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Abstract

In this paper we consider the tangential Hermite-Fejér inter-
polation problem with a structural constraint which requires
the value of the interpolating functions at the origin to be-
long to a specified nest operator set. Necessary and sufficient
conditions for the solvability of this problem are given based
on the matrix positive completion. We also present a linear
fractional transformation (LFT) characterization of all solu-
tions.

1 Introduction

Analytic function interpolation problems have a very rich
history in mathematics and there has been a large literature
on this area, see recent books [1, 2, 3]. Many successful
approaches have been proposed to solve the analytic func-
tion interpolation problem since the theory was first proposed
at the beginning of this century. In particular, Sarason [4]
encompassed different classical interpolation problems in a
representation theorem of operators commuting with special
contractions, which was later developed into a general frame-
work built on the commutant lifting theorem [2]. On the
other hand, using the realization method from the system the-
ory, Ball et. al. presented another systematic way to deal with
the interpolation of rational matrix functions [1]. Recently,
Foias et. al. combined the commutant lifting theorem from
operator theory and state space method from system theory
to provide a unified approach for a more general setup by
operator-valued functions with operator arguments [3].

The increasing research interest on analytic function inter-
polation theory is also partly due to its wide applications in
a variety of engineering problems such as in control, circuit
theory and digital filter design [5, 6, 7]. The Nevanlinna-Pick
interpolation theory was first brought into system theory by
Youla and Saito, who gave a circuit theoretical proof of the
Pick criterion [8]. In the early stage of the development of
H∞ control theory, the analytic function interpolation theory
played a fundamental role [9, 10, 11, 12]. A detailed review

of this connection can be found in [6, 13]. Recently, the an-
alytic function interpolation problems were used extensively
in robust model validation and identification [14, 15, 16].

In this paper, we study the tangential Hermite-Fejér inter-
polation problem with a structural constraint which requires
the value of the interpolating functions at the origin to belong
to a specified nest operator set. We present the necessary and
sufficient solvability conditions and the parameterization of
all solutions explicitly. The interpolation and distance prob-
lems involving analytic functions with such structural con-
straints were first discussed in [6], but explicit solutions to
the problem considered in this paper were not given there.
Our study is motivated by the control and identification of
multirate systems [17, 18, 19]. The constrained interpolation
problem studied in this paper plays the same role to multirate
systems as the unconstrained counterpart plays to single rate
systems. The paper is organized as follows. The next section
introduces some useful results about nest operators and nest
algebra. The interpolation problem considered in this paper
is proposed in section III. Section IV addresses the solvabil-
ity condition and Section V provides the characterization of
all solutions. Finally, the paper is concluded in Section VI.

2 Nest Operators and Nest Algebra

Let U be a finite dimensional Hilbert space. A nest inU ,
denoted{Uk}, is a chain of subspaces inU , including{0}
andU , with the nonincreasing ordering

U = U0 ⊇ U1 ⊇ · · · ⊇ Ul−1 ⊇ Ul = {0}.

Let U , Y be both finite dimensional vector spaces. Denote
byL(U ,Y) the set of linear operatorsU → Y and abbreviate
it asL(U) if U = Y. Assume thatU andY are equipped,
respectively, with nests{Uk} and{Yk} which have the same
number of subspaces, say,l + 1 as above. A linear mapT ∈
L(U ,Y) is said to be a nest operator if

TUk ⊆ Yk, k = 0, 1, . . . , l. (1)

It is said to be a strict nest operator if

TUk ⊆ Yk+1, k = 0, 1, . . . , l − 1. (2)



Let ΠUk : U → Uk and ΠYk : Y → Yk be orthogonal
projections. Then the condition (1) is equivalent to

(I −ΠYk)TΠUk = 0, k = 0, . . . , l

and (2) is equivalent to

(I −ΠYk+1)TΠUk = 0, k = 0, . . . , l − 1.

The set of all nest operators (with given nests) is denoted
N ({Uk}, {Yk}) and abbreviatedN ({Uk}) if {Uk} = {Yk};
The set of all strict nest operators (with given nests) is de-
notedNs({Uk}, {Yk}) and abbreviatedNs({Uk}) if {Uk} =
{Yk}. If we decompose the spacesU andY in the following
way:

U = (U0 � U1)⊕ (U1 � U2)⊕ · · · ⊕ (Ul−1 � Ul) (3)

Y = (Y0 � Y1)⊕ (Y1 � Y2)⊕ · · · ⊕ (Yl−1 � Yl) (4)

then a nest operatorT ∈ N ({Uk}, {Yk}) has the following
block lower triangular form

T =













T11 0 · · · 0

T21 T22
. . .

