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Abstract

Let A1, . . . , Ak be positive semidefinite matrices and B1, . . . , Bk arbitrary complex matrices of order
n. We show that

span
{
(A1x) ◦ (A2x) ◦ · · · ◦ (Akx)|x ∈ Cn} = range(A1 ◦ A2 ◦ · · · ◦ Ak)

and

span
{
(B1x1) ◦ (B2x2) ◦ · · · ◦ (Bkxk)|xj ∈ Cn} = range

(
(B1B∗

1 ) ◦ (B2B∗
2 ) ◦ · · · ◦ (BkB

∗
k )

)
,

where ◦ means the Hadamard product. This generalizes two recent results of Sun, Du and Liu.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For two m × n matrices A = (aij ), B = (bij ), their Hadamard product (entrywise product) is
defined to be A ◦ B = (aij bij ). Note that when n = 1 the matrices are column vectors. Given a
positive integer k, the kth Hadamard power of A is A(k) = (ak

ij ). The book [4] contains many
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results on the Hadamard product. Throughout we consider complex matrices and denote by A∗
the conjugate transpose of A. We regard an n × n matrix A as a linear operator on Cn, so that
range(A) is the image of A. Sun et al. [5] have proved the following results.

Theorem 1. For any n × n positive semidefinite matrix A and any positive integer k,

span
{
(Ax)(k)|x ∈ Cn

} = range
(
A(k)

)
.

Theorem 2. For any n × n complex matrix B and any positive integer k,

span
{
(Bx)(k)|x ∈ Cn

} = range
(
(BB∗)(k)

)
.

Theorem 2 follows immediately from Theorem 1. These two results were conjectured by Gorni
and Tutaj-Gasinska [2] in their study related to the well-known Jacobian conjecture which states
that if f : Cn → Cn is a polynomial map and the determinant of the Jacobian matrix of f is a
nonzero constant, then f is bijective.

In this note we will generalize Theorems 1 and 2 to the case of Hadamard product of different
matrices. The basic ideas in our proof are similar to those in [5], but the proof here is simpler.

2. Main results

We need the following fact, which is known as the principal submatrix rank property [3]. For
the sake of completeness, we give a short proof.

Lemma 3. Let A, B, C be complex matrices such that(
A B

B∗ C

)

is positive semidefinite. Then range(B) ⊆ range(A).

Proof. Since the given block matrix is positive semidefinite, there exists a contraction W such
that B = A1/2WC1/2 [6, p. 15]. Thus range(B) ⊆ range(A1/2) = range(A), where we used the
fact that range(G) = range(GG∗) for any complex matrix G. �

Theorem 4. Let Aj , j = 1, . . . , k be n × n positive semidefinite matrices. Then

span
{
(A1x) ◦ (A2x) ◦ · · · ◦ (Akx)|x ∈ Cn

} = range(A1 ◦ A2 ◦ · · · ◦ Ak).

Proof. Let ei be the vector in Cn whose only nonzero component is the ith component which is
equal to 1. Then the ith column of A1 ◦ · · · ◦ Ak is

(A1 ◦ · · · ◦ Ak)ei = (A1ei) ◦ · · · ◦ (Akei), i = 1, . . . , n.

Therefore

range(A1 ◦ A2 ◦ · · · ◦ Ak) ⊆ span
{
(A1x) ◦ (A2x) ◦ · · · ◦ (Akx)|x ∈ Cn

}
. (1)

It remains for us to prove the reversed inclusion relation

span
{
(A1x) ◦ (A2x) ◦ · · · ◦ (Akx)|x ∈ Cn

} ⊆ range(A1 ◦ A2 ◦ · · · ◦ Ak). (2)

Let

Aj =
(
a

[j ]
1 , a

[j ]
2 , . . . , a

[j ]
n

)
, j = 1, . . . , k
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and x = (x1, x2, . . . , xn)
T. Then

(A1x) ◦ (A2x) ◦ · · · ◦ (Akx) =
∑

xi1xi2 · · · xik a
[1]
i1

◦ a
[2]
i2

◦ · · · ◦ a
[k]
ik

,

where the summation is taken over all tuples (i1, i2, . . . , ik) with 1 � it � n. Hence, to prove (2)
it suffices to show

a
[1]
i1

◦ a
[2]
i2

◦ · · · ◦ a
[k]
ik

∈ range(A1 ◦ A2 ◦ · · · ◦ Ak) (3)

for all tuples (i1, i2, . . . , ik) with 1 � it � n. For each t with 1 � t � k, there is a permutation
matrix Pt such that a

