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Abstract

It has recently been shown that the symmetric gauge functions on the canonical (principal) angles give a
family of unitarily invariant metrics between linear subspaces of the same dimension. In this short paper, we
extend such metrics to subspaces of possibly different dimensions. This extension is necessary in addressing
some perturbation analysis problems involving subspaces with different dimensions. Examples of such
perturbation analysis problems are also studied in this paper using the extended metrics.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let X and Y be m- and l-dimensional subspaces of Cn, respectively. The canonical angles
between them are defined to be

θi(X,Y) = arccos σmin{m,l}−i+1(X
H Y), i = 1, 2, . . . , min{m, l}, (1)
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where X and Y are matrices whose columns form orthonormal bases of X and Y, and σi(X
H Y),

i = 1, 2, . . . , min{m, l}, are decreasingly ordered singular values of XH Y . In the following, we
denote the min{m, l}-tuple of canonical angles between X and Y by

θ(X,Y) := (θ1(X,Y), . . . , θmin{m,l}(X,Y)).

Denote the Grassmann manifold of m-dimensional subspaces of Cn by Gm,n and the lattice of all
subspaces of Cn by Gn, i.e., Gn = ∪n

m=0Gm,n. In this paper we will give a new family of unitarily
invariant metrics on Gn based on the canonical angles. A function ρ : Gn × Gn → R is a metric
if for any X,Y,Z ∈ Gn, we have

(i) ρ(X,Y) � 0; the equality holds if and only if X = Y,
(ii) ρ(X,Y) = ρ(Y,X),

(iii) ρ(X,Z) � ρ(X,Y) + ρ(Y,Z)

and it is said to be unitarily invariant if
(iv) ρ(UX, UY) = ρ(X,Y) for any unitary transformation U on Cn.

In a recent paper [1], a family of unitarily invariant metrics is established in Gm,n by applying
the symmetric gauge functions to the canonical angles. A symmetric gauge function � : Rm → R

is a norm function satisfying additional properties that it is symmetric, i.e.,

�(P ξ) = �(ξ)

for all ξ ∈ Rm and all permutation matrices P , and that it is absolute, i.e.,

�(|ξ |) = �(ξ)

for all ξ ∈ Rm, where |ξ | means the element-wise absolute value. A class of frequently used
symmetric gauge function are given by

�k,p(ξ1, . . . , ξm) = max
1�i1<···<ik�m

p
√|ξi1 |p + · · · + |ξik |p, k = 1, . . . , m, p ∈ [1, ∞].

In particular, when p = 1, the above symmetric gauge functions are called the Ky Fan k-functions
[2]. It is well-known that for a pair of vectors ξ, ζ ∈ Rm, if ζ weakly majorizes ξ , that is, �k,1(ξ) �
�k,1(ζ ) for all k = 1, . . . , m, then we have �(ξ) � �(ζ ) for all symmetric gauge functions � on
Rm.

The key results of paper [1] are listed below, and will be used in the proofs of the main results
of this paper.

(I) Let � : Rm → R be a symmetric gauge function. Define ρ : Gm,n × Gm,n → R by
ρ(X,Y) = �(θ(X,Y)). Then ρ is a unitarily invariant metric and is called an angular
matric.

(II) Let ρ be the angular metric corresponding to a symmetric gauge function �. Then for
X,Y, X̃, Ỹ ∈ Gm,n,

�(θ(X̃, Ỹ) − θ(X,Y)) � ρ(X, X̃) + ρ(Y, Ỹ).

(III) ForX,Y ∈ Gm,n, define the nullity nul(X,Y) = dim(X ∩ Y) and deficiency def(X,Y) =
codim(X + Y). Again let ρ be the angular metric corresponding to a symmetric gauge
function �. Then in order that nul(X̃, Ỹ) < k for all X̃, Ỹ ∈ Gm,n satisfying ρ(X̃,X) � α

and ρ(Ỹ,Y) � β, it is necessary and sufficient that

α + β < �[0, . . . , 0, θm−k+1(X,Y), . . . , θm(X,Y)];
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and in order that def(X̃, Ỹ) < k, it is necessary and sufficient that

α + β < �[0, . . . , 0, θn−m−k+1(X⊥,Y⊥), . . . , θn−m(X⊥,Y⊥)].
(IV) The angular metrics are intrinsic in the sense of [3], i.e., for each pair X,Y ∈ Gm,n,

there exists a curve (geodesics) Zλ ⊂ Gm,n, λ ∈ [0, 1], such that Z0 = X, Z1 = Y and
ρ(X,Y) = ρ(X,Zλ) + ρ(Zλ,Y) for all λ ∈ [0, 1]. This curve is actually given by a direct
rotation from X and Y as defined in [4]. Let such a direct rotation be given by exp(A),
where A is a skew-Hermitian matrix with eigenvalues in an imaginary interval

[− �
2 i, �

2 i
]
.

