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On the Computation of the Real Hurwitz-Stability Radius 

Li Qiu, Andre L. Tits, and Yaguang Yang 

Abstract- Recently Qiu er al. obtained a computationally attractive 
formula for the evaluation of the real stability radius. This formula 
involves a global maximization over frequency. Here, for the Hurwitz 
stability case, we show that the frequency range can be limited to a certain 
finite interval. Numerical experimentation suggests that this interval is 
often reasonably small. 

I. INTRODUCTION 
For 1. = 1. 2. . . . . let 01. ( . )  denote the kth largest singular value 

of its matrix argument. The real (structured) Hurwitz-stability radius 
of a matrix triple (-4. B.  C) E R n X "  x R"X'" x Rpx", with d 
Hurwitz stable, is defined by (see [l]) 

rR( . i .  B.  c') := 

inf {e ' (A) : -4  + B X ' i s  not Hurwitz stable}. 
A € R m x P  

Recently Qiu et al. [ 2 ]  obtained a formula allowing efficient compu- 
tation of rR(-i. B.  c). Specifically they showed that 

~R(.-I .  B. c ) ~ '  = inax pR[C(jdI - - ~ ) - ' B I  (1) 
d € R +  

where Rt := { i' E R: J 2 0) and where, for any '21 E C"' 

The computation of pR(J1) for a given .%f can be carried out at 
low computational cost as the univariate function to be minimized is 
unimodal (see [ 2 ] ) .  

In this note, we obtain lower and upper bounds on the global 
maximizers in (l), computable at a small cost compared to that 
of performing the global maximization. Numerical experimentation 
suggests that these bounds are often reasonably close. Knowledge 
of such bounds simplifies the task of carrying out the numerical 
maximization. 

11. A FINITE FREQUENCY RANGE 
Given (.A. B.  C )  E R"X" x R"'"' x Rpx'l and an -1'0 E R+ 

such that pR[c((j-i,o - -4)- 'B]  # 0, let 

! I  := {d E R+:rl[C(jb,I - -4)-'L?] 

=/1R[C(jJoI - '4)-lB]} 
and let 

iiiiii ! I  ifol[C'.4-'B] < j/R[C(ji'oI - .4)-'B] 
( 0  otherwise 

irr, := 

and 

:= iiiax CL. 
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Since g l [ C ( j ~ I  - .4)-'B] is a continuous function of J and since 
it vanishes as 

n l [ C ( j ~ % I  - A - ' B ]  < pR[C(jdoI - A)-'B] (3) 
for all J > d11. Also, if ~ I [CA- 'B]  < p~[C(jiu'oZ- A)-'B], then 
(3) holds for all w E [O. jm). Since for all d 

goes to infinity, it follows that 

PR[C(jJI - A - 9 3 1  

I> ReC(jdZ - .4)-'B - I InC( j~ I  - A - ' B  
-([I mC(j,Z - ;1)-'B ReC(jdZ - A)-'B 
= e,[C(jdZ - . 4 ) - ' ~ ]  

it follows that 

pR[C(jdI- A)- 'B]  < //R[C(jdOI - A)-'B] 

for all E R+\[w,,,. &'\.I]. Therefore 

max pR[C(jdI - A - ' B ]  = 
d€R+ 

max pR[C(jdZ - A - ~ B ] .  (4) 
dE[+n. & M I  

It turns out that A,,, and ~ 3 4  can be computed at low cost, so 
that (4) leads to a substantial reduction in the cost associated with 
computation of TR(-4. B. C ) .  The idea is as follows. It is well 
known' that for a given e > 0, d satisfies 

ek[C(jdI - A - ' B ]  = g 
for some k if and only if j d  is an eigenvalue of 

[& U:;"'].  

This shows that R is contained in the set consisting of the magnitudes 
of all imaginary eigenvalues of 

'4 {pR[C(jdoZ - A)-'B])-'BB' 1-  [-C/C - .A1 
Furthermore, since 

ek[C(jw.I - .i)-'B] < e l [ c ' ( j d Z  - A)- 'B]  

< /IR[C(j"OI - A)-'B] 

for all k and all LJ E R+\[+,. W M ] ,  ~JM is the largest such magnitude 
and, if nonzero, drn is the smallest such magnitude. 

