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These new stability conditions are related to the use of piecewiseOptimal Tracking Performance: Preview Control and

quadratic Lyapunov functions, but do not require an explicit parti- Exponential Signals
tioning of the state space. Instead, the appropriate partition falls out
of the necessary conditions from the saturation operator formulated Jie Chen, Zhang Ren, Shinji Hara, and Li Qiu

as an optimization. Furthermore, it should be clear that this approach
can easily be extended to the analysis of general piecewise linea

r . . S
Wh d ] | h diti . . Abstract—in this note, we study tracking performance limitation prob-
systems. en tested versus previous results, the conditions in @ﬁs. Two issues are addressed, concerning how earlier results developed

paper were found to match even the Zames-Falb stability conditiafisewhere may be extended to more general classes of reference signals, and
for an example where both the circle and Popov criteria fail to produbew tracking performance may be further improved beyond that offered by

strong results. An important feature of the proposed method is fredback control. Toward these issues we consider exponentially increasing

. L reference inputs and examine the use of preview control for tracking. We
ability to capture the distinction between a deadzone and a saturati Ve an optimal interpolation approach, and our purpose is to develop an-

This i_s achieved_ _because a piecewise_quadratic Lyapunov functionyifical expressions and conceptual insight which will aid in the under-
used in the stability analysis. Such a difference cannot be represersiedding of these issues. To this effect, we derive explicit expressions for

by the Zames—Falb criterion within the multiplier analysis context. the optimal tracking error, either as exact solutions or bounds. It is found
that for the exponential signals the earlier results can be directly extended,
and similar conclusive statements can be drawn. It is also shown that in
ACKNOWLEDGMENT general preview can be used to advantage for improving tracking perfor-
mance, especially in countering the effect resulted from plant nonminimum
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control, tracking performance, unstable poles.
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noncausal action, where it is allowed and implementable, aid

improving tracking performance? In light of the aforementione
limitation of causal feedback, this contemplation is warranted, and
leads us to the use of preview control. Preview control is a means
using the future information of the reference input for control, and i r
the context of tracking, it amounts to tracking a delayed reference. L O K P 9,

essence, the compensator, which itself is causal, must then act c -
time-advanced signal, and hence involves a noncausal operation
the reference signal. This control strategy has most notably found

utility in various tracking problems (see, e.g., [8], [10], [19], [20]),
which is known to be useful in improving tracking performance;
this has been shown explicitly in [7] for single-input—single-outpUtig. 1. The tracking structure.
(SISO) discrete-time systems. Indeed, since in a tracking problem the

reference signal is typically specifiea priori, a pure time advance H oo ,
would introduce no error nor distortion. Thus, in a preview controf 1S denoted byd™. The trace of a matrid is denoted byf'x(4), and

scheme, while tracking the true (albeit delayed) reference signal, fig?) den_ote; the largest singular value-bfFor a Hermitian matrix
system can exploit fully to advantage the known future informatioft: We Write A > 0 if A is nonnegative definite, and > 0 if it is
of the reference signal. It will be seen that this does help reduce #fsitive definite. All the vectors and matrices involved in the sequel
tracking error. Of course, the preview tracking scheme is possible oY @ssumed to have compatible dimensions, and for simplicity, their
when the future information on the reference is made available, so tA4Pensions are omitted. Let the open right half plane be denoted by
a noncausal operation may be peformed. This clearly is the case when:= {s : Re(s) > 0}, and the imaginary axis b,. Moreover, let
tracking a pre-specified signal. | - || denote the Euclidean vector norm. Define
Another purpose of this note lies in our attempt to extend the cur-

rent work to more general and perhaps more problematic signals_. In £, :={ f: f(s) measurable ito,
the study of tracking performance, it has been customary to consider
step references. This simplicity enables the derivation of explicit ex- 1= _ 1/2

