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Abstract 
In this paper we study tracking performance limitation 
problems. Two issues are addressed, concerning how 
earlier results developed elsewhere may be extended 
to more general classes of reference signals, and how 
tracking performance may be further improved beyond 
that offered by feedback control. Toward these issues. 
we consider exponentially increasing reference inputs 
and examine the use of preview control for tracking. 
We take an optimal interpolation approach, and our 
purpose is to develop analytical expressions and con- 
ceptual insight which will aid in the understanding of 
these issues. To this effect, we derive explicit expres- 
sions for the optimal tracking error, either as exact so- 
lutions or bounds. It is found that for the exponential 
signals the earlier results can be directly extended, and 
similar conclusive statements can be drawn. It is also 
shown that in general preview can be used to advan- 
tage for improving tracking performance, especially in 
countering the effect resulted from plant nonminimum 
phase zeros. 

1 Introduction 
The ability of tracking command input signals is a pri- 
mary criterion for assessing the performance of feed- 
back control systems and indeed it constitutes a pri- 
mary objective in control system design. As such, op- 
timal tracking problems have over the years received 
a considerable amount of research interest. While in 
many such problems a main objective is to design an 
optimal compensator to  minimize tracking error, which 
from a numerical computation viewpoint can be tack- 
led using standard techniques and routines, and thus is 
considered a resolved issue, more recent attention has 
been focused on the understanding of the inherent lim- 
itation on the best tracking performance achievable via 
feedback. This has led to several important discoveries. 
Among the notable issues and results are cheap LQR 
control [lo], servomechanism problems [14], and opti- 
mal tracking control [ll, 5, 15, 131. By now it is gener- 
ally known that in the full generality of causal feedback 
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compensation, i.e., when a two-parameter causal feed- 
back control scheme is employed, the best achievable 
tracking performance is limited, and in fact is only lim- 
ited, by the nonminimum phase characteristics of plant 
[5]; here by the latter we mean both the nonminimum 
phase zeros as well as time delays in the plant. Conse- 
quently, such characteristics impose an intrinsic barrier 
which in no way may be surpassed by causal feedback 
alone, in that the tracking accuracy can in no event 
be further improved by use of any causal feedback con- 
troller. 

One of the main issues to be investigated in this pa- 
per dwells on use of noncausal actions for tracking. 
More specifically, can noncausal action, whenever it 
is allowed and implementable, aid in improving track- 
ing performance? In light of the aforementioned lim- 
itation of causal feedback, this contemplation is war- 
ranted, and it leads us to the use of preview control. 
Preview control is a means of using the future infor- 
mation of the reference input for control, and in the 
context of tracking, it amounts to  tracking a delayed 
reference. In essence, the compensator, which itself 
is causal, must then act on a time-advanced signal, 
and hence involves a noncausal operation on the ref- 
erence signal. This control strategy has most notably 
found its utility in various tracking problems (see, e.g., 
[17, 7, 16, 9]), which is known to be useful in improv- 
ing tracking performance. Indeed, since in a tracking 
problem the reference signal is typically specified a prz- 
ori, a pure time advance would introduce no error nor 
distortion. Thus, in a preview control scheme, while 
tracking the true (albeit delayed) reference signal, the 
system can exploit fully to advantage the known future 
information of the reference signal. It will be seen that 
this indeed help reduce the tracking error. Of course, 
the preview tracking scheme is possible only when the 
future information on the reference is made available, 
so that a noncausal operation can be peformed. This 
is the case when tracking a pre-specified signal. 

