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Abstract 

This paper addresses the problem of designing the o p  
timal symmetric 312 controller for a plant with collo- 
cated sensors and actuators but with possibly asym- 
metric disturbance injection and performance specifi- 
cation. For such a control problem, the generalized 
plant has a symmetric block representing the transfer 
matrix from the control input to  the measured output. 
A complete solution to  the optimal 312 control prob- 
lem with the synimetric structural constraint is given 
in terms of the optimal solution to a standard 312 model 
matching problem without the constraint. 

Keywords: Linear systems; symmetric systems; sym- 
metric controllers; 312 control; model matching prob- 
lem. 

1 Introduction 

There are a large number of systems having sym- 
metric transfer functions in diverse fields, for exam- 
ple, largespace structures with collocated sensors and 
actuators 181, circuit systems and chemical reactors 
[l, 11, 171. Such systems are called symmetric sys- 
tems, which have received a great deal of investiga- 
tions [2, 3, 4, 5, 7, 9, 12, 13, 14, 15, 17, 18, 191. The 
obtained results show that the qualitative property of 
symmetry often offers some advantages in the analysis 
and synthesis of such systems. The realization prob- 
lem of symmetric systems is addressed in [17]. In 1131, 
it has shown that every symmetric system admits a 
balanced realization which is parity symmetric. The 
robustness of symmetric systems under symmetric or 
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diagonal perturbations is examined in [14]. The de- 
centralized control problem for symmetric systems is 
investigated in [19]. The model reduction problem for 
a subclass of symmetric systems, namely state-space 
symmetric systems, is investigated in 112, 15, 181. 

For large flexible space structures with collocated sen- 
sors and actuators, the problem of designing collocated 
(symmetric) stabilizing controllers has been'addressed 
in [lo], where collocated controllers consist of com- 
patible pairs of sensors and actuators which may be 
distributed throughout the large flexible space struc- 
tures. Two types of collocated controllers are consid- 
ered (a) collocated attitude controller (CAC), and (b) 
controllers using velocity feedback including collocated 
damping enhancement controllers (CDEC), and total 
velocity feedback controllers (TVFC). The CDEC is 
used to enhance the structural damping without affect- 
ing the rigid modes, while the TVFC additionally sta- 
bilizes the rigid motion in the sense that all rigid-body 
rates also tend to zero. This shows that symmetric 
controllers are desirable for symmetric systems. 

Moreover, it has been shown in 191 that symmetric con- 
trollers are superior to  asymmetric ones in robust s ta  
bilizations of uncertain symmetric systems. For a sym- 
metric generalized plant, it has been shown that both 
the 312 optimal controller and the central 31, controller 
are symmetric 191. In [4], an equivalent symmetric 31, 
controller design is presented in terms of solution to a 
nonlinear matrix equation, hut i t  seems that comput- 
ing the solution of such a nonlinear matrix equation is 
not an easy task. However, a system with collocated 
sensors and actuators does not in general lead to a sym- 
metric generalized system. Rather, only the block in 
the generalized plant representing the transfer function 
matrix from the control input to the measured output 
is symmetric. In such a case, the corresponding X 2  o p  
timal controller and central 31- controller may not be 
symnietric any more, which brings about the problem 
of how to design an optimal symmetric controller for 
such a generalized plant. 
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with the transfer matrix from the control input to the 
measured output being symmetric. A complete solu- 
tion to the optimal 312 control problem with the sym- 
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metric structural constraint is given in terms of the op- 
timal solution to a standard 712 model matching prob- 
lem without constraint. 

The following notation will he used through out this 

paper. For transfer matrices P = E: and K ,  

the LFT (linear fractional transformation) Y ( P ,  K )  is 
defined by 

Y ( P , K )  = P I I + P ~ z K ( I - P z z K ) - ~ P z ~ .  

The LZ norm of a transfer matrix T E LZ is defined by 

/I T / j z=  -L Jm t rT( jw)*T( jw)b  

If T is in 7 1 2 ,  then its LZ norm is also said to be 312 

norm. RH, denotes the set of stable proper transfer 

matrices. For H = [$ - R A T ] ,  X = Ric(H) means 

that X is the unique Stabilizing solution, if one exists, 
to the Riccati equation 

2?r ~m 

A ~ X  + X A  + X R X  + Q = o 
For a transfer matrix P,  its conjugate P" is defined by 
P"(s) = PT(-s). A transfer matrix P E R71, is said 
to be inner if P"P = I and is said to  be ceinner if 
PP" =I. 

