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Abstract

Let Ay, ..., Ag be positive semidefinite matrices and By, ..., By arbitrary complex matrices of order
n. We show that

span {(Alx) o0(Azx)o---0(Arx)|x € C"} =range(Aj o Ay o---0 Ap)
and
span {(B1x1) o (Byxp) o -+ o (Bgxg)|xj € C"} = range ((B1B}) o (ByB3) o -+ o (ByBY)).

where o means the Hadamard product. This generalizes two recent results of Sun, Du and Liu.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For two m x n matrices A = (a;;), B = (b;;), their Hadamard product (entrywise product) is
defined to be A o B = (a;;b;;). Note that when n = 1 the matrices are column vectors. Given a
positive integer k, the kth Hadamard power of A is A% = (af‘j). The book [4] contains many
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results on the Hadamard product. Throughout we consider complex matrices and denote by A*
the conjugate transpose of A. We regard an n x n matrix A as a linear operator on C", so that
range(A) is the image of A. Sun et al. [5] have proved the following results.

Theorem 1. For any n x n positive semidefinite matrix A and any positive integer k,
span{(Ax)(k)|x € C"} = range(A(k)).

Theorem 2. For any n x n complex matrix B and any positive integer k,
span{(Bx)(k)|x eC'} = range((BB*)(k)).

Theorem 2 follows immediately from Theorem 1. These two results were conjectured by Gorni
and Tutaj-Gasinska [2] in their study related to the well-known Jacobian conjecture which states
that if f : C" — C" is a polynomial map and the determinant of the Jacobian matrix of f is a
nonzero constant, then f is bijective.

In this note we will generalize Theorems 1 and 2 to the case of Hadamard product of different
matrices. The basic ideas in our proof are similar to those in [5], but the proof here is simpler.

2. Main results

We need the following fact, which is known as the principal submatrix rank property [3]. For
the sake of completeness, we give a short proof.

Lemma 3. Let A, B, C be complex matrices such that

A B
B* C
is positive semidefinite. Then range(B) C range(A).
Proof. Since the given block matrix is positive semidefinite, there exists a contraction W such
that B = A'2WC1/? [6, p. 15]. Thus range(B) C range(A'/?) = range(A), where we used the
fact that range(G) = range(G G*) for any complex matrix G. [
Theorem 4. Let A;, j =1, ...,k be n x n positive semidefinite matrices. Then
span{(Alx) o(Ayx)o---0(Arx)|x € C”} =range(Aj o Ay o---0 Ap).
Proof. Let ¢; be the vector in C" whose only nonzero component is the ith component which is
equal to 1. Then the ith column of Aj o0 Ag is
(Ajo---0Ap)e; = (Arej)o---0(Are), i=1,...,n

Therefore
range(Aj o Ay o -+ o Ag) C span{(Ajx) o (Apx) o+ o (Agx)|x € C"}. (1)
It remains for us to prove the reversed inclusion relation
span{(Alx) o(Axx)o---o0(Arx)|x € C”} C range(Aj o0 Az o---0 Ag). 2)
Let

Ay = (L), =1k
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and x = (x1, x2, ..., x,)T. Then
1 2 k

(A1x) 0 (Agx) o+ 0 (Agx) = D xixiy -+ xatloal oo alM],
where the summation is taken over all tuples (i1, i2, . .., ix) with 1 < i, < n. Hence, to prove (2)
it suffices to show

1 2 k

al.[l]oal.[z]o---oal[k]erange(AloAzo-noAk) 3)

for all tuples (i1, i, ..., ix) with 1 < i; < n. For each ¢ with 1 < r < k, there is a permutation

matrix P; such that al.[t’] is the first column of A; P;. So ai[l” o al.[zz] 0---0 ai[f] is the first column
of (A1P)) o (AyP2) o0 (AxPr). Now, (3) will follow from
range((A1P1) o (A2 Py) o -+ -0 (AxPx)) C range(Aj o Ayo--- 0 Ap). 4)

Next we prove (4). Let I be the identity matrix. Choose an arbitrary but fixed real number r such
that r is bigger than the spectral radius of A; for all 1 < j < k. Then by the Schur complement
criterion [6, p. 5] we see that

< Aj A Pj>

Pj Aj rl

is positive semidefinite. The Schur product theorem ([1, p. 23] or [6, p. 8]) asserts that the
Hadamard product of two positive semidefinite matrices is positive semidefinite. So

AjoAzo---0 A (A1P1) o (AP2) o0 (AxPy)
(PfA1) o (PfA2) oo (PFAK) rk1

| A AP o A AP\ o A ArP
B Pl*Al rl P2*A2 rl PIjAk rl
is positive semidefinite. Applying Lemma 3 we obtain (4). This completes the proof. [J
Relations (1) and (3) in the proof of Theorem 4 yield the following result.

Theorem 5. Let A;, j = 1,..., k be n X n positive semidefinite matrices. Then
span{(A1x1) o (A2x2) o -+ o (Agxp)|xj € C"} =range(Aj 0 Ayo--- o0 Ap).

Combining Theorems 4 and 5 we get the following interesting conclusion: If A;, j =1,..., k
are n x n positive semidefinite matrices then

span{(A;x1) o (A2xz) o -+ o (Agxp)|xj € C"}
= span{(A;x) o (Axx) o -+ o (Agx)|x € C"}.
The direct generalization of Theorem 2 would be
span{(le) o(Byx)o---o(Brx)|x € C"} = range ((BlBik) o(ByB})o---0 (BkB,’:))

forn x ncomplex matrices B, j =1, ..., k. We point out that this is not true in general. Consider
the example n = 2,

0 1
B =1, 322(1 O).
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Then
span{(B1x) o (Bax)|x € ([32} = {(a, )l o € C}+# C? = range((B1B}) o (B2B})).

This example also shows that the condition that A;, j =1, ...,k be positive semidefinite in
Theorems 4 and 5 cannot be removed. The correct extension of Theorem 2 seems to be the
following result.

Theorem 6. Let Bj, j =1, ...,k be n x n complex matrices. Then

span{(lel) o (Baxz)o---o(Brxp)lx; € C"}
= range((B1B}) o (B2B3) o --- o (BrBy)).

Proof. By Theorem 5 and the fact that range(B B*) = range(B) for any complex matrix B, we
have

range((B1BY) o (B2B3) o -+ o (B¢ By))
= span{(B1 B y1) o (B2B3y2) o --- o (By Bl yx)|y; € C"}
= span{(lel) o (Baxz) o ---o (Brxp)lx; € C"}.

This completes the proof. [

Acknowledgment

This work was done while the second-named author was visiting the Hong Kong University
of Science and Technology. He thanks HKUST for its hospitality and support.

References

[1] R. Bhatia, Matrix analysis, GTM 169, Springer, New York, 1997.

[2] G. Gorni, H. Tutaj-Gasinska, On the entrywise powers of matrices, Comm. Algebra 32 (2) (2004) 495-520.

[3] D. Hershkowitz, H. Schneider, Lyapunov diagonal semistability of real H-matrices, Linear Algebra Appl. 71 (1985)
119-149.

[4] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.

[5] X. Sun, X. Du, D. Liu, On the range of a Hadamard power of a positive semidefinite matrix, Linear Algebra Appl.
416 (2006) 868-871.

[6] X. Zhan, Matrix inequalities, LNM 1790, Springer, Berlin, 2002.



	Introduction
	Main results
	Acknowledgment
	References