(3 [ rGora) " < oo}

pressions relating tracking error to plant nonminimum phase zeros [2], I fll2 =
[5], [14], [17], [18], [22], thus displaying in a clear manner how the
error may be affected by such zeros. Accordingly, much of the under-
standing on tracking performance limitation draws upon analysis of
these expressions, though similar results have also been obtained for o
ramp and sinusoidal signals [6], [17]. In the present paper, we consider 712 ::{f: f(s) analyticinCy.,
exponentially increasing reference signals. This consequently enables
us to gain additional insight into the problem and extend the existing _f 1 [ Sl2d 1/2
knowledge further beyond. R Wik g /790 (o + jw)ldw <o

Our development also offers an alternative, interpolation-based per-
spective to optimal tracking problems. Unlike in the previous work, wiote that for each of the normed spaggsand?2, we have used the
formulate and solve the problem directly as an optifdainterpolation same notatiofj- || to denote the corresponding norm. However, use of
problem. In other words, the optimal tracking performance is obtainedch of these norms will be clear from the context. Finally, we define
by computing the minimak> norm of a certain function analytic in the angle between the directions spanned by two veetasdw by
the right half of the complex plane, subject to constraints imposed by q
the plant nonminimum phase zeros and unstable poles. This approach cos £(w,v) = o]
bypasses the usual controller parameterization and model matching llwll{v]]
problem, and appears to be conceptually simpler. Clearly, it also ha
the flavor of similar work on performance limits quantified under ag
Hoo criterion [4], [9], [21].

Finally, we should point out that the optimal tracking problems und
consideration herein can all be solved numerically agtaroptimal

control prqblem. In partlcglar,. It can b? cast as a singtdarcontrol reﬁ)resent respectively the reference input and the system output. The
problem with unstable weighting functions; these problems have b . - - -
éedthrough transfer function matrik(s) implements the preview

studied in, e.g., [12], [13]. We emphasize, however, that our intention . ; )
; ! ; : . .st{ategy. More generally, it may also be viewed as a prefilter. The
is not to seek numerical solutions. Instead, we are interested in explicl

. . Y . T dutput signaly is to track afiltered signal », which is generated
analytical expressions of the minimal tracking error, and further, in hg ; . >
S0 . o through the filter F’. The tracking quality is measured by the error
intrinsic system properties such as nonminimum phase zeros may can-

strain the best achievable tracking performance. For this purpose,%{%nal ¢. We shall assume throughout thAs) is stable. Let the

shall sometimes trade the exactness of the results for their concepﬁﬁtem s complementary sensitivity function be defined as

£ll2

Our tracking problem is schematically represented by the linear
me-invariant system depicted in Fig. 1. In this setdp,denotes
the plant model and< the compensator, whose transfer function
Hatrices areP(s) and K (s), respectively. We assume thB{s) and

K (s) are both rational transfer function matrices. The signadsidy

appeal, by deriving bounds or examining limiting cases. T(s) = P(s)K(s)[I + P(s)K(s)]"".
II. PRELIMINARIES Then the Laplace transform of the error sigagl) can be expressed
We begin with the notation used throughout this paper. For any com- e(s) = [T(s) — F(s)]u(s).

plex numberz, we denote its complex conjugate byFor any vector
u, we denote its conjugate transposeSy For any signal.(¢), we de- We use thel, norm ofé(s) to measure the tracking performance, and
note its Laplace transform biy(s). The conjugate transpose of a matrixwe are interested in the best possible tracking error achievable by all
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feedback compensators that stabilize the closed-loop system. Spetlifiis problem, while similar to the well-known Nevanlinna—Pick in-

cally, we want to determine terpolation problem (see, e.g., [1]), amounts to determining an analytic
function which satisfies a set of prescribed interpolation constraints and
J2(F) :=inf {||[T(s) — F(s)]u(s)||2 : K stabilizesP} . whoseH: norm is bounded.
Thus, for any giver¥, J>( F) provides the intrinsic limit to the tracking 1l. M AIN RESULTS

performance which cannot be further reduced by feedback design.
Intuitively, if one chooses to introduce an attenuating filter in the !

feedforward path and track the filtered signal, the tracking error mg);ence signal

be reduced, as the system attempts to track a signal of an attenuated N v

amplitude. Such a filtered signal, however, will be distorted in general. i(s) = s—o CRY

Of particular interest in this note are the following two casesHos).
iy F(s) = I. This corresponds to the standard tracking sche