2 Problem statement 

An LTI system P is said to  be symmetric if its transfer 
function matrix is symmetric, i.e., 

P(s)T = P(s).  

For a state space system 

p =  

if there is a nonsingular symmetric matrix S such that 

ATS = SA, CT = SB,  (1) 

Then it can be easily checked that P is symmetric. On 
the other hand, it was shown in [17] that if ( A ,  B ,  C, D )  
is a minimal realization of P,  then there must be a non- 
singular symmetric matrix S such that (1) is satisfied. 

Consider a feedback system shown in Figure 1. Here G 
is the so-called generalized plant, U E W" is the control 
input, y E Wm is the measured output, z E Ra is the 
output to  he regulated, and w E W' is the disturbance 
input. The generalized plant is LTI given by 

YI 

Figure 1: A feedback system 

where A,  BI, Bz, CI, C2, DII, D12, Dzi, and DZZ 
are real constant matrices of appropriate dimensions. 
In the following, we always assume that the transfer 
function matrix 

Gzz(s) = 0 2 2  + Cz(sI - A)-'Bz (3) 

is symmetric. In this case, we say that the generalied 
plant G has collocated sensors and actuators. 

When applying a controller U = K y  to the plant G, the 
closed-loop transfer matrix from U, to I is given by 

In this paper, we consider the following optimal sym- 
metric 'HZ control problem: Given the generalized plant 
G described by (2) with G Z Z ( S )  symmetric, find, if 
possible, an internally stabilizing symmetric controller 
Kopt such that 

/I F(G,K,t)  Ilz= min{l/ F ( G , K )  112: K is 
symmetric and internally stabilizes G}. 

Without the requirement for K to  be symmetric, the 
above 712 problem is reduced to the standard 712 con- 
trol problem. When G is symmetric, Ikeda in 191 has 
shown that both the 712  optimal controller and the cen- 
tral 31- controller are symmetric. In 141, an equivalent 
symmetric 31, controller design is presented in terms 
of the solution to  a nonlinear matrix equation, the 
method of effectively computing the solution of such 
a nonlinear matrix equation is not available yet. For 
the case in which it is only assumed that GZZ is sym- 
metric, the 712 optimal controller or the central 'Ha 
controller is not symmetric in general. The purpose 
of the paper is to seek an optimal 712 controller with 
symmetry for such a generalized plant. 

In this paper, the following additional assumptions will 
be made: 

Al: (A ,  8 2 )  is stabilizable, and (Cz, A )  is detectable. 

A2: D12 has orthonormal columns and Dzl has full 
row rank. 
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A - [ C2 41 " 1  has full row rank for all w E R. 

A5: D22 = 0 

A6: (Cz,A,Bz) is in the form of Kalman Canonical 
Decomposition 

cZ= [CZl 0 c23 01 

where (C21rA11, B z ~ )  is minimal. 

Note that A1 is necessary for the considered system 
to be stabilizable. It is not reasonable to assume that 
(C2, A, Bz, 0 2 2 )  is a minimal realization since the ma- 
trix A may contain modes of the weighting functions in 
setting up the 312 optimal control problem and these 
modes are usually not controllable or observable from 
U or y respectively. Regarding A2, in the standard 
unconstraint 312 optimal control problem, Dzl is also 
assumed to have orthonormal rows in addition to as- 
suming D12 has orthonormal columns. This is rea- 
sonable because in the unconstrained case the control 
input and the measured output can be independently 
scaled. However in the case of systems with collocated 
sensors and actuators, the control input and the mea- 
sured output cannot he independently scaled in order 
to keep the symmetric property of Gz2. If a scaling in 
the control input is used to orthonormalize Dlz, then it 
also determines the scaling in the measured output by 
virtue of the symmetry of the scaled G2z. A3 and A4 
ensure the existence and the uniqueness of the optimal 
control. A5 is for simplicity and is usually satisfied. 
If A5 is not satisfied, the following development can 
be modified in the standard way. Assumption A6 is 
for the convenience of derivation and it does not lose 
generality. 