Another purpose of this paper lies in our attempt to  
extend the current work to more general and perhaps 
more problematic signals. In the study of tracking per- 
formance, it has been customary to  consider step ref- 
erences. This simplicity enables the derivation of ex- 
plicit expressions relating tracking error to  plant non- 
minimum phase zeros [ll, 14, 5, 15, 21, thus displaying 
in a clear manner how the error may be affected by 
such zeros. Accordingly, much of the understanding on 
tracking performance limitation draws upon analysis 
of these expressions, though similar results have also 
been obtained for ramp and sjnusoidal signals [14, 61. 
In the present paper, we consider exponentially increas- 
ing reference signals. This consequently enables us to  
gain additional insight into the problem. and extend the 
existing knowledge further beyond. 
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Our development also offers an interpolation-based 
perspective to  optimal tracking problems. Unlike in 
the previous work, we formulate and solve the prob- 
lem directly as an optimal 3 t 2  interpolation problem. 
In other words, the optimal tracking performance is 
obtained by computing the minimal norm of a cer- 
tain function analytic in the right half of the complex 
plane, subject to constraints imposed by the plant non- 
minimum phase zeros and unstable poles. This ap- 
proach bypasses the usual controller parameterization 
and model matching problem, and appears to  be con- 
ceptually simpler. Clearly, it also has the flavor of simi- 
lar work on performance limits quantified under an R, 
criterion [8, 18, 41. 

2 Preliminaries 
We begin with the notation used throughout this pa- 
per. For any complex number z,  we denote its complex 
conjugate by F.  For any vector U ,  we denote its conju- 
gate transpose by uH.  For any signal u( t ) ,  we denote 
its Laplace transform by G(s).  The conjugate trans- 
pose of a matrix A is denoted by A H .  The trace of a 
matrix A is denoted by Tr(A), and Z ( A )  denotes the 
largest singular value of A. For a Hermitian matrix A, 
we write A 2 0 if A is nonnegative definite, and A > 0 
if it is positive definite. All the vectors and matrices 
involved in the sequel are assumed to have compati- 
ble dimensions, and for simplicity, their dimensions are 
omitted. Let the open right half plane be denoted by 
C+ := { s  : Re(s) > 0}, and the imaginary axis by Co. 
Moreover, let )I . 11 denote the Euclidean vector norm. 
Define 

La : = {f : f(s) measurable in CO, 

and 

3cz  := {f : f(s) analytic in C+, 

Note that for each of the normed spaces C:, and to  
denote the corresponding norm. However, use of each 
of these norms will be clear from the context. Finally, 
we define the angle between the directions spanned by 
two vectors w and U by 

b H V 1  cosL(w, U) = - 
I l ~ l l 1 l ~ l l ~  

Our tracking problem is schematically represented 
by the  linear time-invariant system depicted in Figure 
1. In this setup, P denotes the plant model and K 
the compensator, whose transfer function matrices are 
P(s) and K(s) ,  respectively. We assume that P(s )  and 
K ( s )  are both rational transfer function matrices. The 
signals U and y represent respectively the reference in- 
put and the system output. The feedthrough transfer 
function matrix F ( s )  implements the preview strategy. 

Figure 1: The tracking structure 

More generally, it may also be viewed as a feedforward 
filter. The output signal y is to track a filtered signal r ,  
which is generated through the. filter F .  The tracking 
quality is measured by the error signal e. We shall as- 
sume throughout that F ( s )  is stable. Let the system’s 
complementary sensitivity function be defined as 

T ( s )  = P ( s ) K ( s ) [ l +  P(s)K(s)] - l .  

Then the Laplace transform of the error signal e(t)  can 
be expressed 

E(.) = [T(s) - F ( s ) ] ~ ^ ( s ) .  

We use the C2 norm of 2(s) to measure the tracking 
performance, and we are interested in the best possible 
tracking error achievable by all feedback compensators 
that stabilize the closed-loop system. Specifically, we 
want to determine 

& ( F )  := inf {II[T(s) - F(s)]G(s)llz : K stabilizes P } .  

Thus, for any given F ,  & ( F )  provides the intrinsic 
limit to the tracking performance which cannot be fur- 
ther reduced by feedback design. 

Intuitively, if one chooses to introduce an attenuat- 
ing filter in the feedforward path and track the filtered 
signal, the tracking error may be reduced, as the sys- 
tem attempts to track a signal of an attenuated ampli- 
tude. Such a filtered signal, however, will be distorted 
in general. Of particular interest in this paper are the 
following two cases for F(s) :  

(i) F ( s )  = I .  This corresponds to  the standard track- 
ing scheme. The output y is to track the reference 
signal U directly. 

