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Almrod-The Jury table is used to construct orthonormal 
rational functions. Applications of these orthonormal functions 
in the computation of Hz norm, the computation of the Hankel 
singular values and Schmidt pairs, the solutions to the Hankel 
norm approximation and the Nehari problem are given. 

1. INTRODUCTION 
Various orthogonal functions play important roles in sci- 

ence and engineering. Examples include orthogonal poly- 
nomials, the standard basis functions in Fourier series or 
power series, wavelet functions. In this paper, we deal with 
orthogonal rational functions. The study of orthogonal ratio- 
nal functions has a long history. The idea of decomposing 
a linear system in tenn of orthogonal components, such as 
Laguerre functions, other than the functions in the standard 
Fourier series dates hack to the work of Lee [IO] and 
Wiener [14]. Kautz [9] formulated a more general class of 
orthogonal rational functions with two parameters. Heuberger 
et al. 161 developed a theory on construction of orthogo- 
nal rational functions using balanced realizations of inner 
transfer functions. The standard basis functions in power 
series, Laguerre functions and Kautz functions are special 
cases in this theory. A further generalization was presented 
by Ninness and Gustasson [ll].  The studies in [6] and [ I l l  
are motivated by applications in system identification. 

These recently developed orthogonal functions are gen- 
erated through the balanced realization of inner transfer 
functions and hence rely on modem state space system 
theory. Some new investigation of the connection between 
advanced optimal and robust control problems and the clas- 
sical tools for continuous time systems is recently carried out 
by Qiu [13]. It is shown that the Routh table can be used 
to form orthonormal rational functions, to compute the Ha 
norm of a stable transfer function and can also be used to 
find the Hankel singular values and vectors, hence yielding 
the solution to the Hankel approximation and the Nehari 
problems. 

The Jury table and the Jury stability criterion are the 
counterparts of the Routh table and the Routh stability 
criterion in the discrete time case. In this paper, we will 
show that the Jury table can also be used to construct 
orthonormal rational functions, IO compute the ?& norm, 
to find the Hankel singular values and the corresponding 
Schmidt pairs and to solve the Hankel approximation and 
the Nehari problems. 

11. JURY STABILITY TEST AND ORTHONORMAL 
FUNCTIONS 

Consider a polynomial 

a(;)  = aotn + + . . . + an, 

where ai E P and a0 > 0. It is said to he stable if all of its 
roots are inside the unit disk. 

Construct the Jury table [7] 

In the Jury table, the first row is copied from the coefficients 
of the polynomial, 

$,=ao, a : = a l ,  ..., a",l=an-l, aO,=a,. 

The row r:, i = 0 , .  ' .  , n - 1, is obtained by writing the 
elements of the preceding row in the reverse order. The row 
rtr 7 = 1,. . . , n, is computed from its two preceding rows 
q-1 and r:-, as 

for z = 0 ,..., n -  1, j = 0 ,..., n-7  - 1 

Theorem 1 (Jury Stability Criterion) [7] The foNowing 
sfafeiiienrs are equii~alent: 
( I )  a ( z )  is srable. 
(2)  ab > 0 for a// z = 1 , .  . . , n. 
(.?)/ab\> lab- , l fora/ / r=O,l , . . .  ,n -1 .  

In general, the Jury table cannot be completely constructed 
when at, = 0 for some 1 5 i < n. In this case, there is 
no need to complete the rest of the table since we already 
know from the Jury stability criterion that the polynomial is 
unstable. 

In this paper, we will see that the utility of the Jury table 
goes much beyond testing the stability of a polynomial. In 
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particular, it can be used to construct a set of orthonormal 
rational functions and these orthonormal functions can in turn 
be used to address various analysis and synthesis issues in 
system theory. 

Let us first recall some frequently used function spaces 
[SI. Denote the open unit disk by D = { z  E C : 111 < 1) 
and the unit circle T = { z  E C : JzI = 1). 

C2 Space 

circle, i.e. functions F ( z )  satisfying 
C2 is the space of square integrable functions on the unit 

y- 

F(eJ")F(&")dw < m. 1, 
It is well-known that any F ( z )  E Cz can be represented by 

m 
F ( z )  = f ( k ) z - k .  

k=-m 

The inner product in this space is defined as 

( F ( z ) , G ( z ) )  := /= F(e.IW)G(e'")du 
2 7  -g 

for F ( z ) , G ( z )  E C.2 and the induced norm is given by 

IIF(z)ll2 = J ( F O , F ( Z ) ) .  

H2 Space 
The subspace of L2 with functions analytic outside of D. 