3 Parameter izat ion of all  symmetr ic  stabilizing 
controller 

Consider the generalized plant G described by (2) with 
G22 symmetric, satisfying assumptions Al-A6. Then 
A6 implied that there exists a symmetric nonsingular 
niatrix S such that 

A G S  = SA11, C2', = SB21 ( 7) 

If 

F = [FI Fz F3 Fd] 

is a matrix such that A+BzF is stable, then AtBz lF l  
is stable. This implies that A + S-'FTC21 is stable. 
Hence there exists 

LT= [LT LT LT LT] 

with L1 = 

We have the parameterization of all symmetric stabi- 
lizing controllers of a generalized plant with collocated 
sensors and actuator given in the following theorem. 

such that A + LC2 is stable. 

Theorem 1 Consider the plant G described by  (2) 
with Gzz(s) symmetric, satisfying assumptions AI-A6. 
Let 

be such that A+ B2F and A+LC2 are stable with L1 = 
S I F T .  Then all symmetric controllers that internally 
stabilize G can be parameterized as 

{F(J ,Q)  : Q E 7231- is symmetric} (8) 

where 

J =  
-C, hi 522 

(9) 

Prooj By the standard theory, the set of all stabilizing 
controllers for G without the symmetrical structural 
constraint is given by 

From (5)-(9), it follows that 

and 

which implies that J is symmetric. Hence K = F( J ,  Q )  
is symmetric if Q is. Conversely, the mapping from Q 
to K defined by K = F(J ,  Q) is bijective and its inverse 
is defined by Q = F ( J , K ) ,  where 

J =  [W] 
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which can be easily shown to be symmetric. Hence if K 
is a symmetric stabilizing controller, then correspond- 
ing Q is also symmetric. 0 

Theorem 1 indicates that all symmetric stabilizing 
controllers can be parameterized by stable symmetric 
transfer function matrices. 

It also follows from the standard theory that the set of 
all possible closed loop transfer matrices is given by 

IT11 + T12QT21 : Q E Wi, is symmetric} (10) 

where 

C1+ DizF -&2F 

T12 = [-I CI + D n F  D I Z  

Assumptions AEA4 ensures that Tlz(jw) has full col- 
umn rank and Tzl ( jw)  has full row rank for all w E 
Ru{m}. 

4 Optimal symmetric 312 controller 

In this section, we will provide a complete solution to 
the optimal symmetric 312 control problem. 

By the development of the last section, the optimal 
symmetric Nflz control problem can he reduced to the 
following model matching problem with symmetric 
structural constraint: Find a symmetric Qopt E 7231, 
such that 

In the following, we will show how the model matching 
problem with symmetric structural constraint can be 
solved. Let us start with some algebraic tools. For 
X E Fsxr, where F is any field, define 

T vec(X) = 1.11 . . . z,1 z12.. . z,~.. . zsr] . 
I t  is well-known that for matrices U, V of compatible 
sizes, 

vec (uXv)  = (VT @ U)V~C(X) 

where "@" is the Kronecker product. Let S be the 
subspace of IFmX''' consisting of all symmetric matrices. 

CleFrly operator vec is not a bijection between S and 
iFm . A bijection between S and F"(m+1)/2 is given by 

O ( X ) =  [.11...zm12z~...x,~"..,,] T . 

Let E,, be a rn x m matrix whose elements are all zeros 
except that the (i , j)- th and the (j , i)- th elements are 
1. Then {Eij : 1 5 j 5 i 5 m} forms a basis of S. 
~ ~ f i ~ ~  w E RmzXm(m+l)/Z b Y 

W = [vecEn ... vecE,1 vecEzz , 

vecE,~ ... vecE,,]. 

Then it is easy to check that for X E S, 

vec(X) = W@(X) 

and 

vec(UXV) = (vT B U)WQ(X). 

Lemma 1 (VT @ U)W has jull column rank if U has 
jull column rank and V has f i l l  TOW rank. 

Proof: If U has full column rank and V has full row 
rank, let Ut be a right inverse of U and Vt be a left 
inverse of V. Then 

(vTt @ u+)(vT @ U )  = r. 
This shows that VT @ U is right invertible and hence 
has full column rank. Since W also has full column 
rank, it follows that (VT c3 U)W has full column rank. 
0 

Back to the model matching problem, if we define 

PI = vec(Tii), pz = (T: @Tiz)W Q = WQ), 
then 

IVII + ~ I Z Q ~ Z I I I Z  = llvec(T11 + TIzQTz~IIz 
= 1 1 %  + i;Qllz. 