(ii) F ( s )  =diag(ePT1”, . . . , e-T-”). This corre- 
sponds to preview tracking scheme. The output 
y is to track a delayed but otherwise distortionless 
reference signal, each of whose components may 
be delayed by a different amount of time Ti. In ef- 
fect, it amounts to advancing, or “previewing’’ the 
input to K relatively to the reference U ,  and hence 
advancing the output y, so that the advanced out- 
put may better track the original reference input 

It is worth noting that in both cases F ( s )  are allpass, 
and hence neither attenuation nor distortion will be 
incurred on the reference signal. This insures that the 
very original goal of tracking be met: the output y 
tracks asymptotically the reference U .  We note that 

I 

U .  
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under the ,C2 error criterion Case (i) has been well stud- 
ied [ l l ,  51, but Case (ii) is new. Accordingly, the latter 
will receive primary attention in the sequel. We also 
point out that the tracking scheme represented by Fig- 
ure 1 utilizes a one-parameter feedback structure. In 
this case, the tracking performance depends on both 
the nonminimum phase zeros and the unstable poles of 
P(s) .  More generally, a two-parameter feedback con- 
troller may be employed, with which the tracking per- 
formance will only be affected by the plant nonmini- 
mum phase zeros [5]. 

The main technical tool to  be used in our develop- 
ment is the theory of analytic function interpolation. In 
particular, the following necessary and sufficient condi- 
tion concerning the 312 optimal interpolation problem 
will play a pivotal role. The result can be found in [12]. 
Lemma 1 Consider two sets of distinct points zi E a+, 
i = 1, ..., m andp i  E (E+, i = 1, a - . ,  n. Assume 
that zi # p j  for  any i and j .  Then, there exists a ratio- 
nal matrix function H ( s )  such that ( i )  H ( s )  is analytic 
in 6+, (ii) IIH(s)ll2 5 y, and (iii) H ( s )  satisfies the 
conditions 

1 m, (2.1) 
H(p i )u i  = vi, i =  1, . . .  7 72 (2.2) 

H xi H ( z ~ )  = #, i = 1, 

for some vector sequences xi ,  yz, i = 1, ..., m and 
ui, vi, i = 1, . . . , n, of compatible dimensions, if and 
only if 

n ( Y Q ; l Y H )  

where 

This problem, while similar to the well-known 
Nevanlinna-Pick interpolation problem (see, e.g., [I]), 
amounts to determining an analytic function which sat- 
isfies a set of prescribed interpolation constraints and 
whose 312 norm is bounded. 

3 Main Results 
Throughout this paper we consider the exponentially 
increasing reference signal 

Assumption 1 P ( s )  is right-invertible and has no zero 
at  s = D .  

Here for a right-invertible P(s ) ,  a point z is said to  be 
a zero of P(s)  if wHP(z)  = O for some unitary vector 
w, and w is referred to  as the output zero direction 
vector associated with z .  This assumption is necessary, 
for otherwise the tracking error cannot be finite, and 
hence the output will be unable to track the reference 
input. It is also sufficient, since P(D)  is of full-column 
rank and F(a)v lies necessarily in the column space of 
P(u) .  By a proper design of K ( s ) ,  it is then possible 
to  insure that 

We note that the assumption is reminiscent of the well- 
known internal model principle [ll]. 

We now cast the optimal tracking problem as one of 
312 optimal interpolation. Consider the feedback sys- 
tem in- Figure 1. We begin with the following well- 
known interpolation constraints on the sensitivity and 
complementary sensitivity functions, imposed by the 
plant nonminimum phase zeros and unstable poles (see, 

Lemma 2 Suppose that p E (E+ is  a pole of P(s )  with 
input pole direction vector 77, and z E (E+ a zero of 
P(s)  with output zero direction vector w. Then in order 
for the closed loop system to  be stable, the following 
conditions must  hold: 

e.g., 151). 