The outputy is to track the reference signaldirectly.

i) F(s)=diag (c*Tls, cey c*TmS) . This corresponds to preview
tracking scheme. The outpuis to track a delayed but otherwise
distortionless reference signal, each of whose components
be delayed by a different amount of tirie In effect, it amounts
to advancing, or “previewing” the input t&" relatively to the

Throughout this note, we consider the exponentially increasing ref-

mwherea > 0, andv is a unitary constant vector. We shall make the
%Ilowing assumption.
Assumption 1: P(s) is right-invertible and has no zero at= ¢.
Here for a right-invertibleP(s), a pointz is said to be a zero dP(s)
it w™P(z) = 0 for some unitary vectow, andw is referred to as
n%ﬁ\g output zero direction vector associated witfThis assumption is
necessary, for otherwise the tracking error cannot be finite, and hence
reference:, and, hence, advancing the outputo that the ad- the OUtPUt wil b(_a unable to track the referen_ce input. It is_ al_so suffi-
cient, sinceP (o) is of full-row rank andF'(o)v lies necessarily in the

vanced output may better track the original reference imput . I .
It is worth noting that in both casd®(s) are allpass, and hence nei-ﬁ?lil;r;unresesgf oP(c). By a proper design ok’ (s), itis then possible

ther attenuation nor distortion will be incurred on the reference signal.
This insures that the very original goal of tracking be met: the output [F(s) — T(s)]a(s) = [F(s)—T(s)v cH.
tracks asymptotically the referengeWe note that under th&. error # sIIS) = s—a >
criterion Case i) has been well studied [5], [14], but Case ii) is ney.

. . . . . . e
Accordingly, the latter will receive primary attention in the sequel. We del orinciole 114
also point out that the tracking scheme represented by Fig. 1 utiliz8 2 r?ormc('f;; [the].o timal tracking problem as onek6f optimal
a one-parameter feedback structure. In this case, the tracking perfor- W pu Ing p 2 opli

mance depends on both the nonminimum phase zeros and the unstlngfrpolation. Consider the feedback system in Fig. 1. We begin with

poles of P(s). More generally, a two-parameter feedback controlléf ee‘followmg well-known |.n.te.rpolat|o.n con;tralnts on the sensitivity
nd complementary sensitivity functions, imposed by the plant non-

may be employed, with which the tracking performance will onl bg. .
affeycted by Ft)heyplant nonminimum phase gz]eF;os [5]. y minimum phase zeros and unstable poles (see, e.g., [5]).

The main technical tool to be used in our development is the theocﬁll‘emma 2 SUppOi’_ﬁ th"?é €Cyis aﬂﬂo'? Of.Prfs) with |nputdpole_
of analytic function interpolation. In particular, the following neces-. rection vector, and:z € C4- azero ofP(s) with output zero direc
- L . ) . . tion vectorw. Then in order for the closed-loop system to be stable,
sary and sufficient condition concerning th& optimal interpolation ; o -
problem will play a pivotal role. The result can be found in [15]. the following conditions must hold:

Lemma 1: Consider two sets of distinct points; € Cy, S(p)n =0,
i=1,....mandp; € Cy,i = 1,...,n. Assume that; # p; '
for anyi andj. Then, there exists a rational matrix functiéh(s)
such that i)H (s) is analytic inC., ii) ||H (s)|]2 < ~, and iii) H(s)
satisfies the conditions

note that the assumption is reminiscent of the well-known internal

T(p)n=mn
mnS(Z) :71)”, mnT(z) =0.

Here the zero and pole direction vectarsaandy are unitary vectors,
|[w|| = ||n]| = 1. Thus, to compute the minimal tracking ertbi( F'),
it suffices to find the minimal norm di'(s) — T'(s)]u(s) so thatitis

AHGY =2 = , ! : ] _
wHz) =y, i=Ll...,m (2.1) in H» and meets the above interpolation requirements.
H(piu; =v;, i=1,...,n (2.2)
A. Stable Plants
for some vector sequences, y;, i = 1,...,m andu;, v;, i = . . )
1,....n, of compatible dimensions, if and only if We shall mainly focus on stable plants. Unstable plants will remain

to be of interest but will be deferred to the next subsection. Under this
premise, the minimal tracking errdk (F') has a simpler expression.
Suppose first thak'(s) is a rational transfer function.

