# Orthonormal Rational Functions via the Jury Table and Their Applications 

Xiaodong Zhao and Li Qiu<br>Department of Electrical \& Electronic Engineering<br>Hong Kong University of Science \& Technology<br>Clear Water Bay, Kowloon, Hong Kong, China<br>Email: eexdzhao@ust.hk, eeqiu@ust.hk


#### Abstract

The Jury table is used to construct orthonormal rational functions. Applications of these orthonormal functions in the computation of $\mathcal{H}_{2}$ norm, the computation of the Hankel singular values and Schmidt pairs, the solutions to the Hankel norm approximation and the Nehari problem are given.


## I. INTRODUCTION

Various orthogonal functions play important roles in science and engineering. Examples include orthogonal polynomials, the standard basis functions in Fourier series or power series, wavelet functions. In this paper, we deal with orthogonal rational functions. The study of orthogonal rational functions has a long history. The idea of decomposing a linear system in term of orthogonal components, such as Laguerre functions, other than the functions in the standard Fourier series dates back to the work of Lee [10] and Wiener [14]. Kautz [9] formulated a more general class of orthogonal rational functions with two parameters. Heuberger et al. [6] developed a theory on construction of orthogonal rational functions using balanced realizations of inner transfer functions. The standard basis functions in power series, Laguerre functions and Kautz functions are special cases in this theory. A further generalization was presented by Ninness and Gustasson [11]. The studies in [6] and [11] are motivated by applications in system identification.
These recently developed orthogonal functions are generated through the balanced realization of inner transfer functions and hence rely on modern state space system theory. Some new investigation of the connection between advanced optimal and robust control problems and the classical tools for continuous time systems is recently carried out by Qiu [13]. It is shown that the Routh table can be used to form orthonormal rational functions, to compute the $\mathcal{H}_{2}$ norm of a stable transfer function and can also be used to find the Hankel singular values and vectors, hence yielding the solution to the Hankel approximation and the Nehari problems.
The Jury table and the Jury stability criterion are the counterparts of the Routh table and the Routh stability criterion in the discrete time case. In this paper, we will show that the Jury table can also be used to construct orthonormal rational functions, to compute the $\mathcal{H}_{2}$ norm, to find the Hankel singular values and the corresponding Schmidt pairs and to solve the Hankel approximation and the Nehari problems.

## II. JURY STABILITY TEST AND ORTHONORMAL FUNCTIONS

Consider a polynomial

$$
a(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n},
$$

where $a_{i} \in \mathbb{R}$ and $a_{0}>0$. It is said to be stable if all of its roots are inside the unit disk.

Construct the Jury table [7]

| $r_{0}$ | $a_{0}^{0}$ | $a_{1}^{0}$ | $\cdots$ | $a_{n-1}^{0}$ | $a_{n}^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $r_{0}^{*}$ | $a_{n}^{0}$ | $a_{n-1}^{0}$ | $\cdots$ | $a_{1}^{0}$ | $a_{0}^{0}$ |
| $r_{1}$ | $a_{0}^{1}$ | $a_{1}^{1}$ | $\cdots$ | $a_{n-1}^{1}$ |  |
| $r_{1}^{*}$ | $a_{n-1}^{1}$ | $a_{n-2}^{1}$ | $\cdots$ | $a_{0}^{1}$ |  |
| $\vdots$ | $\vdots$ |  |  |  |  |
| $r_{n-1}$ | $a_{0}^{n-1}$ | $a_{1}^{n-1}$ |  |  |  |
| $r_{n-1}^{*}$ | $a_{n-1}^{1}$ | $a_{n-1}^{0}$ |  |  |  |
| $r_{n}$ | $a_{n}^{0}$ |  |  |  |  |

In the Jury table, the first row is copied from the coefficients of the polynomial,

$$
a_{0}^{0}=a_{0}, a_{1}^{0}=a_{1}, \ldots, a_{n-1}^{0}=a_{n-1}, a_{n}^{0}=a_{n}
$$

The row $r_{i}^{*}, i=0, \cdots, n-1$, is obtained by writing the elements of the preceding row in the reverse order. The row $r_{i}, i=1, \cdots, n$, is computed from its two preceding rows $r_{i-1}$ and $r_{i-1}^{*}$ as

$$
a_{j}^{i+1}=\frac{1}{a_{0}^{i}}\left|\begin{array}{cc}
a_{j}^{i} & a_{n-i}^{i}  \tag{1}\\
a_{n-i-j}^{i} & a_{0}^{i}
\end{array}\right|
$$

for $i=0, \ldots, n-1, j=0, \ldots, n-i-1$.
Theorem 1 (Jury Stability Criterion) [7] The following statements are equivalent:
(1) a(z) is stable.
(2) $a_{0}^{i}>0$ for all $i=1, \ldots, n$.
(3) $\left|a_{0}^{i}\right|>\left|a_{n-i}^{i}\right|$ for all $i=0,1, \cdots, n-1$.