Sb)V = 0, 

wHS(z) = W H ,  

T(P177 = 77, 

W H T ( Z )  = 0. 
Here the zero and pole direction vectors w and 7 are 
unitary vectors, llwll = llqll = 1. Thus, to compute 
the minimal tracking error J z ( F ) ,  it suffices to find the 
minimal norm of [ F ( s )  - T(s)]u^(s) so that it is in 312 
and meets the above interpolation requirements. 

3.1 Stable Plants 
We shall mainly focus on stable plants. Unstable plants 
will remain to  be of interest but will be deferred to 
the next subsection. Under this premise, the minimal 
tracking error & ( F )  has a simpler expression. Suppose 
first that F ( s )  is a rational transfer function. 
Theorem 1 Let G(s) be given by (3.1). Suppose 
that P ( s )  is stable and has distinct zeros zi E @+, 
i = 1, . . .  , m, with output zero direction vectors wt.  
Then under Assumption 1 and f o r  any stable proper 
rational F ( s ) ,  

J i ( F )  = YQEIYH,  

where 
w f F ( z l ) w  

21-U 

wEF(z,)w 
2- -U 

. . .  

... 

... 

where U 2 0, and v is a unitary constant vector. We 
shall make the following assumption. 

The following lower bound on Jz(F') is immediate 
from Theorem 1. 
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Corollary 1 Under the conditions in Theorem 1, for 
any i = 1, e.., m, tracking performance directly. 

channels will alter this orientation, thus affecting the 

We need a number of preliminary lemmas in order 
to prove Theorem 2,  the first of which can be found in 2Re(zi) 

131 (PP. 67). 
Jm 2 ____ 1.22 - U12 (wHF(zi)wI2. (3.3) 

In particular, Lemma 3 Let 

Corollary 1 shows that when there exists a zero zi 
of P(s)  near s = U ,  a large tracking error will result, 
whenever IwiF(zi)w( is not small. In what follows we 
show that the tracking performance may be improved 
with the help of preview, for which F ( s )  is selected 
specifically as 

A(s) := diag (e--T1s, . . . ,  e-%’) ,  Ti 2 0. 

It will be instructive to consider first the special case 
where P(s)  has a single right half plane zero. 

Theorem 2 Let G(s) be given b y  (3.1). Suppose that 
P ( s )  is stable and has only one zero z E a+, with out- 
put zero direction vector w. Then under Assumption 
1, 

In particular, if TI = . . . = T 1 - - T ,  then 

It is clear from Theorem 2 that the tracking error de- 
pends on three factors. The negative effect of the plant 
nonminimum phase zero z is present for all F ( s ) ,  which 
requires no further elaboration. The effect of time de- 
lays, which arises due to the preview action, however, 
is encouraging. Theorem 2 shows that the tracking 
error can be reduced in exponential proportion to the 
values of Ti. In light of (3.5), it becomes clear that pre- 
view control does help improve tracking performance, 
even for a moderately short preview time; this is espe- 
cially the case for zeros far away from the imaginary 
axis. Furthermore, the effect will be especially signifi- 
cant when Ti are selected in accordance with the values 
of vi. Clearly, for a higher amplitude ) w i l ,  a longer pre- 
view time is advised. This, of course, is consistent with 
our intuition. Finally, yet one more additional term in 
(3.5) points to the subtlety of the preview effect: it also 
depends on how A(.) may reshape the relative orienta- 
tion of the input and zero directions. When in the limit- 
ing case a uniform preview time is adopted, the mutual 
orientation of the two directions is unchanged, and the 
expression (3.6) shows that the error then depends on 
the principal angle between the two directions. More 
generally, however, different preview times in different 

fn(s) := (1 + ; ) n .  

Then fn(s) + es uniformly on any compact set as n -+ 

This fact leads instantly to the following lemma. 
Lemma 4 Define 

03. 

F,(s) := 

-@)” 

(s)nj 
Then F,(s) + A(s) uniformly on any compact set as 
n -+ 00. 