In summary, the following theorem is obtained. 
Theorem: Let uo E R+ be such that pR[C(jLu'gI- A)-'B] # 0, 

and let JM be the largest magnitude of imaginary eigenvalue of 

Further, let d,,, be the smallest such magnitude if el[CA-'B] < 
pR(C(jJo1 - A)-'B], and zero otherwise. Then 

rR(Ai, B.  C)-' = inax pR[C(jwI - A)- 'B] .  
*c[y)mi wM1 

For different JO, we will get different drn and LUIM. Since 
pR(Ci-'B) = ei(Cd-'B), we can simply take W O  = o 
whenever CA-'B # 0. We can choose several W O ,  compute several 
corresponding .+I, and W'M, and keep the smallest interval. We can 
also adjust J, and LUIM as the maximization in (1)  progresses. There 
are extreme cases where pR[C(jiu'Z - A)-'B] = 0 for all but a finite 
number of d points. This occurs, for example, when m = p = 1. In 
such cases, our result is of no help. 

'This result has been used by several authors in the computation of the 
"complex stability radius," or equivalently of the W m  norm (see [3]-[9]). 
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Fig. 1. For Example 1, plot of p R [ C ( j d I  - il)-’B] ?lid line), 
plot of ai(C(jd1 - -4)-’B] (dashed line), and horizontal line at level 
p ~ [ c ( j j o I  - .4)-’B] with Y’O = 0 (dotted l i e ) .  
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(dashed line), and the horizontal line at level ~ R ( C ~ ~ - ’ B )  (dotted 
line). The imaginary eigenvalues of (4) are 0. 0. fj12.0495, which 
correspond to the intersections of the dashed line and the dotted line. 
Hence, L J X ~  = 12.0495 (and d,,, = 0). The actual maximizer in (1) 
is L* = 1.3000. 

Example 2: In this example, we consider the same -4 and B 
matrices as in Example 1 

0.6992 -0.2259 0.2691 0.6226 1 ’ -0.6907 -0.3244 0.4510 0.4630 C =  [ 
Since C X ’ B  = 0 for this example, we cannot choose .i.‘o = 
0. Let us choose .i.’o = 10 instead. Fig. 2 shows the plot of 
pR[C( jd I  - .4)-’B] (solid line), the plot of r l [ C ( j ~ I  - .4)-’B] 
(dashed line), and the horizontal line at level pR[C(jdoI - -4)-’B] 
with = 10 (dotted line). The imaginary eigenvalues of ( 5 )  
are 4zj1.3758, fj15.2012, which correspond to the intersections of 
the dashed line and the dotted line. Hence, dn, = 1.3758 and 
L L ~  = 15.2012. The actual maximizer in (1)  is = 7.1400. 
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Fig. 2. For Example 2, plot of pR[C(jwl  - A - ’ B ]  (solid line), 
plot of 01 [ C ( j d I  - <4)-’B] (dashed line), and horizontal line at level 
pR[C( jdo I  - .4)-’B] with d o  = 10 (dotted line). 

111. EXAMPLES 

Example 1: In [2 ] ,  an example is examined in which 
79 20 -30 

-31 -12 17 -7 [ 167 40 -60 -38 * 

33.5 9 -14.5 -11 
0.2190 0.9347 
0.0470 0.3835 
0.6789 0.5194 ‘ 

0.6793 0.8310 1 
0.0336 0.5297 0.0077 0.0668 

[0.0533 0.6711 0.3834 0.41751. 
For this example, we choose WO = 0. Fig. 1 shows the plot of 
pR[C( jd I  - A)-’B] (solid line), the plot of o1[C(jwI - A ) - ’ B ]  

Changing Supply Functions in InputIState Stable Systems 

Eduardo Sontag and Andrew Tee1 

Abstract- We consider the problem of characterizing possible supply 
functions for a given dissipative nonlinear system and provide a result 
which allows some freedom in the modification of such functions. 

I. INTRODUCTION 
The “input-to-state stability” (ISS) property has been recently 

introduced in nonlinear systems analysis [4] and, together with close 
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