It is well-known that any F ( z )  E 'Hz  can be represented by 
m 

F ( z )  = C f ( k ) t - k .  
k=O 

H$ Space 
The subspace of Cz with functions analytic in D and vanish 

at 0. It is well-known that Hi is the orthogonal complement 
of 'HZ and any F ( z )  E Hi can be represented by 

k=--m 

The sets of real rational members of C2, H2 and 71: are 
denoted by RC2, R'H? and R'H: respectively. Let a(.), b(z) 
be polynomials with real coefficients, then these spaces have 
the following characterizations: 

R C ~  = % : a ( z )  # o for z E T 
R712 = 1 a E R C z  : a(z) stable,degb(z) 5 d e g a ( z ) }  

'RH: = { 3 E RCz : a ( t )  antistable, 3 = 0} 

1 

where a(.) being antistable means that all roots of a(.) are 
outside the unit disk. 

Since we are only interested in real rational functions, in 
the rest of this paper, we will assume that the polynomials 
considered all have real coefficients. 

Let us now fix a stable polynomial 

a( . )  = ogz" + a1tn-l + . .  . +a,, a0 > 0. 

Consider the set of suictly proper rational functions with 
denominator a(z) 

degb(z )  < d e g a ( z )  

Clearly, X, is an n-dimensional subspace of R'Hz. In appli- 
cations, as evidenced later in this paper, it is desirable to find 
a basis, or better an orthonormal basis of X,. 

The most commonly used basis of X, is the standard basis 

In general, this basis is not orthonormal. Using this basis, 
an orthonormal basis can be constructed by using the Gram- 
Schmidt orthonormalization process: 

for i = 1,2 , .  . . , n. Carrying out this orthonormaliza- 
tion process requires the computation of the inner product 
(Ek ( z ) ,F ; ( z ) ) ,  which is cumbersome. We will see that this 
orthonormal basis can be obtained by using the July table. 

Recall the Jury table of a ( z )  and for the rows T ~ ,  i = 
1 ,2 , .  . . , n, define polynomials 

al(z) = a:zn-l +a:z"-' + . . . + (5 )  

Since a ( z )  is stable, a; > 0, lab1 > laL-;l, f o r i  = 
1,2 , .  . . , n. We can define 

Theorem 2 The orthonormal functions E$ (2) satisfy 

An altemative orthonormal basis can be given in terms of 
the reverse versions of the polynomials in (5). 

Corollary 1 ,!.et {F,(z) = 3, = 1 ,2  ,..., n )  
be the "reversed" standard asis of X, and 
{ & ( z ) ,  i = 1 , 2 , .  . . ,n) be rhe functions obtained from 
the orthonormalization _of this basis via the Gram-Schmidt 
process. The functions E, ( z ) ,  i = 1,2, . . . , n, satisjj 

n-, . 
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An orthonormal basis of 'Hz can he extended from the 
orthonormal basis of X,. 

Corollary 2 Let 

be the innerfunction generated by a stable polyonrial a(.) 
and E , ( z )  be the orthonormalfunctions in Theorem 2. n2e 
functions 

I / k u n + r ( ~ ) = z ~ , ( z ) ~ ) C ( ~ ) ,  i = l ,  ..., n, k=O,... ,CO, 

form an orthonomtal basis of U2 

111. COMPUTATION OF THE 'Hz NORM 
Consider a stable system 

then we can expand G ( z )  as 

PO PI Pn G ( z ) =  --Eo( z)+-En-i(z)+ . . .+- EI(z), 
70  71 7" 

(6) 

where Eo(r)  = 1, 70 = 1 and we can get 

Finding pi, i = 0,. . . , n, is simple. One only need to com- 
pare the coefficients in (6) and solve a set of linear equations. 
It turns out that these equations have special structnre and 
we can obtain $e orthonormal basis and these coefficients pi 
simultaneously by using the following augmented Jury table. 

.o, . . .  
% - 1  

at  1 an-] . . .  
I i  

a"-' bn-l b:-' 
.n-1 U;-' 

0 1 

a; ] a;-' j ai,' 

The augmented Jury table is formed by adding one block to 
the right of the usual Jury table. its first row is directly from 
the coefficients of b ( z )  : 

b: = bo, . . . , b,-l = b n - l ,  b: = b7,. 

The second, forth, sixth . . . rows of the additional block are 
copied from the corresponding rows in the Jury table and 

0 

the third, fifth . . . rows are computed from its two preceding 

for i = 0,. _ _  , n  - 1, j = O , . .  . ,n - z - 1. 

a stable proper transfer function. 

