On the span of Hadamard products of vectors

Li Qiu ${ }^{\text {a }}$, Xingzhi Zhan ${ }^{\text {b,*, }}$
${ }^{\text {a }}$ Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
${ }^{\text {b }}$ Department of Mathematics, East China Normal University, Shanghai 200062, China

Received 5 August 2006; accepted 20 October 2006
Available online 5 December 2006
Submitted by R. Bhatia

Abstract

Let A_{1}, \ldots, A_{k} be positive semidefinite matrices and B_{1}, \ldots, B_{k} arbitrary complex matrices of order n. We show that $$
\operatorname{span}\left\{\left(A_{1} x\right) \circ\left(A_{2} x\right) \circ \cdots \circ\left(A_{k} x\right) \mid x \in \mathbb{C}^{n}\right\}=\operatorname{range}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right)
$$ and $\operatorname{span}\left\{\left(B_{1} x_{1}\right) \circ\left(B_{2} x_{2}\right) \circ \cdots \circ\left(B_{k} x_{k}\right) \mid x_{j} \in \mathbb{C}^{n}\right\}=\operatorname{range}\left(\left(B_{1} B_{1}^{*}\right) \circ\left(B_{2} B_{2}^{*}\right) \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)\right)$,

where o means the Hadamard product. This generalizes two recent results of Sun, Du and Liu. © 2006 Elsevier Inc. All rights reserved.

AMS classification: 15A03; 15A04; 15A57

Keywords: Span; Hadamard product; Range

1. Introduction

For two $m \times n$ matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$, their Hadamard product (entrywise product) is defined to be $A \circ B=\left(a_{i j} b_{i j}\right)$. Note that when $n=1$ the matrices are column vectors. Given a positive integer k, the k th Hadamard power of A is $A^{(k)}=\left(a_{i j}^{k}\right)$. The book [4] contains many

[^0]results on the Hadamard product. Throughout we consider complex matrices and denote by A^{*} the conjugate transpose of A. We regard an $n \times n$ matrix A as a linear operator on \mathbb{C}^{n}, so that range (A) is the image of A. Sun et al. [5] have proved the following results.

Theorem 1. For any $n \times n$ positive semidefinite matrix A and any positive integer k,

$$
\operatorname{span}\left\{(A x)^{(k)} \mid x \in \mathbb{C}^{n}\right\}=\operatorname{range}\left(A^{(k)}\right)
$$

Theorem 2. For any $n \times n$ complex matrix B and any positive integer k, $\operatorname{span}\left\{(B x)^{(k)} \mid x \in \mathbb{C}^{n}\right\}=\operatorname{range}\left(\left(B B^{*}\right)^{(k)}\right)$.

Theorem 2 follows immediately from Theorem 1. These two results were conjectured by Gorni and Tutaj-Gasinska [2] in their study related to the well-known Jacobian conjecture which states that if $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a polynomial map and the determinant of the Jacobian matrix of f is a nonzero constant, then f is bijective.

In this note we will generalize Theorems 1 and 2 to the case of Hadamard product of different matrices. The basic ideas in our proof are similar to those in [5], but the proof here is simpler.

2. Main results

We need the following fact, which is known as the principal submatrix rank property [3]. For the sake of completeness, we give a short proof.

Lemma 3. Let A, B, C be complex matrices such that

$$
\left(\begin{array}{ll}
A & B \\
B^{*} & C
\end{array}\right)
$$

is positive semidefinite. Then $\operatorname{range}(B) \subseteq \operatorname{range}(A)$.
Proof. Since the given block matrix is positive semidefinite, there exists a contraction W such that $B=A^{1 / 2} W C^{1 / 2}[6, \mathrm{p} .15]$. Thus range $(B) \subseteq \operatorname{range}\left(A^{1 / 2}\right)=\operatorname{range}(A)$, where we used the fact that range $(G)=\operatorname{range}\left(G G^{*}\right)$ for any complex matrix G.

Theorem 4. Let $A_{j}, j=1, \ldots, k$ be $n \times n$ positive semidefinite matrices. Then

$$
\operatorname{span}\left\{\left(A_{1} x\right) \circ\left(A_{2} x\right) \circ \cdots \circ\left(A_{k} x\right) \mid x \in \mathbb{C}^{n}\right\}=\operatorname{range}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right)
$$

Proof. Let e_{i} be the vector in \mathbb{C}^{n} whose only nonzero component is the i th component which is equal to 1 . Then the i th column of $A_{1} \circ \cdots \circ A_{k}$ is

$$
\left(A_{1} \circ \cdots \circ A_{k}\right) e_{i}=\left(A_{1} e_{i}\right) \circ \cdots \circ\left(A_{k} e_{i}\right), \quad i=1, \ldots, n
$$