In general, the Jury table cannot be completely constructed when $a_{0}^{i}=0$ for some $1 \leq i<n$. In this case, there is no need to complete the rest of the table since we already know from the Jury stability criterion that the polynomial is unstable.
In this paper, we will see that the utility of the Jury table goes much beyond testing the stability of a polynomial. In
particular, it can be used to construct a set of orthonormal rational functions and these orthonormal functions can in turn be used to address various analysis and synthesis issues in system theory.

Let us first recall some frequently used function spaces [8]. Denote the open unit disk by $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and the unit circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.

## $\mathcal{L}_{2}$ Space

$\mathcal{L}_{2}$ is the space of square integrable functions on the unit circle, i.e. functions $F(z)$ satisfying

$$
\int_{-\pi}^{\pi} \overline{F\left(e^{j \omega}\right)} F\left(e^{j \omega}\right) d \omega<\infty
$$

It is well-known that any $F(z) \in \mathcal{L}_{2}$ can be represented by

$$
F(z)=\sum_{k=-\infty}^{\infty} f(k) z^{-k}
$$

The inner product in this space is defined as

$$
\langle F(z), G(z)\rangle:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \overline{F\left(e^{j \omega}\right)} G\left(e^{j \omega}\right) d \omega
$$

for $F(z), G(z) \in \mathcal{L}_{2}$ and the induced norm is given by

$$
\|F(z)\|_{2}=\sqrt{\langle F(z), F(z)\rangle}
$$

## $\mathcal{H}_{2}$ Space

The subspace of $\mathcal{L}_{2}$ with functions analytic outside of $\mathbb{D}$. It is well-known that any $F(z) \in \mathcal{H}_{2}$ can be represented by

$$
F(z)=\sum_{k=0}^{\infty} f(k) z^{-k}
$$

$\mathcal{H}_{2}^{+}$Space
The subspace of $\mathcal{L}_{2}$ with functions analytic in $\mathbb{D}$ and vanish at 0 . It is well-known that $\mathcal{H}_{2}^{1}$ is the orthogonal complement of $\mathcal{H}_{2}$ and any $F(z) \in \mathcal{H}_{2}^{\frac{1}{2}}$ can be represented by

$$
F(z)=\sum_{k=-\infty}^{-1} f(k) z^{-k}
$$

The sets of real rational members of $\mathcal{L}_{2}, \mathcal{H}_{2}$ and $\mathcal{H}_{2}^{1}$ are denoted by $\mathcal{R} \mathcal{L}_{2}, \mathcal{R H}_{2}$ and $\mathcal{R H} \mathcal{H}_{2}^{\frac{1}{2}}$ respectively. Let $a(z), b(z)$ be polynomials with real coefficients, then these spaces have the following characterizations:

$$
\begin{aligned}
& \mathcal{R} \mathcal{L}_{2}=\left\{\frac{b(z)}{a(z)}: a(z) \neq 0 \text { for } z \in \mathbb{T}\right\} \\
& \mathcal{R} \mathcal{H}_{2}=\left\{\frac{b(z)}{a(z)} \in \mathcal{R} \mathcal{L}_{2}: a(z) \text { stable, } \operatorname{deg} b(z) \leq \operatorname{deg} a(z)\right\} \\
& \mathcal{R} \mathcal{H}_{2}^{\perp}=\left\{\frac{b(z)}{a(z)} \in \mathcal{R} \mathcal{L}_{2}: a(z) \text { antistable, } \frac{b(0)}{a(0)}=0\right\}
\end{aligned}
$$

where $a(z)$ being antistable means that all roots of $a(z)$ are outside the unit disk.

Since we are only interested in real rational functions, in the rest of this paper, we will assume that the polynomials considered all have real coefficients.

Let us now fix a stable polynomial

$$
a(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}, a_{0}>0 .
$$

Consider the set of strictly proper rational functions with denominator $a(z)$

$$
\begin{equation*}
\mathcal{X}_{a}=\left\{\frac{b(z)}{a(z)}, \operatorname{deg} b(z)<\operatorname{deg} a(z)\right\} . \tag{3}
\end{equation*}
$$

Clearly, $\mathcal{X}_{a}$ is an $n$-dimensional subspace of $\mathcal{R} \mathcal{H}_{2}$. In applications, as evidenced later in this paper, it is desirable to find a basis, or better an orthonormal basis of $\mathcal{X}_{a}$.