...
...

...
. .. 0

Tl1 Tl2 · · · Tll













. (5)

Next, we list some useful lemmas in [20] without proof for
completeness. These lemmas will be used in the later section
frequently. For simplicity, we restrict our discussion to finite
dimensional spaces although some of them hold in a more
general case.

Lemma 1.
1) If T1 ∈ N ({Uk}, {Yk}) andT2 ∈ N ({Yk}, {Zk}), then
T2T1 ∈ N ({Uk}, {Zk}).
2) If T1 ∈ N ({Uk}, {Yk}) and T2 ∈ Ns({Yk}, {Zk}), or
if T1 ∈ Ns({Uk}, {Yk}) and T2 ∈ N ({Yk}, {Zk}), then
T2T1 ∈ Ns({Uk}, {Zk}).
3)N ({Uk}) forms an algebra, called anest algebra.

Lemma 2.
1) If T ∈ Ns({Uk}), thenI − T is always invertible.
2) If T ∈ N ({Uk}) andT is always invertible, thenT−1 ∈
Ns({Uk}).

Lemma 3 (Generalized QR Factorization).
LetT ∈ L(U).
1) There exist a unitary operatorQ1 on U and R1 ∈
N ({Uk}) such thatT = Q1R1.
2) There existR2 ∈ N ({Uk}) and a unitary operatorQ2 on
U such thatT = R2Q2.

Lemma 4 (Generalized Cholesky Factorization).LetT ∈
L(U) and assumeT is self-adjoint and nonnegative.
1) There existsC1 ∈ N ({Uk}) such thatT = C∗1C1.
2) There existsC2 ∈ N ({Uk}) such thatT = C2C∗2 .

The next two lemmas address the following matrix prob-
lem: for a givenT ∈ L(U ,Y), characterize allN ∈
N ({Uk}, {Yk}) such that‖T + N‖ ≤ 1. We need more
notations. WithU andY as before, introduce two more fi-
nite dimensional Hilbert spacesZ andW. A linear operator
T ∈ L(U ⊕ Y,Z ⊕W) is partitioned as

T =
[

T11 T12

T21 T22

]

with T11 ∈ L(U ,Z), T21 ∈ L(U ,W), etc. For nests
{Uk}, {Yk}, {Zk}, {Wk} in U ,Y,Z,W, respectively, all
with l + 1 subspaces, the nests{Uk ⊕ Yk} and{Zk ⊕Wk}
are defined in the obvious way. Hence writing

[

T11 T12

T21 T22

]

∈ N ({Uk ⊕ Yk}, {Zk ⊕Wk})

meansT11 ∈ N ({Uk}, {Zk}), T21 ∈ N ({Uk}, {Wk}), etc.

Lemma 5. Let T ∈ L(U ,Y). The following statements are
equivalent.
1) There existsN ∈ N ({Uk}, {Yk}) such that‖T +N‖ ≤ 1.
2) maxk ‖(I −ΠYk)TΠUk‖ ≤ 1.
3) there exists

P =
[

P11 P12

P21 P22

]

∈ N ({Uk} ⊕ {Yk}, {Yk} ⊕ {Uk})

with P12 andP21 both invertible andP22 ∈ Ns({Yk}, {Uk})

such that

[

T + P11 P12

P21 P22

]

is unitary.

A way to findP from T was given in [21].

Lemma 6. Let T ∈ L(U ,Y) and assume condition 3) in
Lemma 5 is satisfied. Then the set of allN ∈N ({Uk}, {Yk})
such that‖T + N‖ ≤ 1 is given by

{N = F(P, R) : R ∈ N ({Uk}, {Yk}) and‖R‖ ≤ 1}.

3 Problem Statement

Let Xi, i = 1, . . . , n, be finite dimensional Hilbert spaces.
Also let U and Y be finite dimensional Hilbert spaces
equipped with nests{Uk} and{Yk} respectively. LetUi,j

andYi,j , j = 0, . . . , ri−1, be linear bounded operators from
Xi to U and fromXi to Y respectively. Let λi, i = 1, . . . , n,
ben distinct complex numbers on the open unit discD. De-
noteH∞(U ,Y) the Hardy class of all uniformly bounded
analytic functions onD with values inL(U ,Y). Denote by
H∞({Uk}, {Yk}) the set of functionŝG ∈ H∞(U ,Y) sat-
isfying Ĝ(0) ∈ N ({Uk}, {Yk}). The tangential Hermite-
Fej́er interpolation problem with nest operator constraint
N ({Uk}, {Yk}) for the dataλi, Ui,j , and Yi,j is to find
(if possible) a functionĜ in H∞({Uk}, {Yk}) such that
‖Ĝ‖∞ ≤ 1, and

j
∑

k=0

1
k!