Therefore

$$
\begin{equation*}
\operatorname{range}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right) \subseteq \operatorname{span}\left\{\left(A_{1} x\right) \circ\left(A_{2} x\right) \circ \cdots \circ\left(A_{k} x\right) \mid x \in \mathbb{C}^{n}\right\} \tag{1}
\end{equation*}
$$

It remains for us to prove the reversed inclusion relation

$$
\begin{equation*}
\operatorname{span}\left\{\left(A_{1} x\right) \circ\left(A_{2} x\right) \circ \cdots \circ\left(A_{k} x\right) \mid x \in \mathbb{C}^{n}\right\} \subseteq \operatorname{range}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right) \tag{2}
\end{equation*}
$$

Let

$$
A_{j}=\left(a_{1}^{[j]}, a_{2}^{[j]}, \ldots, a_{n}^{[j]}\right), \quad j=1, \ldots, k
$$

and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$. Then

$$
\left(A_{1} x\right) \circ\left(A_{2} x\right) \circ \cdots \circ\left(A_{k} x\right)=\sum x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} a_{i_{1}}^{[1]} \circ a_{i_{2}}^{[2]} \circ \cdots \circ a_{i_{k}}^{[k]},
$$

where the summation is taken over all tuples $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ with $1 \leqslant i_{t} \leqslant n$. Hence, to prove (2) it suffices to show

$$
\begin{equation*}
a_{i_{1}}^{[1]} \circ a_{i_{2}}^{[2]} \circ \cdots \circ a_{i_{k}}^{[k]} \in \operatorname{range}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right) \tag{3}
\end{equation*}
$$

for all tuples $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ with $1 \leqslant i_{t} \leqslant n$. For each t with $1 \leqslant t \leqslant k$, there is a permutation matrix P_{t} such that $a_{i_{t}}^{[t]}$ is the first column of $A_{t} P_{t}$. So $a_{i_{1}}^{[1]} \circ a_{i_{2}}^{[2]} \circ \cdots \circ a_{i_{k}}^{[k]}$ is the first column of $\left(A_{1} P_{1}\right) \circ\left(A_{2} P_{2}\right) \circ \cdots \circ\left(A_{k} P_{k}\right)$. Now, (3) will follow from

$$
\begin{equation*}
\operatorname{range}\left(\left(A_{1} P_{1}\right) \circ\left(A_{2} P_{2}\right) \circ \cdots \circ\left(A_{k} P_{k}\right)\right) \subseteq \operatorname{range}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right) \tag{4}
\end{equation*}
$$

Next we prove (4). Let I be the identity matrix. Choose an arbitrary but fixed real number r such that r is bigger than the spectral radius of A_{j} for all $1 \leqslant j \leqslant k$. Then by the Schur complement criterion [6, p. 5] we see that

$$
\left(\begin{array}{cc}
A_{j} & A_{j} P_{j} \\
P_{j}^{*} A_{j} & r I
\end{array}\right)
$$

is positive semidefinite. The Schur product theorem ([1, p. 23] or [6, p. 8]) asserts that the Hadamard product of two positive semidefinite matrices is positive semidefinite. So

$$
\begin{gathered}
\left(\begin{array}{cc}
A_{1} \circ A_{2} \circ \cdots \circ A_{k} & \left(A_{1} P_{1}\right) \circ\left(A_{2} P_{2}\right) \circ \cdots \circ\left(A_{k} P_{k}\right) \\
\left(P_{1}^{*} A_{1}\right) \circ\left(P_{2}^{*} A_{2}\right) \circ \cdots \circ\left(P_{k}^{*} A_{k}\right) & r^{k} I
\end{array}\right) \\
\quad=\left(\begin{array}{cc}
A_{1} & A_{1} P_{1} \\
P_{1}^{*} A_{1} & r I
\end{array}\right) \circ\left(\begin{array}{cc}
A_{2} & A_{2} P_{2} \\
P_{2}^{*} A_{2} & r I
\end{array}\right) \circ \cdots \circ\left(\begin{array}{cc}
A_{k} & A_{k} P_{k} \\
P_{k}^{*} A_{k} & r I
\end{array}\right)
\end{gathered}
$$

is positive semidefinite. Applying Lemma 3 we obtain (4). This completes the proof.
Relations (1) and (3) in the proof of Theorem 4 yield the following result.
Theorem 5. Let $A_{j}, j=1, \ldots, k$ be $n \times n$ positive semidefinite matrices. Then

$$
\operatorname{span}\left\{\left(A_{1} x_{1}\right) \circ\left(A_{2} x_{2}\right) \circ \cdots \circ\left(A_{k} x_{k}\right) \mid x_{j} \in \mathbb{C}^{n}\right\}=\operatorname{range}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right)
$$

