)71P21
and the star product d? andTI" is defined as

P+ P12F11(I — P22F11)71P21
Do1 (I — Pyol'11) 1Py
Pio(I —T11Pag) o

D1 (I — Pool'11) ' PooTia 4+ Tan |-

PxI' =

Here we assume that the operator manipulations are all com-
patible. With these definitions, we have

F(P,F(T,K)) = F(P+T,K).

Recall that an operator valued functiénis two-sided in-
ner if © is an inner function an®(e’*) is almost every-
where unitary. Assume th& — Q > 0. Then by Theorem
11 7.2 [3], there exist operator§' fromi{ to X', andE onl/
such that the state space modél, C, U, E'} is controllable
and observable and the transfer function

O\ :=E+\U(I-)\2)"'C

is two-sided inner inH(U,U). Note that ifO()\) is a
two-sided inner function ifi{ (U, U) generated by Z, U},
then©(\) H is also a two-sided inner function generated by
{Z,U} for all unitary operatord on . It follows from
Lemma 3 there is a speci@(\) such thatE* € N ({Uy}).

By Lemma 4, there existy € N ({Vx}) andS € N ({Ux})
satisfying

N'N = [[+Y(Q-Q) Y]
§*S = [+C"QQ-Q)'QCI™.
Also let M be the operator o/ defined by
M=(Q-2Q2)'7"(Q - Q).
It is shown in Proposition V 1.7 [3] thal/ is stable. Define

O\ =Y(I - AM)"HQ - 2z*Qz) 'U*
P(\) = N1 AYMIT - AM)"H Q- Q) 'y*N !
Dy (N) = SO*(\) — STIC*Q(I — AM) !

Q- Q)'Qrer(y)
Pra(N) = ~AST'CTQU ~ AM) 1 (Q ~ Q)Y N



Dyq(N)
Do1 (M)

Di5(N)

Denote®(\) = Bos(N)
22

. It is shown in [3]

Theorem 2. Let \;, U;; andY; ;, i = 1,...,nandj =
0,...,7 — 1, be the data for the constrained tangential

that the set of alt¥ solving the unconstrained interpolation Hermite-Fegr interpolation problem defined in sectidfi.

problem is given by

whereR()\) is a contractive analytic function iR, (U, ).

Also letZ, U, Y be defined in (6-8). Assume th@t— Q > 0
and the solvability condition (10) holds. Then the set of all
interpolantsG is given by

G = F(¥,R)

Obviously, the set of all solutions to the constrained Hermite-

Feje interpolation problem is

G(0) € Noo({Un}, { D0 })}-
(27)

{GON) = F(@(\),R(N)) :
It is easy to check that

©11(0) =Y(Q - 2*QZ)'U*

P1(0) = N1

©91(0) = SE* - $7'C*Q(Q — Q) 'QCE*
= S[I - S72C*Q(Q — Q) 'QCIE”
=S[I-C*Q(Q - Q) 'QCIE
— S—lE*

®92(0) = 0.

Now assume the condition in Theorem 1 is satisfied. The

there is aR(\) in Hoo (U, V) such that

G(0) = ®11(0) + NR(0)STLE* € N({Us}, {Vi}).
That s,

| = N®11(0)(ST'E*)~"' + NGO)(ST'E*) 7| < 1.
By Lemma 5, there exists

P { P P } € N({Uy & Vi, (Ve & U D)
P21 P22

with Pos € N ({Vx}, {Ui}) andPy5 and Py, invertible such
that

B— —N(I)H(O)(S_lE*)_l + P11 Pio
Py Pss

is unitary. Definel = & x B. Itis easy to check thak(0) €
N{Ur &V}, { Ve ®Us}), ¥12(0) and ¥y, (0) are invertible
andWyy(0) € Ny({Vk}, {Ux}). By settingR = F(B, R),
we have
G = F(®,R)=F (@ F(BR))
= F(®+B,R)=F(V,R).

Note thatG(0) € N ({U},{V:}) if and only if R(0) e
N{Ux},{Vx}). Hence the set (27) can be rewritten as

{G=F(¥,R): ReHoo({U}, Vi}), IRI < 1}.

This gives us the main result of this section;

whereR € Hoo ({Us}, {Vi}) satisfies|R|| < 1.

Proof. ¢From the assumption thg — Q > 0 and (10)
holds, we know by Theorem 1 that there exigls €
Hoo ({Uy.}, {W1}) with |G|l < 1. The result then follows
immediately from the above discussion. O

6 Conclusion

In this paper, we study the tangential Hermiteé&fenterpo-
lation problem with a constraint requiring the value of the in-
terpolants at the origin to belong to a specified nest operator
set. The necessary and sufficient solvability conditions are
given using the result on positive matrix completion. We also
present the solvability conditions to two special cases called
Nevanlinna-Pick and Caratbdory-Fegr interpolation prob-

r‘1ems, which are more easily to be used in engineering. Fi-

nally, all the solutions are given in terms of linear fractional
transformation.
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