The most commonly used basis of $\mathcal{X}_{a}$ is the standard basis

$$
\left\{F_{i}(z)=\frac{z^{i-1}}{a(z)}, i=1,2, \cdots, n .\right\}
$$

In general, this basis is not orthonormal. Using this basis, an orthonormal basis can be constructed by using the GramSchmidt orthonormalization process:

$$
\begin{equation*}
E_{i}(z)=\frac{F_{i}(z)-\sum_{k=1}^{i-1}\left\langle E_{k}(z), F_{i}(z)\right\rangle E_{k}(z)}{\left\|F_{i}(z)-\sum_{k=1}^{i-1}\left\langle E_{k}(z), F_{i}(z)\right\rangle E_{k}(z)\right\|} \tag{4}
\end{equation*}
$$

for $i=1,2, \cdots, n$. Carrying out this orthonormalization process requires the computation of the inner product $\left\langle E_{k}(z), F_{i}(z)\right\rangle$, which is cumbersome. We will see that this orthonormal basis can be obtained by using the Jury table.
Recall the Jury table of $a(z)$ and for the rows $r_{i}, i=$ $1,2, \ldots, n$, define polynomials

$$
\begin{align*}
a_{1}(z) & =a_{0}^{1} z^{n-1}+a_{1}^{1} z^{n-2}+\cdots+a_{n-1}^{1}  \tag{5}\\
& \vdots \\
a_{n-1}(z) & =a_{0}^{n-1} z+a_{1}^{n-1} \\
a_{n}(z) & =a_{0}^{n} .
\end{align*}
$$

Since $a(z)$ is stable, $a_{0}^{i}>0,\left|a_{0}^{i}\right|>\left|a_{n-i}^{i}\right|$, for $i=$ $1,2, \ldots, n$. We can define

$$
\gamma_{i}=\sqrt{\frac{a_{0}^{0}}{a_{0}^{i}}}, k_{i}=a_{n-i}^{i} / a_{0}^{i}, \quad i=1,2, \ldots, n .
$$

Theorem 2 The orthonormal functions $E_{i}(z)$ satisfy

$$
E_{n-i+1}(z)=\gamma_{i} \frac{a_{i}(z)}{a(z)}, i=1,2, \ldots, n
$$

An alternative orthonormal basis can be given in terms of the reverse versions of the polynomials in (5).

Corollary 1 Let $\left\{\tilde{F}_{i}(z)=\frac{z^{n-i}}{a(z)}, i=1,2, \ldots, n\right\}$ be the "reversed" standard basis of $\mathcal{X}_{a}$ and $\left\{\tilde{E}_{i}(z), i=1,2, \ldots, n\right\}$ be the functions obtained from the orthonormalization of this basis via the Gram-Schmidt process. The functions $\tilde{E}_{i}(z), i=1,2, \ldots, n$, satisfy

$$
\tilde{E}_{n-i+1}(z)=\gamma_{i} \frac{z^{n-1} a_{i}\left(z^{-1}\right)}{a(z)}, i=1, \ldots, n .
$$

An orthonormal basis of $\mathcal{H}_{2}$ can be extended from the orthonormal basis of $\mathcal{X}_{a}$.

Corollary 2 Let

$$
G(z)=\frac{z^{n} a\left(z^{-1}\right)}{a(z)}
$$

be the inner function generated by a stable polynomial a(z) and $E_{i}(z)$ be the orthonormal functions in Theorem 2. The functions

$$
V_{k \times n+i}(z)=z E_{i}(z) G^{k}(z), i=1, \ldots, n, k=0, \cdots, \infty
$$

form an orthonormal basis of $\mathcal{H}_{2}$.

## III. COMPUTATION OF THE $\mathcal{H}_{2}$ NORM

Consider a stable system

$$
G(z)=\frac{b(z)}{a(z)}=\frac{b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n}}{a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}}, a_{0}>0
$$

Clearly, $G(z) \in \mathcal{R} \oplus \mathcal{X}_{a}$. If we let

$$
b(z)=\beta_{0} a(z)+\beta_{1} a_{1}(z) \cdots+\beta_{n} a_{n}(z)
$$

then we can expand $G(z)$ as

$$
\begin{equation*}
G(z)=\frac{\beta_{0}}{\gamma_{0}} E_{0}(z)+\frac{\beta_{1}}{\gamma_{1}} E_{n-1}(z)+\ldots+\frac{\beta_{n}}{\gamma_{n}} E_{1}(z) \tag{6}
\end{equation*}
$$

where $E_{0}(z)=1, \gamma_{0}=1$ and we can get

$$
\|G(z)\|_{2}^{2}=\sum_{i=0}^{n} \frac{\beta_{i}^{2}}{\gamma_{i}^{2}} .
$$

Finding $\beta_{i}, i=0, \ldots, n$, is simple. One only need to compare the coefficients in (6) and solve a set of linear equations. It turns out that these equations have special structure and we can obtain the orthonormal basis and these coefficients $\beta_{i}$ simultaneously by using the following augmented Jury table.