Combining Theorems 4 and 5 we get the following interesting conclusion: If $A_{j}, j=1, \ldots, k$ are $n \times n$ positive semidefinite matrices then

$$
\begin{aligned}
& \operatorname{span}\left\{\left(A_{1} x_{1}\right) \circ\left(A_{2} x_{2}\right) \circ \cdots \circ\left(A_{k} x_{k}\right) \mid x_{j} \in \mathbb{C}^{n}\right\} \\
& \quad=\operatorname{span}\left\{\left(A_{1} x\right) \circ\left(A_{2} x\right) \circ \cdots \circ\left(A_{k} x\right) \mid x \in \mathbb{C}^{n}\right\}
\end{aligned}
$$

The direct generalization of Theorem 2 would be

$$
\operatorname{span}\left\{\left(B_{1} x\right) \circ\left(B_{2} x\right) \circ \cdots \circ\left(B_{k} x\right) \mid x \in \mathbb{C}^{n}\right\}=\operatorname{range}\left(\left(B_{1} B_{1}^{*}\right) \circ\left(B_{2} B_{2}^{*}\right) \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)\right)
$$

for $n \times n$ complex matrices $B_{j}, j=1, \ldots, k$. We point out that this is not true in general. Consider the example $n=2$,

$$
B_{1}=I, \quad B_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
\operatorname{span}\left\{\left(B_{1} x\right) \circ\left(B_{2} x\right) \mid x \in \mathbb{C}^{2}\right\}=\left\{(\alpha, \alpha)^{\mathrm{T}} \mid \alpha \in \mathbb{C}\right\} \neq \mathbb{C}^{2}=\operatorname{range}\left(\left(B_{1} B_{1}^{*}\right) \circ\left(B_{2} B_{2}^{*}\right)\right) .
$$

This example also shows that the condition that $A_{j}, j=1, \ldots, k$ be positive semidefinite in Theorems 4 and 5 cannot be removed. The correct extension of Theorem 2 seems to be the following result.

Theorem 6. Let $B_{j}, j=1, \ldots, k$ be $n \times n$ complex matrices. Then

$$
\begin{aligned}
& \operatorname{span}\left\{\left(B_{1} x_{1}\right) \circ\left(B_{2} x_{2}\right) \circ \cdots \circ\left(B_{k} x_{k}\right) \mid x_{j} \in \mathbb{C}^{n}\right\} \\
& \quad=\operatorname{range}\left(\left(B_{1} B_{1}^{*}\right) \circ\left(B_{2} B_{2}^{*}\right) \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)\right) .
\end{aligned}
$$

Proof. By Theorem 5 and the fact that range $\left(B B^{*}\right)=\operatorname{range}(B)$ for any complex matrix B, we have

$$
\begin{aligned}
& \operatorname{range}\left(\left(B_{1} B_{1}^{*}\right) \circ\left(B_{2} B_{2}^{*}\right) \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)\right) \\
& \quad=\operatorname{span}\left\{\left(B_{1} B_{1}^{*} y_{1}\right) \circ\left(B_{2} B_{2}^{*} y_{2}\right) \circ \cdots \circ\left(B_{k} B_{k}^{*} y_{k}\right) \mid y_{j} \in \mathbb{C}^{n}\right\} \\
& \quad=\operatorname{span}\left\{\left(B_{1} x_{1}\right) \circ\left(B_{2} x_{2}\right) \circ \cdots \circ\left(B_{k} x_{k}\right) \mid x_{j} \in \mathbb{C}^{n}\right\} .
\end{aligned}
$$

This completes the proof.

Acknowledgment

This work was done while the second-named author was visiting the Hong Kong University of Science and Technology. He thanks HKUST for its hospitality and support.

References

[1] R. Bhatia, Matrix analysis, GTM 169, Springer, New York, 1997.
[2] G. Gorni, H. Tutaj-Gasinska, On the entrywise powers of matrices, Comm. Algebra 32 (2) (2004) 495-520.
[3] D. Hershkowitz, H. Schneider, Lyapunov diagonal semistability of real H-matrices, Linear Algebra Appl. 71 (1985) 119-149.
[4] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[5] X. Sun, X. Du, D. Liu, On the range of a Hadamard power of a positive semidefinite matrix, Linear Algebra Appl. 416 (2006) 868-871.
[6] X. Zhan, Matrix inequalities, LNM 1790, Springer, Berlin, 2002.

[^0]: * Corresponding author.

 E-mail addresses: eeqiu@ust.hk (L. Qiu), zhan@math.ecnu.edu.cn (X. Zhan).
 ${ }^{1}$ This author's research was supported by the NSFC grant 10571060.