Algorithm 1: Computation of the 'HHZ norm 

In summary, the following algorithm gives the 2-norm of 

Step 1 Compute the augmented Jury table of G(z ) .  

S t e p 2 S e t P  z - 9  - a;> i = ~ ,  ..., n. 

Step 3 llG(z)IIZ = ,&EL,P?ab 
A similar method to compute the 'H2 norm also appeared 

in [2] where the augmented Jury table was defined in 
a "reverse" way. The method in [21 follows directly by 
expanding G(t )  in terms of the orthonormal basis {E , ( z ) }  
of X, as in Corollary 1. 

Example 1 
Consider 

The augmented Jury table of G(r)  is 

$ 3  

6 

The orthonormal basis of X ,  is given by 

IV. HANKEL SINGULAR VALUES AND SCHMIDT 
PAIRS 

Hankel operators find various applications in engineering 
problems such as in model reduction [SI and optimal control 
[17]. Analysis of the Hankel singular values and Schmidt 
pairs ([l], [3], [4], [15]) is the key for these applications. The 
recent developments are based on state space realizations, we 
try to find a new approach from the transfer function point 
of view by using the orthonormal functions constructed in 
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Theorem 2. Young [I51 studied a similar problem by using 

Let P+ : Lz --t H z  and P- : LZ -+ Hi denote the 
a non-orthogonal basis. 

orthogonal projections such that 
m 

P+ ( 2 j ( k ) z - ' )  = x f ( k ) z - k ,  
k = - m  k=O 

Let J : L 2  i L2 denote the reversal operator and S : L2 4 
L2 denote the backward shift operator such that 

J F ( z )  = F ( z - ' )  
SF(2)  = zF(2).  

Clearly J and S are both unitary operators. For any F ( r )  = 
E X,, we have 

where a'(z)  = z"a(z-') and a*(.) = z"a(z-') 

Definition Given a stable system with strictly pmper 
transfer function G(z) ,  the associated Hankel operator 
HG : 7ik -t 7 i z  is defined by 

HGU(B) = P+(G(z)U(t)): U ( Z )  EH$ 
It is well-known that HG is a finite rank operator when G(r)  
is rational. 

Lemma 1 [3] Let G(z )  = 
transfer function. n ~ e n  

be a stricrly proper stable 

ht7HG = SX,, 
(KerHc)' = JX,. 

The Hankel operator HG is the orthogonal direct sum of 
a zero operator and a compression of HG mapping J X ,  
into SX,. Everything interesting about it is contained in this 
compressed pan. 

This compressed Hankel operator can be represented by 
a matrix if we choose a basis in (KerHc)' and a basis in 
Im&. Note that both (KerHC)' and ImHG are isomorphic 
to X,, so we can use the orthonormal basis of X, 

{ En(z), En-i(z), ' . .  Ei(z) } 

defined in Theorem 2 to form an orthonormal basis in 
(KerHc)' 

{ En(z-1)? En-l(z-~), ..., E1(t-') } 

{ ZE"(Z), ZEn--l(Z), . . ., Z E l ( Z )  } .  

and one in ImHG 

The matrix representation under this basis is denoted by r G .  
The singular values of r G  are called the Hankel singular 
values of G(z )  and are denoted by U , ,  u2, ..., un. We 
assume that 

U ]  2 U2 2 . . ' 2 an 

The largest singular value is called the Hankel n o m  of G ( z )  
and is denoted by I~G(z)IIH. Let ( u , , v ~ )  be a left and right 
singular vectors of r G  corresponding to U; and let 

U~(Z) = [ Z E I ( Z )  ZEZ(Z) ... zE,(z) ]U* 
K(2) = [ El(2-1) Ez(2-l) " '  En@]) ] V i .  

Then ( U i ( z ) , K ( z ) )  is called a Schmidt pair of HG corre- 
sponding to 0;. 

Since the matrix representation l?G depends on the choice 
of the basis, it seems that the Hankel singular values and 
the corresponding Schmidt pairs also depend on the choice 
of basis. Actually this is not the case. As long the basis is 
an orthonormal one, we will end up with the same singular 
values and Schmidt pairs. 

We are interested in computing the Hankel singular values 
and Schmidt pairs of HG. the key is to find r G  from 
G ( z )  = 3. 
Theorem 3 Construct the Jury rable of a ( z ) .  Define matrix 
A as in ( 9 )  and A.I as: 

O 1  0 ... 

Then 

A =  
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The adjoint Hankel operator H; : H? i H i  is given by 

H z U ( z )  = P-(G(z-')U(z))> O(z) E H z  

and 

ImH; = JX,, 

(KerH;): = SX,. 