Since F,(s) is a stable proper rational function, the 
measure J2(Fn) can be computed using Theorem 1. 
Lemma 5 

lim J2(Fn) = &(A). 

The proof for Theorem 2 can then be completed by 
invoking Theorem 1 to obtain J2(Fn), and subsequently 
taking the limit of J2(F,) with n -+ 00, using Lemma 
4. 

n+cc 

More generally, it remains possible to draw the same 
conceptual statement when P ( s )  has more than one 
right half plane zero. We provide a number of bounds 
to this effect. 
Corollary 2 Under the conditions in Theorem 1, for 
any i = 1, . . . , m, 

and 

The upper bound (3.8) confirms that in general pre- 
view can be used to improve tracking performance. The 
lower bound (3.7), on the other hand, is useful for esti- 
mating the required preview time a priori to keep the 
tracking error under a prescribed threshold. 

We conclude this subsection by presenting below an 
explicit expression of the tracking error for the stan- 
dard tracking problem ( F ( s )  = I), and for single-input 
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single-output plants. The result extends the previous 
work on tracking step signals [ll, 14, 51, demonstrat- 
ing explicitly the difficulty in tracking an exponentially 
increasing signal. 

Theorem 3 Let P(s )  be a scalar transfer function, 
and let G(s) be given b y  (3.1) with v = 1. Let also 
U > 0. Suppose that P(s )  is stable and has distinct 
zeros zi E 6+, i = 1, - ” ,  m. Then under Assumption 
1. 

For comparison to step tracking, for which a = 0 and 

(3.10) 

Theorem 3 is evidently more general and contains ad- 
ditional insight. While a direct analogy here is that the 
zeros close to  s = a can be particularly problematic in 
tracking the exponential signal, the relative locations 
of the zeros will also play a more intricate role. For 
example, in the case of two real zeros, the effect for 
such configurations as (i) z1, z2 < a; (ii) z1 < U < z2; 
and (iii) a < 21, z2 will differ. -This makes it possible 
to analyze and to interpret the effect of the so-called 
L c ~ l ~ ~ 7 ’  and “fast” zeros relative to the increase of the 
reference input. 

3.2 Unstable Plants 
Tracking in the case of unstable plants based on the 
one-parameter control structure as given in Figure 1 is 
more complex an issue. It is known [5] that in tracking 
merely a step signal, the plant unstable poles may or 
may not affect the tracking error. Specifically, while 
for a single-input single-output system such poles are 
bound to worsen the tracking performance, for a multi- 
variable system they may only when the input direction 
is perfectly aligned with one or more pole directions; 
otherwise, only the nonminimum phase zeros of P(s )  
will have an effect. This phenomenon can be observed 
from the present interpolation approach as well. In- 
deed, it is easy to see that when v is not aligned with 
any of the pole direction vector, by which we mean 
that 1#v1 # 1 for all i = 1, ... , n, where vi are the 
pole direction vectors, then the transfer function ma- 
trix F ( s )  - T ( s )  will not be constrained at the poles p i .  
Consequently, only the zero interpolation constraints 
will be in effect, and therefore, in light of Lemma 1, 
the tracking error will be affected by the plant non- 
minimum phase zeros only. 

When the poles do affect the tracking performance, 
we may declare at the outset that they worsen it, a fact 
one can also clearly observe from Lemma 1. Accord- 
ingly, the expression of the tracking error becomes sub- 
stantially more involved, thus obscuring the conceptual 
insight one desires to obtain. For this reason, we shall 
focus on a number of simple cases which still lend the 
insight available. We shall first consider multivariable 
systems. 
Lemma 6 Suppose that P ( s )  has only one zero z E a+ 
with output zero direction vector w, and one pole p E 

6+ with input pole direction vector U ,  and that z # p, 
p # U. Then under Assumption 1 and for any stable 
proper rational F ( s ) ,  

(3.11) 

It was shown in [5] that when tracking a step input, 
the plant unstable poles cannot exert any effect on the 
tracking performance if the plant is minimum phase, 
regardless of input directions; this can too be seen from 
Lemma 1, or Lemma 6. It is clear that for F ( s )  = I, 
the expression (3.11) becomes 

2 

= lzlm 2Re(z) cos2 L(w, w). 