Ĝ(k)(λi)Ui,(j−k) = Yi,j



for j = 0, . . . , ri − 1 andi = 1, . . . , n.
In particular, ifri = 1 for all i, the problem then becomes

the following constrained tangential Nevanlinna-Pick inter-
polation problem: Given linear operatorsUi from Xi to U ,
Yi from Xi to Y andn distinct complex numbersλi on D,
find (if possible) a function̂G(λ) in H∞({Uk}, {Yk}) satis-
fying ‖Ĝ‖∞ ≤ 1, andĜ(λi)Ui = Yi for i = 1, . . . , n.

On the other hand, if we taken = 1 and λ1 = 0,
the problem becomes the following constrained tangen-
tial Caratheodory-Fejér interpolation problem: Given lin-
ear operatorsUj from X1 to U and Yj from X1 to Y for
j = 0, . . . , r − 1, find (if possible) a functionĜ(λ) :=
∑∞

k=0 Gkλk inH∞({Uk}, {Yk}) satisfying‖Ĝ‖∞ ≤ 1, and











Y0

Y1
...

Yr−1











=













G0 0 · · · 0

G1 G0
.. .

...
...

...
. . . 0

Gr−1 Gr−2 · · · G0























U0

U1
...

Ur−1











.

For the constrained tangential Hermite-Fejér interpolation
data, denote

Zi =













λi 1 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · 0 λi













ri×ri

Z = diag(Z1, . . . , Zn) (6)

Ui =
[

Ui,0 Ui,1 · · · Ui,ri−1
]

U =
[

U1 U2 · · · Un
]

(7)

Yi =
[

Yi,0 Yi,1 · · · Yi,ri−1
]

Y =
[

Y1 Y2 · · · Yn
]

. (8)

It is shown thatĜ in H∞(U ,Y) is a solution to the above
Hermite-Fej́er interpolation problem without nest operator
constraint if and only ifĜ is a solution to the so-called
generalized Nevanlinna-Pick problem, which is defined by
operator-valued function with operator arguments for the
dataZ, U, Y [3].

4 Solvability Conditions

Before giving the necessary and sufficient conditions of the
constrained Hermite-Fejér interpolation problem, we need to
state a result on matrix positive completion.

The matrix positive completion problem is as follows [22]:
Given Bij , |j − i| ≤ q, satisfyingBij = B∗

ji, find the re-
maining matricesBij , |j − i| > q, such that the block matrix
B = [Bij ]

n
i,j=1 is positive semi-definite. The matrix positive

problem was first proposed by Dym and Gohberg [22], who
gave the following result:

Lemma 7. The matrix positive completion problem has a

solution if and only if







Bii · · · Bi,i+q
...

...
Bi+q,i · · · Bi+q,i+q





 ≥ 0 (9)

for i = 1, . . . , n− q.

Reference [23] gave a detailed discussion of such problem
and presented an explicit description of the set of all solutions
via a linear fractional map of which the coefficients are given
in terms of the original data. However, Lemma 7 is enough
for us. We are now in a position to give the main result of
this section.

Theorem 1. There exists a solution to the tangential
Hermite-Fej́er interpolation problem with nest operator con-
straintN ({Uk}, {Yk}) for the dataλi, Ui,j andYi,j , where
i = 1, . . . , n andj = 0, . . . , ri − 1, if and only if

Q− Q̃ + Y ∗ΠYkY − U∗ΠUkU ≥ 0 (10)

for all k = 1, . . . l, whereQ and Q̃ are respectively the
unique solutions of Lyapunov equations

Q = Z∗QZ + U∗U (11)

Q̃ = Z∗Q̃Z + Y ∗Y (12)

whereZ, U andY are defined in (6-8).