Corollary 3 The ao'joiirr Hankel operator HE sarisjies 

H& = SJHGSJ .  (10) 

Remark By definition, the matrix representation of H; is 
the transpose of that of HG. Hence Corollary 3 implies that 
rc is symmetric. 

Since rc is symmetric, it is easy to show that 

U t ( 2 )  = tZK(z-1) = €SJK(i) (11) 

where E = H. This fact may offer some simplification 
in the computation. We also give the following algorithm 
to find the Hankel mauix r G ,  its singular values and 
corresponding Schmidt pairs. 

Algorithm 2: Computation of Hankel matrix Tc, 
its singular values and corresponding Schmidt pairs. 

Step 1 Construct the Jury table of G ( t )  

Step 2 Construct matrices A and A i  as in Theorem 4. 

Step 3 Use (8) to compute re. 
Step 4 Use MATLAB command 

[ U ,  s ,v l  =svd(rc) 

to get the singular value decomposition of TG. 

Step 5 The singular values of rc are given by 

g . - s . .  i =  1 2 . . . .  n 

where sii is the i-th diagonal element of s. 

Step 6 The corresponding Schmidt pairs are given by 

1 - I , ,  , ,  . I  

U&) = [ Z E , ( Z )  " '  iEl(2) 1.i; 

K(z)  = [ E,,(z-I) ' . '  E1(z - ' )  ] U i r  

where ui and vi are the i-th column of U and U. 

Example 2 
Consider 

From Example 1, we can get 

I and 
1.8856 -3.3333 

-3.3333 3.7712 r c=  [ 
The singular values of rc are 

ul = 6.2925, U' = 0.6357, 

and the corresponding singular vectors are 

0.7975 -0.6033 1 ' -0.6033 0.7975 
[ U1 U2 I = 

1 -0.6033 -0.7975 
0.7975 -0.6033 [ U1 U2 I = 

The corresponding Schmidt pairs are given by 

' 0 . 5 2 ~ ~  + 0.262 
z2 i fiz + 0.5 

UI(2) = - 
0 . 2 6 ~ ~  + 0.522 

0.5z2 + &z + 1 
VI(.) = ' - 

0.832' + 0.692 V'(2) = - 
0.52' + f i z  + 1 

V. HANKEL APPROXIMATION AND THE NEHARI 

Io this section, we first have a look at the theory of 
Hankel norm approximation problem. Given a stable system 
with strictly proper transfer function, we want to find a 
lower order system to approximate the high order system so 
that the Hankel norm of the error is minimized. 

Theorem 4 Let (U~+~(Z),V~+~(Z)) be the Schmidt 
pair of HG corresponding to ( I ;  + 1)-s t  Hankel singular 
value u1;+1. men 

PROBLEM 

arid rlze unique niininiizing G ( t )  is given by 

Example 3 
We wish to find the 1st order Hankel approximation G ( z )  of 
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From Example 2, we can get 

min 
order E ( ; ) < k  

I/G(z) - G ( r ) l l ~  = uz(G(z)) = 0.6357 

and the best approximation is given by 

G ( i )  = G(z) -P+ 

0.222 + 1.74 - - 
0.832 + 0.69’ 

The Nehari problem 1121 is another approximation proh- 
lem with respect to the L, norm: Given a stable strictly 
proper system G ( t )  = %, find Q(z)  E 7-1, to minimize 

IlG(t-’) - Q(~)llm. 
Theorem 5 Let ( W l ( z ) ,  Vl(z)) be the Schmidr pair of HG 
corresponding ro the largest Hankel singular value u1. Then 

and the unique minimizing Q ( t )  is given by 

Examole 4 

We wish to find Q ( z )  E E, to minimize 

IlG(2-’) - Q(~)l lm. 
From Theorem 6 and Example 2, we can get 

and the unique minimizing Q ( z )  is given by 

2.782 + 1.64 
0.522 + 0.26’ 

= -  

Theorem 4 and Theorem 5 are known as part of the AAK 
theory [l] and see also [3], [16]. The novalty here is that 
the required Schmidt pairs can be computed by means of 
the orthonormal functions generated from the Jury table. 

VI. CONCLUSION 

An algorithm of finding orthonormal rational functions 
from the Jury table is given in this paper. Applications 
of these orthonormal functions include the calculation of 
E2 nom, computation of the Hankel singular values and 
Schmidt pairs, the solutions to the Hankel norm approxima- 
tion and the Nehari problem. 
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