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Abstract 

This note concerns the robustness of LTI symmetric 
systems under symmetric or diagonal perturbations. 
It is shown that for symmetric systems the robust sta- 
bility condition for dynamic perturbations given by 
the small gain theorem is also necessary if the pertur- 
bation matrix is assumed to be diagonal, but the ro- 
bust stability condition for parametric perturbations 
given by the real stability radius is no longer neces- 
sary if the perturbation matrix is merely assumed to 
be symmetric. 

1 Introduction 
Systems with symmetric transfer matrices often occur 
in real world applications. For example, consider a 
space structure with collocated sensors and actuators 
described by 

M q +  Dq + Iiq = Lu, y = LTq (1) 

where the mass matrix M ,  damping matrix D, and 
stiffness matrix Ii are all real symmetric matrices. 
The transfer matrix of this space structure, 

P ( s )  = LT(Ms2 + Ds + IC)-lL, 

is clearly symmetric, i.e., PT = P .  Such systems are 
called symmetric systems. 

In the control of symmetric systems, symmetric 
controllers offer some advantages and are often used 
6, 51. In this case, the stability and performance ro- 
IJ ustness analysis of the closed loop system will often 
become the analysis of the R'l-l, (real rational ma- 
trices bounded in Re(s) > 0) invertibility of I - AG, 
where G is a fixed symmetric R'l-lm transfer matrix 
and A is an uncertain R'l-l, transfer matrix, repre- 
"enting dynamic perturbation. or an uncertain real 
matrix, representing parametric perturbation. For 
example, assume that a symmetric stabilizing feed- 
back controller C is used to control the space struc- 
ture in (1); if P is subject to an additive perturbation 
P + P + A, where A is an uncertain RA!, transfer 
matrix, then G = C I - PC)-l which is symmetric; 

damping matrix D -+ D + A, where A is an un- 
certain real matrix, then G(s) = [ M s 2  + Ds + Ii - 
LC(s)LT].-ls which is also symmetric. In general, 
perturbations in the space structure, such as that 
caused by gyroscopic force and the imprecise colloca- 
tion of sensor and actuator characteristics, can lead 
to asymmetric A. For computing the stability mar- 
gins of a system when asymmetric A is possible, the 

or if the only pertur L ation comes from an uncertain 
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following formulas, due to [l] and [7] respectively, are 
instrumental: 

inf{llAlloo: A ER%, ,  (I-AG)-'@ R'l-lW}=llGl/&'. 

and 
(2) 

inf{rl(A): A is a real matrix, ( I  - AG)-lSfR'l-l,} 
-1 

( I t  E W U {  m} 

where, for complex matrix A ,  

Here q($) is used to denote the i-th singular value 
assuming nonincreasing order. 

However, if the only source of uncertainty in the 
s ace structure is the dynamics of the structure or 
tEe parameters of M ,  D ,  IC matrices, then A will 
always be a symmetric matrix. This motivates us to 
study 

inf { llAlloo :AER%,is symmetric, (I-AG)- @R%,} 

and 

inf{uI(A): A is real symmetric, (1-AG)-'#R'Hoo}. 

Clearly, (4) is greater than or equal to (2) and (5) is 
greater than or equal to (3).  Our concerns are if (4) 
is equal to (2) and if (5) is equal to ( 3 ) .  We will also 
investigate 

inf{llAll,: AERX ,is diagonal, (I-AG)-'Sf R%%} 

and 

inf{ul(A) : A is real diagonal, (I-AG)-' Sf R'l-l,}. 

(6) and (7) are important in their own right because 
of their obvious connections to robust stability under 
structured perturbations [8, 2 .  They are studied in 

(4) and (5). Since diagonal matrices are special syin- 
metric matrices, it follows that if (6) is equal to (2), 
so is (4); and on the other hand if (4) is not equal 
to (2), neither is (6). A similar argument applies to 
the relationship between (3), (5), and (7). In Section 
2 we show that (6) and hence (4) are equal to (2). 
In Section 3 we show that ( 5 )  and hence (7) can be 
greater than ( 3 )  in general. 