Proof. The nest operator constraint on the interpolation func-
tion Ĝ can be viewed as an additional interpolation condition

Ĝ (0) I = T

for someT ∈ N ({Uk}, {Yk}). Set λ0 = 0, U0 = I
andY0 = T . By the solvability condition of the standard
Hermite-Fej́er interpolation problem [3], the constrained in-
terpolation problem has a solution if and only if there exists
T ∈ N ({Uk}, {Yk}) such that

Qa − Q̃a ≥ 0 (13)

whereQa andQ̃a satisfy

Qa =
[

λ0I 0
0 Z

]∗

Qa

[

λ0I 0
0 Z

]

+
[

I
U∗

]

[

I U
]

(14)

Q̃a =
[

λ0I 0
0 Z

]∗

Q̃a

[

λ0I 0
0 Z

]

+
[

T ∗

Y ∗

]

[

T Y
]

. (15)

It is easy to see from (14-15) that

Qa =
[

I U
U∗ Q

]

, Q̃a =
[

T ∗T T ∗Y
Y ∗T Q̃

]

.



SubstituteQa andQ̃a into the inequality (13), we have
[

I − T ∗T U − T ∗Y
U∗ − Y ∗T Q− Q̃

]

≥ 0. (16)

The left-hand side of (16) can be rewritten as
[

I U
U∗ Q− Q̃ + Y ∗Y

]

−
[

T ∗

Y ∗

]

[

T Y
]

.

By Schur complement, (16) is equivalent to




I U T ∗

U∗ Q− Q̃ + Y ∗Y Y ∗

T Y I



 ≥ 0. (17)

If we decompose the spaces as in (3-4), then a nest opera-
tor T ∈ N ({Uk}, {Yk}) has a block lower triangular form
shown in (5). Therefore, the constrained Hermite-Fejér in-
terpolation problem has a solution if and only if (17) holds
for a block lower triangular matrixT . This is a matrix posi-
tive completion problem. By Lemma 7, there is a block lower
triangularT for (17) if and only if





I ΠUkU 0
(ΠUkU)∗ Q− Q̃ + Y ∗Y (ΠY⊥k Y )∗

0 ΠY⊥k Y I



 ≥ 0 (18)

for k = 0, . . . , l, where

ΠUkU =
[

ΠUkU1 · · · ΠUkUn
]

ΠY⊥k Y =
[

ΠY⊥k Y1 · · · ΠY⊥k Yn
]

.

Note that

Y ∗
i Yj = Y ∗

i ΠYkYj + Y ∗
i ΠY⊥k Yj .

Using Schur complement twice, we can easily show that (18)
is equivalent to

Q− Q̃ + Y ∗ΠYkY − U∗ΠUkU ≥ 0 (19)

for k = 0, . . . , l. We claim that inequalities (19) when
k = l implies the case whenk = 0. In fact, whenk = 0,
inequality (19) gives

Q− Q̃ + Y ∗Y − U∗U ≥ 0. (20)

Note that the inequality (20) is equivalent to

Z∗(Q− Q̃)Z ≥ 0.

Whenk = l, inequality (19) gives

Q− Q̃ ≥ 0. (21)

It is obvious that inequality (21) implies (20).

To verify the conditions in Theorem 1, we need to solve
the Lyapunov equations (11-12). However,Q andQ̃ can be
given directly from the original data in the case of the con-
strained Nevanlinna-Pick and Caratheodory-Fejér interpola-
tion problems. We end this section by providing the explicit
formula for the two special cases.

Corollary 1. There exists a solution to the tangential
Nevanlinna-Pick interpolation problem with nest operator
constraintN ({Uk}, {Yk}) for the dataλi, Ui and Yi, i =
1, . . . , n, if and only if

[

U∗
αUβ − Y ∗

α Yβ

1− λ̄αλβ
− U∗

αΠUkUβ + Y ∗
α ΠYkYβ

]n

α,β=0

≥ 0

(22)
for all k = 1, . . . , l.

Proof. ¿From (6), we haveZ=diag(λ1, . . . , λn). It is easy to
check that

Q =
[

U∗
αUβ

1− λ̄αλβ

]n

α,β=0

andQ̃ =
[

Y ∗
α Yβ

1− λ̄αλβ

]n

α,β=0

are solutions of the Lyapunov equations (11) and (12) respec-
tively. The results then follows from Theorem 1 directly.

Corollary 2. There exists a solution to the tangential
Caratheodory-Fej́er interpolation problem with nest opera-
tor constraintN ({Uk}, {Yk}) for the dataUj andYj , j =
0, . . . , r − 1, if and only if

T ∗UΠUr−1⊕U⊥k
TU − T ∗Y ΠYr−1⊕Y⊥k

TY ≥ 0 (23)

for all k = 1, . . . , l, where

TU :=













U0 0 · · · 0

U1 U0
.. .