T (YQZ'Y") 4+ T (IV + XQ7 Q= Q)]

ot [V + XOTHQyu — QTU)]H> <2 Theorem 1: Let(s) be given by (3.1). Suppose th&t s) is stable
" vy ’ = and has distinct zeros € C,,i = 1,...,m, with output zero direc-
where tion vectorsw;. Then, under Assumption 1 and for any stable proper
rational F(s)
H H
L xz; J}j o U; ’U,]' > o B
Qr = L +z}} Qu = L’)—,- +p]} JHF)=YQ,'Y" 3.2
o o
Qyu = { Yi ¢y } Qoo = {i} where
. TPy S < wllij“'(zl)v w{{wl o wfluvm
Vi=lvi v2 ... v -0 P 1tZm
Xi=[z1 22 ... x| yH .= v Qui= : :
Y = [1/1 Yo e Um ] . wgyl‘"(zm)v wgywl . u'gwm

E—— ZmAE ZmFEm
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Proof: LetH(s) = [F(s)—T(s)]u(s), withd(s)givenby (3.1). In particular, ifT} =--- =T; = T, then
Then, for the closed-loop system to be stable, it is necessary that
H oy 2700 — 72Ro(z)1 21—{6(4
uv?H(zi) = L(Z’)L i=1,...,m. (3.3) J3(A) = 7(”2 cos” £ ( (w,v). (3.7
Zi— 0

In light of Lemma 1, it follows that: It is clear from Theorem 2 that the tracking error depends on three

) factors. The negative effect of the plant nonminimum phase zéso
J3(F) Ziﬂf{’r’ H (s) analytic inCy., | H(s)[]z < 7, present for allF(s), which requires no further elaboration. The effect
of time delays, which arises due to the preview action, however, is en-
" wl'F(z)v . couraging. Theorem 2 shows that the tracking error can be reduced
wi H(z) = o =be m} in exponential proportion to the values Bf. In light of (3.6), it be-

D Ciem ) comes clear that preview control does help improve tracking perfor-
=inf {7 2 Tr (Y Q.Y ) <7 } mance, even for a moderately short preview time; this is especially the
—voI'vy" case for zeros far away from the imaginary axis. Furthermore, the ef-
fect can be especially visible whén are selected in accordance with
Thus, the proof is completed. B the values of;. Clearly, for a higher amplitudl; |, a longer preview

The following lower bound od» (F') is immediate from Theorem 1. time is advised. This, of course, is consistent with our intuition. More-

Corollary 1: Under the conditions in Theorem 1, for anyover, yet one more additional term in (3.6) points to the subtlety of the
i=1,....m preview effect: it also depends on howz) may reshape the relative
orientation of the input and zero directions. When in the limiting case

(F) > 2Re(zi) HF(”)U (3.4) a uniform preview time is adopted, the mutual orientation of the two

| s ol directions is unchanged, and the expression (3.7) shows that the error

In particular then depends on the principal angle between the two directions. More
) 2Re(=;) , generally, however, different preview times in different channels will
Jy(I) > ———5 cos™ £ (w;,v). (3.5) alter this orientation, thus affecting the tracking performance directly.

|zi — o]

. . . . N Finally, we should also point out that preview tracking is generally per-
Proof: This follows readily by manipulating the condition (3.2).formed on a prefiltered signal. This can be readily accommodated in the

Indeed, we may rewrite present formulation by passing the reference input through a lowpass
) 5 1 g filter prior to preview action; in the expressions of the tracking error
J3(F) = inf {7’ tQuw — FTQY Y > 0}- (3.6) and (3.7), it amounts to including an additional weighting factor

related to the transfer function magnitude evaluated at
By examining the diagonal elementsBf'Y’, it follows that in order We need a number of preliminary lemmas in order to prove The-
to meet the condition orem 2, the first of which can be found in [3, p. 67].