Therefore, minimizing 11T11 +TIzQTz~I/ subject to sym- 
metric Q in R31:'"' is equivalent to minimizing I@1+ 

PzQ/l2 subject to Q in R7t~("'+1)'2. The latter p rob  
lem is a standard 312 model matching problem without 
structural constraint, which can be solved by using the 
standard techniques as in [20]. Lemma 1 implies that 
Tz( jw) has full column rank for all w E W U  {m} if and 
only if T I z ( j w )  has full column rank and Tzl(jw) has 
full row rank for all w E W U {CO}. Hence the existence 
and uniqueness of this unconstrained model matching 
problem is ensured by assumptions A3 and A4. 

For standard 'HZ optimal control problem, state space 
solutions based on Riccati equations render numerical 
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advantages. In the rest of this section, we provide a 
state space solution to the optimal symmetric 7tz con- 
trol problem based on solutions to Riccati equations. 
Let D I Z L  be a matrix such that ID12 D I Z L ]  is uni- 
tary. Let 

- 
-1 1 0  
- 1 - 2 1  
0 1 2  

and 

- - 
1 0 0  1 0  
0 0 0  0 0  
0 0 0  1 1  

and denote 

Therefore the problem of minimizing / /  TII + 
T12QTz1 112 is equivalent t o  minimizing 11 T ~ T U  + 
QTzl ] I 2 ,  which is in turn equivalent to minimizing 

Since T21 is given by 

a realization of (T,?; @ I)W is given by 

Lemma 1 implies that assumptions A2 and A4 ensures 

that D has full column rank and 

full column rank for all w E W. 

Following 120, Thereom 13.351, carry out inner-outer 
factorization of T 2  as 

[ c  D 

T;=NM-' 

and [N  NLJ E RX, is square and co-inner, where 

Then we have 

/I T ~ I I  + QTZI ll:= II N - v ~ T ' I I )  + M-IWQ) II: 
+ I1 N,"Vec(T;Tll) 11;. 

Let N"vec(TGT11) = T, + T,, where T, E RH, and 
T, E 8 2 ' .  Denote 

- 
Q,t = -MT.. 

Then the optimal symmetric controller K is given by 
X = 3(J ,Q, t ) ,  where J is given by (9) and Qopt = 
WQ,t). 

5 A numerical example 

Consider a generalized plant 

[W] = 

1 411 412 Kept = - [ ] PO 421 422 

with 

PO(S) = + 10.9296sz + 33.1533s + 31.6671, 
qii(S) = -5.77538' - 19.1373s - 19.83, 
~ ' Z ( S )  = - 6 . 7 5 1 0 ~ ~  - 24.4303s - 26.2066, 

@I(.$) = - 5 . 7 2 0 3 ~ ~  - 19.9098s - 20.4966, 
q2;(S) = -6.6038s' - 24.5814s - 25.1588 

which is not symmetric. The optimal 'H2 performance 
is 5.965. On the other hand, the optimal symmetric 
U2 controller is given by 

1 411 4712 Kept = - [ ] p 412 422 
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with 

p ( s )  =s3 + 157.4177s’ + 12206s + 621501 
pn(s) = -5.89169’ - 872.04s - 63613.5 
~ 1 2 ( s )  = -8.2822s’ - 1254s - 93567 
q22(s)  = -2.129s’ - 308.7429s - 21997. 

The optimal R2 performance with symmetric controller 
is 6.639. As expected, it is seen that the side effect of 
enforcing symmetry in the controller is that the optimal 
cost deteriorates by 11.3%. In this example, the order 
of the optimal symmetric controller is same as that 
of the optimal controller without symmetric structural 
constraint. However, the order of the optimal symmet- 
ric controller may become higher. 

6 Conclusions 

In this paper, we have investigated the optimal sym- 
metric ‘U2 control problem for a generalized plant with 
a symmetric block representing the transfer function 
matrix from the control input to the measured output. 
A complete solution to the optimal ‘U2 control problem 
with symmetric structure constraint is given in terms of 
the optimal solution to a standard 31’ model matching 
problem without the constraint. For the correspond- 
ing 31, control problem, the proposed approach here 
is not directly applicable; this constitutes a future re- 
search topic. 

The same problem considered here was also studied 
in 1161 together with a host of other control problems 
with controller structural constraints, motivated from 
various applications. The same approach was suggested 
to solve the problems. 
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