...
...

...
. . . 0

Ur−1 Ur−2 · · · U0













(24)

TY :=













Y0 0 · · · 0

Y1 Y0
.. .

...
...

...
... 0

Yr−1 Yr−2 · · · Y0













. (25)

Proof. It follows from (6-8) that

Z =













0 1

0
.. .
. .. 1

0













U =
[

U0 U1 · · · Ur−1
]

Y =
[

Y0 Y1 · · · Yr−1
]

.



HenceQ can be computed by

Q =
∞
∑

α=0

Z∗αU∗UZα =
r−1
∑

α=0

Z∗αU∗UZα

=











0
...
0

U∗
0











[

0 · · · 0 U0
]

+ · · ·+ U∗U

=











0 0 · · · U∗
0

...
... . .

. ...
0 U∗

0 · · · U∗
r−2

U∗
0 U∗

1 · · · U∗
r−1











·











0 · · · 0 U0

0 · · · U0 U1
... . .

. ...
...

U0 · · · Ur−2 Ur−1











.

Similarly, we can get̃Q as follows

Q̃ =











0 0 · · · Y ∗
0

...
... . .

. ...
0 Y ∗

0 · · · Y ∗
r−2

Y ∗
0 Y ∗

1 · · · Y ∗
r−1











·











0 · · · 0 Y0

0 · · · Y0 Y1
... . .

. ...
...

Y0 · · · Yr−2 Yr−1











.

The condition (10) then becomes

Q− Q̃ + Y ∗ΠYkY − U∗ΠUkU ≥ 0. (26)

By pre- and post-multiplying inequality (26) by






0 · · · 1
... . .

. ...
1 · · · 0





 ,

we obtain another equivalent condition as follows:

T ∗UTU − T ∗Y TY

+







Y ∗
r−1
...

Y ∗
0





ΠYk

[

Yr−1 · · · Y0
]

−







U∗
r−1
...

U∗
0





 ΠUk

[

Ur−1 · · · U0
]

≥ 0

which is exactly (23).

5 Parameterization of All Solutions

In this section, we will characterize all the solutionsĜ for
the constrained Hermite-Fejér interpolation problem. Since

the characterization for the case without constraint has been
given in [3], our strategy in solving this problem is then to
choose, if possible, from this characterization all those satis-
fying the nest operator constraint.

The same notation is used as in section II. Besides, we
need more notation. Given an operatorK and two operator
matrices

P =
[

P11 P12

P21 P22

]

, Γ =
[

Γ11 Γ12

Γ21 Γ22

]

the linear fractional transformation associated withP andK
is denoted

F(P, K) = P11 + P12K(I − P22K)−1P21

and the star product ofP andΓ is defined as

P ? Γ =
[

P11 + P12Γ11(I − P22Γ11)−1P21

Γ21(I − P22Γ11)−1P21

P12(I − Γ11P22)−1Γ12

Γ21(I − P22Γ11)−1P22Γ12 + Γ22

]

.

Here we assume that the operator manipulations are all com-
patible. With these definitions, we have

F(P,F(Γ,K)) = F(P ? Γ,K).

Recall that an operator valued functionΘ is two-sided in-
ner if Θ is an inner function andΘ(ejw) is almost every-
where unitary. Assume thatQ − Q̃ > 0. Then by Theorem
III 7.2 [3], there exist operatorsC from U toX , andE onU
such that the state space model{Z, C, U,E} is controllable
and observable and the transfer function

Θ(λ) := E + λU(I − λZ)−1C

is two-sided inner inH∞(U ,U). Note that if Θ(λ) is a
two-sided inner function inH∞(U ,U) generated by{Z, U},
thenΘ(λ)H is also a two-sided inner function generated by
{Z,U} for all unitary operatorH on U . It follows from
Lemma 3 there is a specialΘ(λ) such thatE∗ ∈ N ({Uk}).
By Lemma 4, there existsN ∈ N ({Yk}) andS ∈ N ({Uk})
satisfying

N∗N = [I + Y (Q− Q̃)−1Y ]−1

S∗S = [I + C∗Q̃(Q− Q̃)−1QC]−1.

Also letM be the operator onX defined by

M = (Q− Z∗Q̃Z)−1Z∗(Q− Q̃).