1on Lemma 3: Let
Qu— =YY >0
f\// s n
ni{S) = 1 -
o= (147)

it is necessary that

1 1 |7U11F(31)U’2 Thenf,(s) — e® uniformly on any compact set as— oc.
- ’ ;- >0, i=1....m This fact leads instantly to the following lemma.
2Re(z) v z — | ) !
Lemma 4: Define
Thus
H 5 y_=sTy n
1 F(z)v 25
(F)>111f 1 —LZ|“L ( ):’ 20 . <1+27;1)

This gives the inequality (3.4). | ' -\
Corollary 1 shows that when there exists a zey@f P(s) near <1+ B )

s = o, a large tracking error will result, whenevir; F'(z;)v| is not

small. In what follows we show that the tracking performance may bghenF, (s) — A(s) uniformly on any compact set as— oc.

improved with the help of previeW, for Wh|Cﬁ(5) is selected Specif' SinceF, (5) is a stable proper rational function, the meas&r(d«_‘n)

ically as can be computed using Theorem 1.

, , Lemma 5:
A(s) := diag (e_T“7 .. .,e_T”> , T; >0.

It will be instructive to consider first the special case wh&(e) has Jim Jo(Fn) = J2(A).

a single right-half plane zero.

Theorem 2: Let@(s) be given by (3.1). Suppose th8f s) is stable
and has only one zero € C, with output zero direction vectar.
Then under Assumption 1

R
F,(jw) =T e(Gw)||dw —
s = 2t ZI I [ ()= TG =
—oP" < En(s) = T(is)ls
A ) R
ceost 2 (. A0, 36) < [ R Ge) = TG i)l + e

A(z)v| -R

Proof: Since[F,(s) — T'(s)]u(s) € Ly, for anye; > 0, there
exists anR > 0 such that

I
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SinceF,, (jw) — A(s) uniformly for allw € [—R, R], it follows that
foranyR > 0,

R
tim [ [F () = TG s
R

n—oo f
R
/—F.,

That is, for anye; > 0, there exists an intege¥ > 0 such that for
n >N

A (Gw) = T(jw)]u(jw)||dw.
"R
|t - TGl e
e
S/ N[F.(w) = T(jw)|a(jw)||dw
—R

/.

These together suggest that for @ny 0, there exists a® > 0, and
anN > 0 such that fom > N,

<

Ajw) — T(jw)]a(jw)|dw + €.

[ NAGS) = TGw)ats)lde =
< 1Fu(s) = T(s)]a(s)l

R
< [ MG -

or equivalently

lim ||[F.(s) —

T(jw)fitio)de + 6

T(s)]a(s)ll2 = lI[A(s) —

Since this holds for any controller such that (s) — T'(s
and[A(s) — T'(s)]u(s) € L2, the result follows.

T(s)]u(s)|l2-

Nu(s) € Lo
]

The proof for Theorem 2 can then be completed by invoking The-

orem 1 to obtain/, (F}, ), and subsequently taking the limit 8§ ( F,, )
with n — oo, using Lemma 4.

More generally, it remains possible to draw the same conceptual
statement whet(s) has more than one right half plane zero. We pro- J2 (I) =
vide a number of bounds to this effect. The proof of the following corol-

lary is rather straightforward and is thus omitted.

Corollary 2: Under the conditions in Theorem 1, for any

i=1,....,m
2Re Z; —2Re
AOES s oo (Zlka e m)
L2 . 1\(~Z)U
X cos” Z <wl, 7”1\(2,')1!”) (3.8)
and
m !
2, 1 1 2 —9Re(2:)Ty
J3(A) <7 (Qu )Zm (Z vk |%e "
i=1 k=1
5 Az
X cos” / <w,, ACool ) (3.9

The upper bound (3.9) confirms that in general preview can be used

stable and has distinct zeres € Cy,i = 1,...
Assumption 1

o+ 7Z;