(4) 

( 5 )  

(6) 

(7)  

our context mainly because o 1 their connection with 
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( 6 )  has also been studied in [9, lo].  It was shown 
in  [9] that (6) is equal to (2) under an unnatural as- 
sumption on the multiplicity of the singular values 
of G(jw). After the present paper was submitted, 
I101 was published, which reitloved the assumption. 
Hence the result in [ lo  has priority over the present 

that in [lo] and is based on the less well-known but 
very elegant Takagi factorization [4, pp. 204-2051. 

one; however, the proo 1 in Section 2 is different from 

2 Dynamic  P e r t u r b a t i o n  

Theorem Let G E R X ,  and GT = G. Then 

inf{llAllm: AERX, is diagonal, (I-AG)-l@RX,} 

= llGll2. 
PROOF It follows from (2) immediately that the Ieft 

side is greater than or equal to the right side. What 
remains to be shown is the opposite inequality. As- 
sume that G is m by m and that llGllm = Z[G(jwo)] 
for some W O  E [0, CO]. Since G( jw0)  is a complex sym- 
metric matrix, it has a Takagr factorization 

Gfjwo)  = UCUT 

u2 where U = [ ~1 U, ) is unitary and C = 
diag(a1, ~ 2 , .  . . , U,). Here u1, a2, . . . , 6, are singu- 
lar values of G(jwo) ,  ordered nonincreasingIy. Now 
write 

. . . 

such that tilz are real and Bi E [ O , a ) .  Notice that if 
W O  = 0 or 03, then Bi = 0. Let S; = -&al, where a; 
is an inner real rational function such that a i ( j w 0 )  = 
eJ2@z , and define 

A = diag(&,&, . . . , S,). 

Then llAllm = l/a1 = llGl]&l and 

[I - A(jw,)G(j~o)]ii l  = [I  - A(jwo)UCUT]iil 
- - ii1 - diag(ej2", ejZe2,.  . . , ejzom)ul = 0 

where iil means the complex conjugate of 261. This 
implies that either I - AG is not invertible or ( I  - 

0 AG)-' is not in E%,. 

3 P a r a m e t r i c  Perturbation 

In this section, we construct an example of symmetric 
G which gives 

inf{al(A): A is real symmetric, ( I  - AG)-'$E%,} 
-1 

Consider 

Clearly, G is symmetric. Since G is diagonal with 
repeated diagonal elements, it follows from [3] that 
p ~ [ G ( j w ) ]  = a1 [G(jw)]. Simple computation shows 
that the only maximizer of al[G(jw)] is w = 1 a n d  

G(j1) = [ 9 1. Since the eigenvalues of a real 

symmetric matrix are always real, there exists no real 
symmetric matrix such that det[I - AG(jl)]  = 0. 
This implies that 

inf{al(A): A E RZx2, AT=A, det[I-AG(jl)] = 0} 
= 00 > p ~ - ~ [ G ( j l ) ]  = 1. 

At w # I, 

inf{ul(A): A E R2x2,AT=A,det[I-AG(jw)] = 0) 

2 Ti-l[G(jw)] > T 1 f G ( j l ) ]  = 1 .  

Hence 

inf{al(A): A E RZx2, AT=A, ( I  - AG)-l$! RX,}  
-I 

> 1 = { @ERU(CQ} SUP p ~ [ G ( l l ) ] }  . 

4 References 

[I] M. J. Chen and C .  A. Desoer. Necessary and 
sufficient condition for robust stability of linear 
distributed systems. Int. J -  Control, 35:255-267, 
1982. 

[2] J. C. Doyle. Analysis of feedback systems with 
structured uncertainties. Proc. IEE, Pt. D., 

131 D. Hinrichsen and A. J. Pritchard. A note on 
some differences between real and comdex sta- 

129:242-250, 1982. 

bility radii. Systems 63 Control Letters,' 14:105- 
113, 1990. 

[4] R. A. Horn and C. R. Johnson. Matrzz Anal- 
ysts. Cambridge University Press, Cambridge, 
England, 1985. 

[5] M. Ikeda. Symmetric controllers for space struc- 
tures with collocated sensors and actuators. 
Preprint, 1994. 

[6] S. M. Joshi. Control of Large Flexzble Space 
Structures. Springer-Verlag, Berlin, 1989. 

[7] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davi- 
son, P. M. Young, and J. C. Doyle. A formula 
for computation of the real stability radius. Au- 
tomatzca, 1995. To appear. 

Stability mar in of diagonally 
perturbed multivariable feedba% systems. Proc. 

[9] S. Yamamoto and H. Kimura. Robustness anal- 
ysis of symmetric systems based on the struc- 
tured singular values. In Proc. Fzrst Aszan Con- 
trol Conference, volume 1, pages 359-362, 1994. 

[lo] S. Yamamoto and H. Kimura. On structured 
singular values of reciprocal matrices. In Proc. 
Amerzcan Control Conf., pages 3358-3359, 1995. 

[8] M. G. Safonov. 

IEE, Pt. D., 129:251-256, 1982. 

2660 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 07:46:47 UTC from IEEE Xplore.  Restrictions apply. 