Hence, & ( I )  = 0 if P(s )  has no zero in (I!+. On the 
other hand, it need not be true for a different F ( s ) .  
Indeed, for a minimum phase P(s ) ,  (3.11) reduces to  

In other words, the unstable pole p can actually de- 
grade the tracking performance even for a minimum 
phase plant, when a different F ( s )  is used. It is thus 
expected that while preview control counters the nega- 
tive effect of plant nonminimum phase zeros, it does so 
at the expense of worsening the performance degrada- 
tion due to plant unstable poles, whenever such poles 
have directions aligned with the input direction. In- 
deed, in light of Lemma 5 and Lemma 6, the tracking 
error in this case will become 

The fact can be seen more clearly from the following 
lower bound of &(A), an immediate consequence of 
Lemma 5 and Lemma 6 .  
Corollary 3 Let A(s) = e - T s I .  Suppose that P ( s )  has 
only one zero z E a+ with output zero direction vector 
w, and one pole p E (I!+ with input pole direction vector 
U, and that z # p ,  p # a .  Then under Assumption 1, 

Note that to reduce the zero effect mandates to  have 
a large T ,  but to  prevent the effect of the unstable 
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pole requires T to be small, thus exhibiting a conflict 
between the two requirements. Needless to say, this is 
always the case for single-input single-output systems. 

We end this subsecticn with a corollary similar to  
Theorem 3, which gives an exact expression of the 
tracking error without preview, for single-input single- 
output systems. The corollary extends previous results 
to plants with several unstable poles, whereas elsewhere 
similar expressions were obtained for plants with a sin- 
gle zero and a single pole only, and in the case of step 
tracking. The result demonstrates, in the same spirit as 
(3.11), that the tracking error can become excessively 
large when the plant has closely located nonminimum 
phase zeros and poles. 

Corollary 4 Let P ( s )  be a scalar transfer function, and 
let G ( s )  be given b y  (3.1) with ‘U = 1. Suppose that P(s )  
has only one zero .z E (E+ and unstable poles pi E (E+, 
rs # p i ,  i = 1, . . ‘ , n. Then under Assumption 1, , 

4 Conclusion 
This work studies tracking performance limitation 
problems and extends the previously available results 
in two aspects. First, it addresses exponentially in- 
creasing signals, which are more general than step sig- 
nals typically studied elsewhere. It was shown that for 
this class of signals the earlier results can be directly 
extended, yielding similar conceptual insight and lead- 
ing to-similar conclusions. Specifically, it demonstrates 
that tracking performance depends on the locations of 
the plant nonminimum phase zeros relative to the ex- 
ponent of the reference input, and that it will generally 
be poor when they are closely located relative to the 
imaginary axis. 

Secondly, this work examines the use of preview 
control for tracking. While in the general setting a 
strong, conceptually appealing result remains unavail- 
able, various bounds on the tracking error were devel- 
oped, which collectively clarify the role of preview in 
tracking. It is clear that in general preview is use- 
ful for reducing the tracking error resulted from plant 
nonminimum phase zeros, and indeed it offers one of 
the few means left for improving tracking performance 
beyond that provided by causal feedback. Fundamen- 
tally, this improvement is made possible by use of the 
future information of the reference input, and is seen 
as, unsurprisingly, the advantage of a noncausal track- 
ing scheme over a causal one. Nevertheless, for an 
unstable plant, the improvement is likely to  be com- 
promised by the performance degradation due to  the 
plant unstable poles. It has been found that while it 
may effectively counter the zero effect, preview actu- 
ally renders the pole effect worse. Thus, with preview 
control, there generally exists a conflict between the 
performance improvement in reducing the zero effect 
and the further performance degradation due to  the 
plant unstable poles. In light of earlier work on two- 
parameter tracking scheme, however, preview appears 
to be a viable strategy when used together with a two- 
parameter control structure. 
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