Then Zλ = exp(λA)X.

We take this opportunity to conjecture that the angular metrics give all unitarily invariant
intrinsic metrics on Gm,n, but we will not further address this issue here. We argue that being
intrinsic is the advantage of the angular metrics over other metrics. This property is essential for
the inequality in result (II) to be sharp and it makes the result (III) possible.

In applications, it is often needed to carry out perturbation analysis involving subspaces
of different dimensions. For example, the canonical angles are defined between subspaces of
possibly different dimensions and the very perturbation analysis of the canonical angles involves
subspaces of possibly different dimensions [5]. For another example, the related concepts of
direct rotations and CS decompositions have the general versions involving subspaces of different
dimensions [6,7]. Furthermore, the nullity and deficiency can also be defined for subspaces of
possibly different dimensions, hence the robustness of nullity and deficiency between subspaces
of different dimensions should be studied [8,9]. Finally, if one is to study all these notions in an
infinite dimensional space setting, as in [4], then there is no reason to insist the subspaces involved
to have equal dimension. All these motivates the need to extend the angular metrics to the space
Gn. When we define metrics on Gn, the canonical angles cannot be directly used since they do
not completely characterize the geometric relationship between two subspaces. For example, if
X ⊂ Y but X /= Y, then θ(X,Y) = 0 but it does not tell the excess of dimension of Y over that
of X and the distance between X and Y cannot be zero.

A well-known family of metrics on Gn is the family of gap metrics ([10, p. 93] or [11, p. 202])
which is defined for X,Y ∈ Gn by

δ(X,Y) = ‖PX − PY‖,
where PX and PY are orthogonal projections onto X and Y, respectively, and ‖ · ‖ is a unitarily
invariant norm. More detailed examination reveals that if X is of dimension m and Y is of
dimension l, the singular values of PX − PY are given by

1, . . . , 1, sin θ1, sin θ1, . . . , sin θmin{m,l,n−m,n−l}, sin θmin{m,l,n−m,n−l}, 0, . . . , 0.

Here the number of extra 1’s is |l − m| and the number of extra zeros is determined so that the
total number of singular values is n. We may view each 1 as sin �/2 and each 0 as sin 0. This
suggests that in order to capture the missing information in the canonical angles between two
subspaces, we may augment the canonical angles by certain number of �/2 and 0. The augmented
canonical angles are exactly the quantities that we will use to define the angular metrics on Gn.

When dealing with two subspaces of different dimensions, one may be interested in whether
the subspace with smaller dimension is contained in or is closed to the one with larger dimension.
Apparently, the metric between the two subspaces cannot be zero or close to zero. One may still
wish to get the interested information from whatever metric he/she is using. Consider the gap
metrics introduced above. If ‖ · ‖ is a unitarily invariant matrix norm corresponding to a strictly
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monotone symmetric gauge function �, i.e., �(ξ) < �(ζ ) if |ξ | � |ζ | but |ξ | /= |ζ |, where the
absolute value and the inequality have the element-wise meaning, then for m-dimensional X and
l-dimensional Y with m < l, we have X ⊂ Y if and only if δ(X,Y) = �(1, . . . , 1, 0, . . . , 0),
where the number of 1’s is equal to l − m, and X is close to Y if and only if the above inequality
holds approximately. The metrics that we will define in this paper will also have the similar
property.

In Section 2, we establish a family of metrics onGn by applying the symmetric gauge functions
to a set of properly augmented canonical angles, extending result (I) in [1]. We then study the
perturbation of canonical angles between subspaces of unequal dimensions using the newly
defined metrics, extending result (II) in [1]. In Section 3, we consider the robustness of nullity and
deficiency between a pair of subspaces in Gn, extending result (III) in [1]. Section 4 concludes
the paper.

We will use Mm,n (respectively, Mn) to denote the linear space of m × n (respectively, n × n)
matrices over C. The group of unitary matrices is denoted by Un.