1651

,m. Then under

s ’
To(I) = o (];[1 e 1. (3.10)
Proof: Note first that for a SISO system
1 . 1 -
z1+%1 21+Zm
Qu=0Q:= :
1 .. J‘
ZmtE1 ZmtEm
and
.-
J22(I) = [?ll_g gml_U]Q_1 |: hl . (311)
1
Next, consider the functions
. zi zi f(s)
= = h(s) = .
fs) = H+ Fils) = H+ (5) =
i#j
The functioni(s) can be expanded via partial fraction as
L 2Re<;’,j)f,j(—f,‘) 1
h(s) = ’
(5) g st
Sinceh(z;) = 0, we obtain
2‘:51;>f (==1) =1 [0
Q +fle)| | =|:
zRe( m)fm m) :ml_a 0
In light of (3.11), this gives rise to
ZRfL;H z1)
Sl 1
f((T) - e 2Re(zm) _
Emto fm(_z )
- ZRo(H) .
f 7) = o4zl 7
Let us then construct the function
f(b) 1 — 2
g(.s) - T s n s+ z;
which in turn can be expanded via partial fraction as
s 2Re(z)fi(-7) 1 1
g(s) = ; = 5= 05
Since
1 1

to improve tracking performance. The lower bound (3.8), on the othgkollows that:

hand, is useful for estimating the required preview tarpgiori to keep
the tracking error under a prescribed threshold.

We conclude this subsection by presenting below an explicit expres-

sion of the tracking error for the standard tracking problétgs() = I),

for single-input single-output plants. The result extends the previous
work on tracking step signals [5], [14], [17], demonstrating explicitly

the difficulty in tracking an exponentially increasing signal.
Theorem 3: Let P(s) be a scalar transfer function, and #&ts) be
given by (3.1) withv = 1. Let alsos > 0. Suppose thaP(s) is
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Consequently vectorv, and that: # p, p # ¢. Then under Assumption 1 and for any
1 (o) = f(=0) ) ) stable proper rationdf(s)
JZI):— 7= 7 :—<+—1>. 2
D=5 20 \[F(0)2 J2(F) = fRe(Z'?Z ()
z—0
This completes the proof. ] 2Re(p) . q 2
For comparison to step tracking, for whish= 0 and p—op <||[I — F(p)Jo|* - ‘w (= F(p)v )
m 2Re(1})
. 2Re(z;
Jzz(I) = Z |e(|2 ) (3.12) |z — p|?
i=1 ) z+7Zz + :

-

w F(z)v + uwH[I — F(p)v
p—a

Theorem 3 is evidently more general and contains additional insight.
While a direct analogy here is that the zeros close te ¢ can be (3.13)
particularly problematic in tracking the exponential signal, the relative .

locations of the zeros will also play a more intricate role. For example, Froof: It follows from Lemma 1 by settingd (s) = [F(s) —
in the case of two real zeros, the effect for such configurationsas i) £ (#)]¢(s), and noting the interpolation constraints

zo < 03 0i) 21 < 0 < zg;andiii) ¢ < z1, zo will differ. This makes " w F(z)v [F(p) — I]v

it possible to analyze and to interpret the effect of the so-called “slow” wiH(z) = Ta_o H(p) = T -

and “fast” zeros relative to the increase of the reference input. Naote

also that Theorem 3 furnishes a useful connection between the earTig? proof then follows analogously as in that for Theorem 1. H

developments and the interpolation approach adopted herein. Indeeéxt,wals shown in [5] that when tracking as_tep input, the plar!t unstable
one may observe (3.12) either by taking the limit of (3.10), with- 0, poles cannot exert any effect on the tracking performance if the plant
or by noting that is minimum phase, regardless of input directions; this can too be seen

from Lemma 1, or Lemma 6. Itis clear that féi(s) = I, the expres-
Z " 9Re(z) sion (3.13) becomes
1oy =11 (——) Ty =3 AR

Zi ‘ z7 : P 2 y Re
i=1 # i=1 = J?(I) :|2Re( |)2 wﬂ, <1 4 '1]~:{|e( )R|ez(p))
z—0 z—=p
and henceforth that -4 7[° 2Re(2)
N S L s — cos” L(w,v)
J3(1) =f(0)F(0) c=p| [zl
m B _— m which was also obtained in [5]. Hencé;(I) = 0 if P(s) has no
— <_ i) _ Zngzi) H <_ :_1) zero inC. On the other hand, it need not be true for a diffetBti).
Pl Zi P Zj Indeed, for a minimum phas@(s), (3.13) reduces to
i
mo . . QR .
- 2Rez) T(F) = ZERT = P