| $a_{0}^{0}$ | $\cdots$ | $a_{n-1}^{0}$ | $a_{n}^{0}$ | $b_{n}^{0}$ | $\cdots$ | $b_{1}^{0}$ | $b_{0}^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{n}^{0}$ | $\cdots$ | $a_{1}^{0}$ | $a_{0}^{0}$ | $a_{n}^{0}$ | $\cdots$ | $a_{1}^{0}$ | $a_{0}^{0}$ |
| $a_{0}^{1}$ | $\cdots$ | $a_{n-1}^{1}$ |  | $b_{n-1}^{1}$ | $\cdots$ | $b_{0}^{1}$ |  |
| $a_{n-1}^{1}$ | $\cdots$ | $a_{0}^{1}$ |  | $a_{n-1}^{1}$ | $\cdots$ | $a_{0}^{1}$ |  |
| $\vdots$ |  |  |  | $\vdots$ |  |  |  |
| $a_{0}^{n-1}$ | $a_{1}^{n-1}$ |  |  | $b_{1}^{n-1}$ | $b_{0}^{n-1}$ |  |  |
| $a_{1}^{n-1}$ | $a_{0}^{n-1}$ |  |  | $a_{1}^{n-1}$ | $a_{0}^{n-1}$ |  |  |
| $a_{0}^{n}$ |  |  |  | $b_{0}^{n}$ |  |  |  |

The augmented Jury table is formed by adding one block to the right of the usual Jury table, its first row is directly from the coefficients of $b(z)$ :

$$
b_{0}^{0}=b_{0}, \ldots, b_{n-1}^{0}=b_{n-1}, b_{n}^{0}=b_{n}
$$

The second, forth, sixth . . . rows of the additional block are copied from the corresponding rows in the Jury table and
the third, fifth ... rows are computed from its two preceding rows as

$$
b_{j}^{i+1}=\frac{1}{a_{0}^{i}}\left|\begin{array}{cc}
b_{j+1}^{i} & b_{0}^{i}  \tag{7}\\
a_{j+1}^{i} & a_{0}^{i}
\end{array}\right|
$$

for $i=0, \ldots, n-1, j=0, \ldots, n-i-1$.
In summary, the following algorithm gives the 2 -norm of a stable proper transfer function.

## Algorithm 1: Computation of the $\mathcal{H}_{2}$ norm

Step 1 Compute the augmented Jury table of $G(z)$.
Step 2 Set $\beta_{i}=\frac{b_{0}^{i}}{a_{0}^{2}}, i=0, \ldots, n$.
Step $3\|G(z)\|_{2}^{2}=\frac{1}{a_{0}^{0}} \sum_{i=0}^{n} \beta_{i}^{2} a_{0}^{i}$.
A similar method to compute the $\mathcal{H}_{2}$ norm also appeared in [2] where the augmented Jury table was defined in a "reverse" way. The method in [2] follows directly by expanding $G(z)$ in terms of the orthonormal basis $\left\{\tilde{E}_{i}(z)\right\}$ of $\mathcal{X}_{a}$ as in Corollary 1.

## Example 1

Consider

$$
G(z)=\frac{b(z)}{a(z)}=\frac{\sqrt{2} z+1 / 2}{z^{2}+\sqrt{2} z+1 / 2}
$$

The augmented Jury table of $G(z)$ is

| $r_{0}$ | 1 | $\sqrt{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\sqrt{2}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r_{0}^{*}$ | $\frac{1}{2}$ | $\sqrt{2}$ | 1 | $\frac{1}{2}$ | $\sqrt{2}$ | 1 |
| $r_{1}$ | $\frac{3}{4}$ | $\frac{\sqrt{2}}{2}$ |  | $\frac{1}{2}$ | $\sqrt{2}$ |  |
| $r_{1}^{*}$ | $\frac{\sqrt{2}}{2}$ | $\frac{3}{4}$ |  | $\frac{\sqrt{2}}{2}$ | $\frac{3}{4}$ |  |
| $r_{2}$ | $\frac{1}{12}$ |  |  | $-\frac{5}{6}$ |  |  |