2. The extended angular metrics and perturbation of canonical angles

Let us take a closer look at the definition of canonical angles in (1) for the case when m < l.
By the singular value decomposition, we know that there exist E ∈ Um and F ∈ Ul such that

EH XH YF = [diag(cos θ1(X,Y), . . . , cos θm(X,Y)) 0m,l−m].
This shows that Y has an m-dimensional subspace Y0 such that θ(X,Y0) = θ(X,Y) and
X ⊥ (Y � Y0). A similar interpretation can be made for the case when l � m. From the above
observation, we may augment the angles betweenX andY by adding |l − m| angles of �/2. Since
the length of θ(X,Y) changes with the dimensions of X and Y as X and Y vary over Gn, we also
add some extra zeros to θ(X,Y) so that the number of the augmented angles keeps invariant. We
introduce the following n-tuple:

θ̄ (X,Y) =
(�

2
, . . . ,

�

2
, θ1(X,Y), . . . , θmin{m,l}(X,Y), 0, . . . , 0

)
,

where the numbers of extra �/2 and 0 are |l − m| and n − max{m, l}, respectively. It is obvious
that θ̄ (X,Y) is unitarily invariant.

Using the augmented angles between subspaces, we are now able to extend the results (I) and
(II) on Gm,n to Gn.

Theorem 1. Let � : Rn → R be a symmetric gauge function. Define ρ : Gn × Gn → R by

ρ(X,Y) = �(θ̄(X,Y)). (2)

Then ρ is a unitarily invariant metric.

Proof. First ρ(UX, UY) = ρ(X,Y) for all U ∈ Un, since θ̄ (X,Y) is unitarily invariant from its
definition. It is easy to see that ρ(X,Y) = ρ(Y,X), and ρ(X,Y) � 0. Moreover ρ(X,Y) = 0
implies that the entries of θ̄ (X,Y) are all zeros, so the dimension of X equals that of Y, and
the canonical angles between them are all zeros, hence X = Y. Next we will prove the triangle
inequality.

Let X ∈ Mn,m, Y ∈ Mn,l , and Z ∈ Mn,t have columns forming orthonormal bases for sub-
spaces X, Y, and Z, respectively. Without loss of generality, we assume that m � l � t . Define
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X =
[
X 0
0 In−m

]
, Y =

⎡⎣ Y 0
0l−m,l 0

0 In−l

⎤⎦ , Z =
⎡⎣ Z 0

0t−m,t 0
0 In−t

⎤⎦
and X,Y,Z ∈ Gn,2n−m to be subspaces spanned by the columns of X, Y , Z, respectively. Then
it is easy to see that the columns of X, Y , Z form orthonormal bases of X,Y,Z. Furthermore,

X
H

Y =
⎡⎣XH Y 0

0 0
0 In−l

⎤⎦ , X
H

Z =
⎡⎣XH Z 0

0 0
0 In−t

⎤⎦ , Y
H

Z =
⎡⎣YH Z 0

0 0
0 In−t

⎤⎦ ,

it follows from the definition of canonical angles that:

θ(X,Y) = θ̄ (X,Y), θ(X,Z) = θ̄ (X,Z), θ(Y,Z) = θ̄ (Y,Z). (3)

Then by the result in (I), we have for any symmetric gauge function � : Rn → R,

�(θ̄(X,Z)) − �(θ̄(Y,Z)) � �(θ̄(X,Y)).

Hence

ρ(X,Z) � ρ(Y,Z) + ρ(X,Y).

This shows ρ is a unitarily invariant metric on Gn. �

If the metrics defined above are restricted to Grassmannian Gm,n, then they give exactly those
metrics defined in [1].

By (3) and (II), we can easily get the following “Mirsky type result”, which shows that the
perturbations in θ̄ (X,Y) are bounded by the perturbations in the subspaces involved.

Theorem 2. Let � : Rn → R be a symmetric gauge function, and ρ be the corresponding metric
defined by (2). Then for any X,Y,Z ∈ Gn, we have

�(θ̄(X,Z) − θ̄ (Y,Z)) � ρ(X,Y).

In the case when both subspaces involved are perturbed, the following version of Theorem 2
might be more convenient in applications.