It is shown in Proposition V 1.7 [3] thatM is stable. Define

Φ11(λ) = Y (I − λM)−1(Q− Z∗Q̃Z)−1U∗

Φ12(λ) = N−1 − λY M(I − λM)−1(Q− Q̃)−1Y ∗N−1

Φ21(λ) = SΘ∗(λ)− S−1C∗Q(I − λM)−1

· (Q− Q̃)−1Q̃CΘ∗(λ)

Φ22(λ) = −λS−1C∗Q(I − λM)−1(Q− Q̃)−1Y ∗N−1.



DenoteΦ(λ) =
[

Φ11(λ) Φ12(λ)
Φ21(λ) Φ22(λ)

]

. It is shown in [3]

that the set of allĜ solving the unconstrained interpolation
problem is given by

Ĝ(λ) = F(Φ(λ), R̄(λ))

whereR̄(λ) is a contractive analytic function inH∞(U ,Y).
Obviously, the set of all solutions to the constrained Hermite-
Fej́e interpolation problem is

{Ĝ(λ) = F(Φ(λ), R̄(λ)) : Ĝ(0) ∈ N∞({Uk}, {Yk})}.
(27)

It is easy to check that

Φ11(0) = Y (Q− Z∗Q̃Z)−1U∗

Φ12(0) = N−1

Φ21(0) = SE∗ − S−1C∗Q(Q− Q̃)−1Q̃CE∗

= S[I − S−2C∗Q(Q− Q̃)−1Q̃C]E∗

= S[I − C∗Q(Q− Q̃)−1Q̃C]E∗

= S−1E∗

Φ22(0) = 0.

Now assume the condition in Theorem 1 is satisfied. Then
there is aR̄(λ) in H∞(U ,Y) such that

Ĝ(0) = Φ11(0) + N−1R̄(0)S−1E∗ ∈ N ({Uk}, {Yk}).

That is,

‖ −NΦ11(0)(S−1E∗)−1 + NĜ(0)(S−1E∗)−1‖ ≤ 1.

By Lemma 5, there exists

P =
[

P11 P12

P21 P22

]

∈ N ({Uk ⊕ Yk}, {Yk ⊕ Uk})

with P22 ∈ Ns({Yk}, {Uk}) andP12 andP21 invertible such
that

B =
[

−NΦ11(0)(S−1E∗)−1 + P11 P12
P21 P22

]

is unitary. DefineΨ = Φ ?B. It is easy to check thatΨ(0) ∈
N ({Uk⊕Yk}, {Yk⊕Uk}), Ψ12(0) andΨ21(0) are invertible
andΨ22(0) ∈ Ns({Yk}, {Uk}). By settingR̄ = F(B,R),
we have

Ĝ = F(Φ, R̄) = F(Φ,F(B,R))

= F(Φ ? B,R) = F(Ψ, R).

Note thatĜ(0) ∈ N ({Uk}, {Yk}) if and only if R(0) ∈
N ({Uk}, {Yk}). Hence the set (27) can be rewritten as

{Ĝ = F(Ψ, R) : R ∈ H∞({Uk}, {Yk}), ‖R‖ ≤ 1}.

This gives us the main result of this section:

Theorem 2. Let λi, Ui,j and Yi,j , i = 1, . . . , n and j =
0, . . . , ri − 1, be the data for the constrained tangential
Hermite-Fej́er interpolation problem defined in sectionIII .
Also letZ,U, Y be defined in (6-8). Assume thatQ− Q̃ > 0
and the solvability condition (10) holds. Then the set of all
interpolantsĜ is given by

Ĝ = F(Ψ, R)

whereR ∈ H∞({Uk}, {Yk}) satisfies‖R‖ ≤ 1.

Proof. ¿From the assumption thatQ − Q̃ > 0 and (10)
holds, we know by Theorem 1 that there existŝG ∈
H∞({Uk}, {Yk}) with ‖Ĝ‖∞ ≤ 1. The result then follows
immediately from the above discussion.

6 Conclusion

In this paper, we study the tangential Hermite-Fejér interpo-
lation problem with a constraint requiring the value of the in-
terpolants at the origin to belong to a specified nest operator
set. The necessary and sufficient solvability conditions are
given using the result on positive matrix completion. We also
present the solvability conditions to two special cases called
Nevanlinna-Pick and Carathéodory-Fej́er interpolation prob-
lems, which are more easily to be used in engineering. Fi-
nally, all the solutions are given in terms of linear fractional
transformation.
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