The orthonormal basis of $\mathcal{X}_{a}$ is given by

$$
\begin{aligned}
& E_{1}(z)=\frac{\sqrt{12} \frac{1}{12}}{z^{2}+\sqrt{2} z+1 / 2}=\frac{\frac{\sqrt{3}}{6}}{z^{2}+\sqrt{2} z+1 / 2} \\
& E_{2}(z)=\frac{\sqrt{4 / 3}\left(\frac{3}{4} z+\frac{\sqrt{2}}{2}\right)}{z^{2}+\sqrt{2} z+1 / 2}=\frac{\frac{\sqrt{3}}{2} z+\frac{\sqrt{6}}{3}}{z^{2}+\sqrt{2} z+1 / 2}
\end{aligned}
$$

and

$$
\|G(z)\|_{2}^{2}=0+\frac{4}{3}(\sqrt{2})^{2}+12\left(-\frac{5}{6}\right)^{2}=11
$$

## IV. HANKEL SINGULAR VALUES AND SCHMIDT PAIRS

Hankel operators find various applications in engineering problems such as in model reduction [8] and optimal control [17]. Analysis of the Hankel singular values and Schmidt pairs ([1], [3], [4], [15]) is the key for these applications. The recent developments are based on state space realizations, we try to find a new approach from the transfer function point of view by using the orthonormal functions constructed in

Theorem 2. Young [15] studied a similar problem by using a non-orthogonal basis.

Let $P_{+}: \mathcal{L}_{2} \rightarrow \mathcal{H}_{2}$ and $P_{-}: \mathcal{L}_{2} \rightarrow \mathcal{H}_{2}^{\frac{1}{2}}$ denote the orthogonal projections such that

$$
\begin{aligned}
& P_{+}\left(\sum_{k=-\infty}^{\infty} f(k) z^{-k}\right)=\sum_{k=0}^{\infty} f(k) z^{-k} \\
& P_{-}\left(\sum_{k=-\infty}^{\infty} f(k) z^{-k}\right)=\sum_{k=-\infty}^{-1} f(k) z^{-k}
\end{aligned}
$$

Let $J: \mathcal{L}_{2} \rightarrow \mathcal{L}_{2}$ denote the reversal operator and $S: \mathcal{L}_{2} \rightarrow$ $\mathcal{L}_{2}$ denote the backward shift operator such that

$$
\begin{aligned}
& J F(z)=F\left(z^{-1}\right) \\
& S F(z)=z F(z)
\end{aligned}
$$

Clearly $J$ and $S$ are both unitary operators. For any $F(z)=$ $\frac{\alpha(z)}{a(z)} \in \mathcal{X}_{a}$, we have

$$
J F(z)=F\left(z^{-1}\right)=\frac{\alpha^{*}(z)}{a^{*}(z)}
$$

where $a^{*}(z)=z^{n} a\left(z^{-1}\right)$ and $\alpha^{*}(z)=z^{n} \alpha\left(z^{-1}\right)$.
Definition Given a stable system with strictly proper transfer function $G(z)$, the associated Hankel operator $H_{G}: \mathcal{H}_{2}^{\perp} \rightarrow \mathcal{H}_{2}$ is defined by

$$
H_{G} U(z)=P_{+}(G(z) U(z)), U(z) \in \mathcal{H}_{2}^{\frac{1}{2}}
$$

It is well-known that $H_{G}$ is a finite rank operator when $G(z)$ is rational.

Lemma 1 [3] Let $G(z)=\frac{b(z)}{a(z)}$ be a strictly proper stable transfer function. Then

$$
\begin{aligned}
I m H_{G} & =S \mathcal{X}_{a} \\
\left(K e r H_{G}\right)^{\perp} & =J \mathcal{X}_{a}
\end{aligned}
$$

The Hankel operator $H_{G}$ is the orthogonal direct sum of a zero operator and a compression of $H_{G}$ mapping $J \mathcal{X}_{a}$ into $S \mathcal{X}_{a}$. Everything interesting about it is contained in this compressed part.

This compressed Hankel operator can be represented by a matrix if we choose a basis in $\left(\operatorname{Ker} H_{G}\right)^{\perp}$ and a basis in $\operatorname{Im} H_{G}$. Note that both $\left(\operatorname{Ker} H_{G}\right)^{\perp}$ and $\operatorname{Im} H_{G}$ are isomorphic to $\mathcal{X}_{a}$, so we can use the orthonormal basis of $\mathcal{X}_{a}$

$$
\left\{E_{n}(z), \quad E_{n-1}(z), \quad \cdots, \quad E_{1}(z)\right\}
$$

defined in Theorem 2 to form an orthonormal basis in $\left(\operatorname{Ker} H_{G}\right)^{\perp}$

$$
\left\{E_{n}\left(z^{-1}\right), \quad E_{n-1}\left(z^{-1}\right), \quad \ldots, \quad E_{1}\left(z^{-1}\right)\right\}
$$

and one in $\operatorname{Im} H_{G}$

$$
\left\{z E_{n}(z), \quad z E_{n-1}(z), \quad \ldots, \quad z E_{1}(z)\right\}
$$