Corollary 3. Let ρ be the metric corresponding to symmetric gauge function � on Rn. Then for
X,Y, X̃, Ỹ ∈ Gn, we have

�(θ̄(X̃, Ỹ) − θ̄ (X,Y)) � ρ(X̃,X) + ρ(Ỹ,Y).

Proof. From the definition of symmetric gauge functions, it is easy to show that

�(θ̄(X̃, Ỹ) − θ̄ (X,Y)) = �(θ̄(X̃, Ỹ) − θ̄ (X, Ỹ) + θ̄ (X, Ỹ) − θ̄ (X,Y))

� �(θ̄(X̃, Ỹ) − θ̄ (X, Ỹ)) + �(θ̄(X, Ỹ) − θ̄ (X,Y))

� ρ(X̃,X) + ρ(Ỹ,Y),

where the last inequality holds from Theorem 2. �

In Theorem 2, if two of the three subspaces have same dimensions, we can use the canonical
angles directly, instead of the augmented angles, to characterize the perturbations.
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Corollary 4. Let �̂ : Rm → R be a symmetric gauge function, and ρ̂ be the corresponding
angular metric on Gm,n. Then for X,Y ∈ Gm,n,Z ∈ Gl,n with m � l, we have

�̂(θ(X,Z) − θ(Y,Z)) � ρ̂(X,Y).

3. Robustness of nullity and deficiency

In this section we will work on the issues related to the nullity and deficiency. For any two
subspaces X,Y ∈ Gn, following [12], the nullity and deficiency of X and Y are defined to be

nul(X,Y) := dim(X ∩ Y) and def(X,Y) := codim(X + Y),

respectively. Clearly, in the case when dim X + dim Y = n, we have def(X,Y) = nul(X,Y).
Also, X ⊕ Y = Cn if and only if nul(X,Y) = 0 and def(X,Y) = 0.

The robustness of the nullity and deficiency is of great interest in mathematics [12], statistics
[13], and control theory [8,9,14–16]. In particular, if we have subspaces X ∈ Gm,n and Y ∈ Gl,n

with nul(X,Y) < k for some 1 � k � min{m, l} and if we also know the perturbed versions
X̃ ∈ Gm,n and Ỹ ∈ Gl,n satisfy ρ(X, X̃) � α and ρ(Y, Ỹ) � β, we wish to obtain the tightest
condition on α and β to ensure nul(X̃, Ỹ) < k. The same problem can be considered for the
deficiency. The following theorem gives an answer.

Theorem 5. Let � : Rn → R be a symmetric gauge function, and ρ be the corresponding metric
defined by (2). Let X ∈ Gm,n, Y ∈ Gl,n with m < l. Then for α � 0, β � 0, and 1 � k � m,

(1) nul(X̃, Ỹ) < k for all X̃ ∈ Gm,n and Ỹ ∈ Gl,n satisfying ρ(X, X̃) � α and ρ(Y, Ỹ) � β

if and only if

α + β < �(θm−k+1(X,Y), . . . , θm(X,Y), 0, . . . , 0);
(2) def(X̃, Ỹ) < k for all X̃ ∈ Gm,n and Ỹ ∈ Gl,n satisfying ρ(X, X̃) � α and ρ(Y, Ỹ) � β

if and only if

α + β < �(θn−l−k+1(X,Y), . . . , θm(X,Y), 0, . . . , 0).

Proof. We only need to prove Statement 1. Statement 2 follows from

def(X,Y) = n − dim(X + Y)

= n − dim(X) − dim(Y) + dim(X ∩ Y)

= n − m − l + nul(X,Y).

Suppose nul(X̃, Ỹ) � k. Then θj (X̃, Ỹ) = 0, j = m − k + 1, . . . , m. By Corollary 3,

δ := �(θm−k+1(X,Y), . . . , θm(X,Y), 0, . . . , 0)

� �(θ̄(X,Y) − θ̄ (X̃, Ỹ)) � ρ(X, X̃) + ρ(Y, Ỹ) � α + β.