In other words, the unstable paglecan actually degrade the tracking
performance even for a minimum phase plant, when a differénj is
B. Unstable Plants used. It is thus expected that while preview control counters the nega-

Tracking in the case of unstable plants based on the one-parami¥&€ffect of plant nonminimum phase zeros, it does so at the expense

control structure as given in Fig. 1is more complex an issue. Itis kno/ghWworsening the performance degradation due to plant unstable poles,
[5] that in tracking merely a step signal, the plant unstable poles may'ypenever such poles have directions aligned with the input direction.
may not affect the tracking error. Specifically, while for a SISO systeffideed, in light of Lemma 5 and Lemma 6, the tracking error in this
such poles are bound to worsen the tracking performance, for a g€ Will become

tivariable system they may only when the input direction is perfectly 2Re(p)

]
— ,—1%p
T |-
b= ol =

>
Jvil*.

aligned with one or more pole directions; otherwise, only the nonmin- J3(A) =
imum phase zeros dP(s) will have an effect. This phenomenon can
be observed from the present interpolation approach as well. Inde€&de fact can be seen more clearly from the following lower bound of
it is easy to see that whenis not aligned with any of the pole direc- .J.(A), an immediate consequence of Lemma 5 and Lemma 6.
tion vector, by which we mean thial'v| # 1 foralli = 1,....n, Corollary 3: LetA(s) = ¢~ "*I. Suppose thaP(s) has only one
wherer; are the pole direction vectors, then the transfer function maeroz € C with output zero direction vectar, and one pole € C
trix F'(s) —T'(s) will not be constrained at the polgs. Consequently, with input pole direction vector, and that: # p, p # . Then under
only the zero interpolation constraints will be in effect, and thereforéssumption 1,
in light of Lemma 1, the tracking error will be affected by the plant ) Corecoyr 2Re(2)
nonminimum phase zeros only. T3 (A) > e R Top
When the poles do affect the tracking performance, we may declare - > 9Rel(,
atthe outset that they worsen it, a fact one can also clearly observe from + ‘1 —el? ip)} sin” /(w,v). (3.14)
Lemma 1. Accordingly, the expression of the tracking error becomes b —al? '
substantially more involved, obscuring unfortunately the conceptual iNote that to reduce the zero effect mandates to have a Brdmit
sight one desires to obtain. For this reason, we shall focus on a numtoeprevent the effect of the unstable pole requife® be small, thus
of simple cases which still lend the insight available. We shall first coexhibiting a conflict between the two requirements. Needless to say,
sider multivariable systems. this is always the case for SISO systems.
Lemma 6: Suppose thaP(s) has only one zero € C . with output We end this subsection with a corollary similar to Theorem 3, which
zero direction vectow, and one pole € C, with input pole direction gives an exact expression of the tracking error without preview, for

cos® £(w,v)
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SISO systems. The corollary extends previous results to plants witter a causal one. Nevertheless, for an unstable plant, the improvement
several unstable poles, whereas elsewhere similar expressions werésdikely to be compromised by the performance degradation due to the
tained for plants with a single zero and a single pole only, and in tidant unstable poles. It has been found that while it may effectively
case of step tracking. The result demonstrates, in the same spiricagnter the zero effect, preview actually renders the pole effect worse.
(3.13), that the tracking error can become excessively large when Waus, with preview control, there generally exists a conflict between
plant has closely located nonminimum phase zeros and poles. the performance improvement in reducing the zero effect and the fur-
Corollary 4: Let P(s) be a scalar transfer function, and f&ts) ther performance degradation due to the plant unstable poles. In light
be given by (3.1) withh = 1. Suppose thaP(s) has only one zero of earlier work on two-parameter tracking scheme, however, preview

z € C; and unstable poles, € C1,z # 0,z # pi;,i = 1,...,n. appears to be a viable strategy when used together with a two-param-
Then under Assumption 1 eter control structure, in which the plant unstable poles do not play any
) n o role in tracking.
J2(0) = 2Rel®) [IIE t P (3.15)
|z —o? 11z —p;
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