The matrix representation under this basis is denoted by $\Gamma_{G}$. The singular values of $\Gamma_{G}$ are called the Hankel singular values of $G(z)$ and are denoted by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$. We assume that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}
$$

The largest singular value is called the Hankel norm of $G(z)$ and is denoted by $\|G(z)\|_{H}$. Let $\left(u_{i}, v_{i}\right)$ be a left and right singular vectors of $\Gamma_{G}$ corresponding to $\sigma_{i}$ and let

$$
\begin{aligned}
U_{i}(z) & =\left[\begin{array}{llll}
z E_{1}(z) & z E_{2}(z) & \cdots & z E_{n}(z)
\end{array}\right] u_{i} \\
V_{i}(z) & =\left[\begin{array}{llll}
E_{1}\left(z^{-1}\right) & E_{2}\left(z^{-1}\right) & \cdots & E_{n}\left(z^{-1}\right)
\end{array}\right] v_{i} .
\end{aligned}
$$

Then $\left(U_{i}(z), V_{i}(z)\right)$ is called a Schmidt pair of $H_{G}$ corresponding to $\sigma_{i}$.

Since the matrix representation $\Gamma_{G}$ depends on the choice of the basis, it seems that the Hankel singular values and the corresponding Schmidt pairs also depend on the choice of basis. Actually this is not the case. As long the basis is an orthonormal one, we will end up with the same singular values and Schmidt pairs.

We are interested in computing the Hankel singular values and Schmidt pairs of $H_{G}$, the key is to find $\Gamma_{G}$ from $G(z)=\frac{b(z)}{a(z)}$.

Theorem 3 Construct the Jury table of $a(z)$. Define matrix $A$ as in (9) and $M$ as:

$$
M=\left[\begin{array}{cccc}
\gamma_{1} a_{0}^{1} & 0 & \cdots & 0 \\
\gamma_{1} a_{1}^{1} & \gamma_{2} a_{0}^{2} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
\gamma_{1} a_{n-1}^{1} & \gamma_{2} a_{n-2}^{2} & \cdots & \gamma_{n} a_{0}^{n}
\end{array}\right]
$$

Then

$$
\Gamma_{G}=a^{*}(A)^{-1} b(A) M^{-1}\left[\begin{array}{ccc}
0 & \cdots & 1  \tag{8}\\
\vdots & . & \vdots \\
1 & \cdots & 0
\end{array}\right] M
$$

The adjoint Hankel operator $H_{G}^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}^{1}$ is given by

$$
H_{G}^{*} U(z)=P_{-}\left(G\left(z^{-1}\right) U(z)\right), U(z) \in \mathcal{H}_{2}
$$

and

$$
\begin{aligned}
\operatorname{Im} H_{G}^{*} & =J \mathcal{X}_{a}, \\
\left(\operatorname{Ker} H_{G}^{*}\right)^{\perp} . & =S \mathcal{X}_{a} .
\end{aligned}
$$

Corollary 3 The adjoint Hankel operator $H_{G}^{*}$ satisfies

$$
\begin{equation*}
H_{G}^{*}=S J H_{G} S J \tag{10}
\end{equation*}
$$

Remark: By definition, the matrix representation of $H_{G}^{*}$ is the transpose of that of $H_{G}$. Hence Corollary 3 implies that $\Gamma_{G}$ is symmetric.

Since $\Gamma_{G}$ is symmetric, it is easy to show that

$$
\begin{equation*}
U_{i}(z)=\epsilon z V_{i}\left(z^{-1}\right)=\epsilon S J V_{i}(z) \tag{11}
\end{equation*}
$$

where $\epsilon= \pm 1$. This fact may offer some simplification in the computation. We also give the following algorithm to find the Hankel matrix $\Gamma_{G}$, its singular values and corresponding Schmidt pairs.

Algorithm 2: Computation of Hankel matrix $\Gamma_{G}$, its singular values and corresponding Schmidt pairs.