This shows that if

α + β < δ,

then nul(X̃, Ỹ) < k.
Now assume that α + β � δ. Then there exist α1 ∈ [0, α] and β1 ∈ [0, β] such that α1 +

β1 = δ. Let X1 ∈ Mn,m and Y1 ∈ Mn,l be matrices whose columns form orthonormal bases of
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X and Y, respectively. By the singular value decomposition, we know that there exist E1 ∈ Um

and F1 ∈ Ul such that

EH
1 XH

1 Y1F1 = [diag(cos θ1(X,Y), . . . , cos θm(X,Y)) 0m,l−m].
This shows that Y has an m-dimensional subspace Y0 such that θ(X,Y0) = θ(X,Y) and X ⊥
(Y � Y0), hence there exist X2 ∈ Mn,n−l and Y2 ∈ Mn,n−l such that

X = [
X1 X2 Y12

]
, Y = [

Y11 Y2 Y12
]

are unitary matrices, where the columns of Y11 and Y12 form orthonormal bases ofY0 andY � Y0,
respectively. Let

Q =
[
XH

1

XH
2

] [
Y11 Y2

] =
[
XH

1 Y11 XH
1 Y2

XH
2 Y11 XH

2 Y2

]
,

then it is easy to see that Q ∈ Un−l+m. In the following we assume m + l < n. For the case
when m + l � n, the analysis is similar. By the CS decomposition, there are unitary matrices
U = diag(U11, U22) and V = diag(V11, V22) with U11, V11 ∈ Um such that

UH QV =
[
(X1U11)

H

(X2U22)
H

] [
Y11V11 Y2V22

] =
⎡⎣� −� 0

� � 0
0 0 In−l−m

⎤⎦ , (4)

where � and � are diagonal matrices with diagonal entries in [0, 1] satisfying �2 + �2 = Im.
Hence the diagonal entries of � are the cosines of the canonical angles between X and Y; the
diagonal entries of � are the sines of the canonical angles.

From (4), we may choose the columns of X1, X2, Y11, Y2 properly such that U11, U22, V11, V22
are identity matrices. We still use the notations X1, X2, Y11, Y2. Note that YH

12Y11 = 0 and X is
unitary, we have

Y11 = [
X1 X2

] ⎡⎣cos(diag θ(X,Y))

sin(diag θ(X,Y))

0n−l−m,m

⎤⎦ . (5)

Let

X1 = [x1 · · · xm], X2 = [xm+1 · · · xn−l+m],
Y11 = [y1 · · · ym], Y12 = [yn−l+m+1 · · · yn].

Next we will construct X̃ ∈ Gm,n and Ỹ ∈ Gl,n. Letλ = α1/δ, then 1 − λ = β1/δ. Also abbreviate
θj (X,Y) by θj , j = 1, 2, . . . , m. Define

x̃j = xj cos(λθj ) + xm+j sin(λθj ), j = m − k + 1, . . . , m

and

X̃= span(x1, . . . , xm−k, x̃m−k+1, . . . , x̃m),

Ỹ= span(y1, . . . , ym−k, x̃m−k+1, . . . , x̃m, yn−l+m+1, . . . , yn).

Also define

X̃1 = [
x1 · · · xm−k x̃m−k+1 · · · x̃m

]
Ỹ1 = [

y1 · · · ym−k x̃m−k+1 · · · x̃m yn−l+m+1 · · · yn

]
.
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Then the columns of X̃1 and Ỹ1 form orthonormal bases of X̃ and Ỹ, respectively. Furthermore,

XH
1 X̃1 = diag(1, . . . , 1, cos(λθm−k+1), . . . , cos(λθm)).

It follows that:

ρ(X, X̃) = �(λθm−k+1, . . . , λθm, 0, . . . , 0) = α1 � α.

From (5), we see that yj = xj cos θj + xm+j sin θj , j = m − k + 1, . . . , m. Hence

YH
1 Ỹ1 = diag(1, . . . , 1, cos((1 − λ)θm−k+1), . . . , cos((1 − λ)θm)).

Similar to the above, we have

ρ(Y, Ỹ) = �((1 − λ)θm−k+1, . . . , (1 − λ)θm, 0, . . . , 0) = β1 � β.

Since

X̃H
1 Ỹ1 = [diag(cos θ1, . . . , cos θm−k, 1, . . . , 1) 0m,l−m],

it follows that:

θ(X̃, Ỹ) = (θ1, . . . , θm−k, 0, . . . , 0)

which implies that nul(X̃, Ỹ) � k. This proves the necessity of the condition. �

4. Conclusions

In this work we have considered the metrics between subspaces with possibly different dimen-
sions, and thus have extended the result in [1] to a more general setting. We have also studied
the perturbation of canonical angles and the robustness of the nullity and the deficiency when the
subspaces involved are perturbed using the newly defined metrics.
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