[t]
it

is the first column of AtPt . So a
[1]
i1

◦ a
[2]
i2

◦ · · · ◦ a
[k]
ik

is the first column
of (A1P1) ◦ (A2P2) ◦ · · · ◦ (AkPk). Now, (3) will follow from

range
(
(A1P1) ◦ (A2P2) ◦ · · · ◦ (AkPk)

) ⊆ range(A1 ◦ A2 ◦ · · · ◦ Ak). (4)

Next we prove (4). Let I be the identity matrix. Choose an arbitrary but fixed real number r such
that r is bigger than the spectral radius of Aj for all 1 � j � k. Then by the Schur complement
criterion [6, p. 5] we see that(

Aj AjPj

P ∗
j Aj rI

)

is positive semidefinite. The Schur product theorem ([1, p. 23] or [6, p. 8]) asserts that the
Hadamard product of two positive semidefinite matrices is positive semidefinite. So(

A1 ◦ A2 ◦ · · · ◦ Ak (A1P1) ◦ (A2P2) ◦ · · · ◦ (AkPk)

(P ∗
1 A1) ◦ (P ∗

2 A2) ◦ · · · ◦ (P ∗
k Ak) rkI

)

=
(

A1 A1P1
P ∗

1 A1 rI

)
◦

(
A2 A2P2

P ∗
2 A2 rI

)
◦ · · · ◦

(
Ak AkPk

P ∗
k Ak rI

)

is positive semidefinite. Applying Lemma 3 we obtain (4). This completes the proof. �

Relations (1) and (3) in the proof of Theorem 4 yield the following result.

Theorem 5. Let Aj , j = 1, . . . , k be n × n positive semidefinite matrices. Then

span
{
(A1x1) ◦ (A2x2) ◦ · · · ◦ (Akxk)|xj ∈ Cn

} = range(A1 ◦ A2 ◦ · · · ◦ Ak).

Combining Theorems 4 and 5 we get the following interesting conclusion: If Aj , j = 1, . . . , k

are n × n positive semidefinite matrices then

span
{
(A1x1) ◦ (A2x2) ◦ · · · ◦ (Akxk)|xj ∈ Cn

}
= span

{
(A1x) ◦ (A2x) ◦ · · · ◦ (Akx)|x ∈ Cn

}
.

The direct generalization of Theorem 2 would be

span
{
(B1x) ◦ (B2x) ◦ · · · ◦ (Bkx)|x ∈ Cn

} = range
(
(B1B

∗
1 ) ◦ (B2B

∗
2 ) ◦ · · · ◦ (BkB

∗
k )

)
for n × n complex matrices Bj , j = 1, . . . , k. We point out that this is not true in general. Consider
the example n = 2,

B1 = I, B2 =
(

0 1
1 0

)
.
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Then

span
{
(B1x) ◦ (B2x)|x ∈ C2} = {

(α, α)T|α ∈ C
}

/= C2 = range
(
(B1B

∗
1 ) ◦ (B2B

∗
2 )

)
.

This example also shows that the condition that Aj , j = 1, . . . , k be positive semidefinite in
Theorems 4 and 5 cannot be removed. The correct extension of Theorem 2 seems to be the
following result.

Theorem 6. Let Bj , j = 1, . . . , k be n × n complex matrices. Then

span
{
(B1x1) ◦ (B2x2) ◦ · · · ◦ (Bkxk)|xj ∈ Cn

}
= range((B1B

∗
1 ) ◦ (B2B

∗
2 ) ◦ · · · ◦ (BkB

∗
k )).

Proof. By Theorem 5 and the fact that range(BB∗) = range(B) for any complex matrix B, we
have

range
(
(B1B

∗
1 ) ◦ (B2B

∗
2 ) ◦ · · · ◦ (BkB

∗
k )

)
= span

{
(B1B

∗
1 y1) ◦ (B2B

∗
2 y2) ◦ · · · ◦ (BkB

∗
k yk)|yj ∈ Cn

}
= span

{
(B1x1) ◦ (B2x2) ◦ · · · ◦ (Bkxk)|xj ∈ Cn

}
.

This completes the proof. �
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