Step 1 Construct the Jury table of $G(z)$.
Step 2 Construct matrices $A$ and $M$ as in Theorem 4.
Step 3 Use (8) to compute $\Gamma_{G}$.
Step 4 Use MATLAB command

$$
[u, s, v]=s v d\left(\Gamma_{G}\right)
$$

to get the singular value decomposition of $\Gamma_{G}$.
Step 5 The singular values of $\Gamma_{G}$ are given by

$$
\sigma_{i}=s_{i i}, \quad i=1,2, \cdots, n
$$

where $s_{i i}$ is the $i$-th diagonal element of $s$.
Step 6 The corresponding Schmidt pairs are given by

$$
\begin{aligned}
U_{i}(z) & =\left[\begin{array}{lll}
z E_{n}(z) & \cdots & z E_{1}(z)
\end{array}\right] u_{i} \\
V_{i}(z) & =\left[\begin{array}{lll}
E_{n}\left(z^{-1}\right) & \cdots & E_{1}\left(z^{-1}\right)
\end{array}\right] v_{i}
\end{aligned}
$$

where $u_{i}$ and $v_{i}$ are the $i$-th column of $u$ and $v$.

## Example 2

Consider

$$
G(z)=\frac{b(z)}{a(z)}=\frac{\sqrt{2} z+1 / 2}{z^{2}+\sqrt{2} z+1 / 2} .
$$

From Example 1, we can get

$$
A=\left[\begin{array}{cc}
-\frac{\sqrt{2}}{3} & \frac{1}{3} \\
-\frac{1}{6} & -\frac{2 \sqrt{2}}{3}
\end{array}\right], M=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & 0 \\
\sqrt{\frac{2}{3}} & \frac{1}{12}
\end{array}\right],
$$

and

$$
\Gamma_{G}=\left[\begin{array}{cc}
1.8856 & -3.3333 \\
-3.3333 & 3.7712
\end{array}\right]
$$

The singular values of $\Gamma_{G}$ are

$$
\sigma_{1}=6.2925, \sigma_{2}=0.6357
$$

and the corresponding singular vectors are

$$
\begin{aligned}
& {\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.6033 & 0.7975 \\
0.7975 & -0.6033
\end{array}\right],} \\
& {\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.6033 & -0.7975 \\
0.7975 & -0.6033
\end{array}\right] .}
\end{aligned}
$$

The corresponding Schmidt pairs are given by

$$
\begin{aligned}
U_{1}(z) & =-\frac{0.52 z^{2}+0.26 z}{z^{2}+\sqrt{2} z+0.5} \\
V_{1}(z) & =-\frac{0.26 z^{2}+0.52 z}{0.5 z^{2}+\sqrt{2} z+1} \\
U_{2}(z) & =\frac{0.69 z^{2}+0.83 z}{z^{2}+\sqrt{2} z+0.5} \\
V_{2}(z) & =-\frac{0.83 z^{2}+0.69 z}{0.5 z^{2}+\sqrt{2} z+1} .
\end{aligned}
$$

## V. HANKEL APPROXIMATION AND THE NEHARI PROBLEM

In this section, we first have a look at the theory of Hankel norm approximation problem. Given a stable system with strictly proper transfer function, we want to find a lower order system to approximate the high order system so that the Hankel norm of the error is minimized.

Theorem 4 Let $\left(U_{k+1}(z), V_{k+1}(z)\right)$ be the Schmidt pair of $H_{G}$ corresponding to $(k+1)$-st Hankel singular value $\sigma_{k+1}$. Then

$$
\min _{\operatorname{ler} \tilde{\tilde{G}}(z) \leq k}\|G(z)-\tilde{G}(z)\|_{H}=\sigma_{k+1},
$$

and the unique minimizing $\tilde{G}(z)$ is given by

$$
\tilde{G}(z)=G(z)-P_{+}\left[\sigma_{k+1} \frac{U_{k+1}(z)}{V_{k+1}(z)}\right]
$$

## Example 3

We wish to find the 1st order Hankel approximation $\tilde{G}(z)$ of

$$
G(z)=\frac{\sqrt{2} z+1 / 2}{z^{2}+\sqrt{2} z+1 / 2} .
$$

From Example 2, we can get

$$
\min _{\text {order } \bar{G}(z) \leq k}\|G(z)-\tilde{G}(z)\|_{H}=\sigma_{2}(G(z))=0.6357
$$

and the best approximation is given by

$$
\begin{aligned}
\tilde{G}(z) & =G(z)-P_{+}\left[\sigma_{2} \frac{U_{2}(z)}{V_{2}(z)}\right] \\
& =\frac{0.22 z+1.74}{0.83 z+0.69}
\end{aligned}
$$

The Nehari problem [12] is another approximation problem with respect to the $\mathcal{L}_{\infty}$ norm: Given a stable strictly proper system $G(z)=\frac{b(z)}{a(z)}$, find $Q(z) \in \mathcal{H}_{\infty}$ to minimize

$$
\left\|G\left(z^{-1}\right)-Q(z)\right\|_{\infty}
$$

Theorem 5 Let $\left(U_{1}(z), V_{1}(z)\right)$ be the Schmidt pair of $H_{G}$ corresponding to the largest Hankel singular value $\sigma_{1}$. Then

$$
\min _{Q(z) \in \mathcal{H}_{\infty}}\left\|G\left(z^{-1}\right)-Q(z)\right\|_{\infty}=\sigma_{1}
$$

and the unique minimizing $Q(z)$ is given by

$$
Q(z)=G\left(z^{-1}\right)-\sigma_{1} \frac{U_{1}\left(z^{-1}\right)}{V_{1}\left(z^{-1}\right)}
$$

## Example 4

For

$$
G(z)=\frac{\sqrt{2} z+1 / 2}{z^{2}+\sqrt{2} z+1 / 2}
$$

We wish to find $Q(z) \in \mathcal{H}_{\infty}$ to minimize

$$
\left\|G\left(z^{-1}\right)-Q(z)\right\|_{\infty}
$$

From Theorem 6 and Example 2, we can get

$$
\min _{Q(z) \in \mathcal{H}_{\infty}}\left\|G\left(z^{-1}\right)-Q(z)\right\|_{\infty}=6.2925
$$

and the unique minimizing $Q(z)$ is given by

$$
\begin{aligned}
Q(z) & =G\left(z^{-1}\right)-\sigma_{1} \frac{U_{1}\left(z^{-1}\right)}{V_{1}\left(z^{-1}\right)} \\
& =-\frac{2.78 z+1.64}{0.52 z+0.26}
\end{aligned}
$$

Theorem 4 and Theorem 5 are known as part of the AAK theory [1] and see also [3], [16]. The novalty here is that the required Schmidt pairs can be computed by means of the orthonormal functions generated from the Jury table.

## VI. CONCLUSION

An algorithm of finding orthonormal rational functions from the Jury table is given in this paper. Applications of these orthonormal functions include the calculation of $\mathcal{H}_{2}$ norm, computation of the Hankel singular values and Schmidt pairs, the solutions to the Hankel norm approximation and the Nehari problem.

## VII. ACKNOWLEDGMENTS

This research is supported by the Hong Kong Research Grants Council.

## VIII. REFERENCES

[1] V. M. Adamjan, D. Z. Arov and M. G. Krein, "Analytical properties of Schmidt pairs for a Hankel operator and the generalized Schur-Tagagi problem", Math. USSR Sbornik, vol. 15, pp. 31-73, 1971.
[2] K. J. Åström, Introduction to Stochastic Control Theory, Academic Press, New York, 1970.
[3] P. A. Fuhrmann, A Polynomial Approach to Linear Algebra, Springer, New York, 1996.
[4] K. Glover,"All optimal Hankel-norm approximations and their $L^{\infty}$-error bounds", Int. J. Contr. vol.39, pp. 1115-1193, 1984.
[5] Y. P. Harn and C. T. Chen, "A proof of a discrete stability test via the Lyapunov theorem", IEEE Trans. Auto. Contr., vol. AC. 26, pp. 457-480, 1981.
[6] P. Heuberger, P. M. J. Van den Hof and O. Bosgra, " A generalized orthonormal basis for linear dynamical systems", IEEE Trans. Auto. Contr., vol. 40, pp. 451465, 1995.
[7] E. I. Jury and J. Blanchardy, "A stability test for linear discrete systems in table form", Proc. $I R E$, vol. 50, pp. 1947-1948, 1961.
[8] S. Y. Kung, "Optimal Hankel-norm model reductions: multivariable systems", IEEE Trans. Auto. Contr, vol. AC. 26, pp. 832-852, 1981.
[9] W. H. Kautz, "Transient synthesis in the time domain", IRE Trans. on Circuit Theory, vol. CT-1, pp. 29-39, 1954.
[10] Y. W. Lee, "Synthesis of electrical networks by means of the Fourier transforms of Laguerre functions", J. Math. Physics, vol. 11, pp. 83-113, 1933.
[11] B. Ninness and F. Gustasson, "A unfying construction of orthonormal bases for system identification", IEEE Trans. Auto. Contr., vol. 42, pp. 515-521, 1997.
[12] Z. Nehari, "On bounded bilinear forms", Annals of Mathenatics, vol. 15(1), pp. 153-162, 1957.
[13] L. Qiu and T. Chen, "What can Routh table offer in addition to stability?", IFAC Symposium on Robust Control Design, 2003.
[14] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series. Cambridge, MA: MIT Press, 1949.
[15] N. Young, "The singular-value decomposition of an infinite Hankel matrix", Linear Algebra and Its Applications, vol. 50, pp. 639-656, 1983.
[16] N. Young, An Introduction to Hilbert Space, Cambrige University Press, 1988.
[17] K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, New Jersey, 1996.

