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Performance Limitation in Random Sinusoidal Signal Estimation 
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Abstract- This paper studies the performance limitations of 
an LTI SISO discrete-time system in estimating a type of ran- 
dom input signal from its output signal. The input signal under 
consideration is a random sinusoidal signal. The estimation 
performance is measured by the energy of certain averaged 
error between the output of the estimator and the signal under 
estimation. Our purpose is to find the fundamental limit of the 
best attainable estimation performance under any estimator 
structure and parameters, in terms of the characteristics of 
the given system as well as the signal under estimation. It is 
shown that the fundamental limit depends on the interaction 
between the signal under estimation and the nonminimum 
phase zeros of the system. Moreover, this result is extended to 
optimal prediction and smoothing problems. 

Keywords-Performance limitations, optimal estimation, 
prediction, smoothing, periodic random signals. 

I. INTRODUCTION 
It has been known that all systems in the estimation 

problem have the best attainable performance under any 
possible design. This best attainable performance is often 
called the pe$ormance limit of systems in the literature. The 
knowledge on the performance limit of systems provides not 
only a deeper insight for the systems but also certain design 
benchmarks for the problems under consideration. In the 
estimation theory, the Cram&-Rao bound (see, for example, 
[15]) is the most famous performance limit of the optimal 
estimation. Recently, there appear many interesting works 
on performance limitations in various estimation problems. 
For instance, under certain criterion, Weiss et al. [16] 
obtained an explicit minimal estimation error of subband 
adaptive filters. In [2], the best achievable accuracy in 
estimating the parameters of a random-amplitude sinusoid 
from its sample covariances was derived. The performance 
limitations of optimal estimation are discussed for linear 
time-invariant (LTI) systems in [9] and [3]. As a common 
feature of systems, the performance limitation also appears 
in a variety of forms for other problems, such as Shannon 
capacity of a communication channel [4], Bode integral of a 
feedback system [ 101, and the optimal tracking performance 
limitations of an LTI system (see [13] and references 
therein). 

In this paper, we address the performance limits in 
estimating the input of an LTI discrete-time system from 
its output. The input signal is a random sinusoidal signal 
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(see, for example, [SI and [15]). The LTI system could be 
transmission channels of the random signal, measurement 
devices or any other possible practical systems. Indeed, 
random sinusoidal signals have many applications in areas 
such as communications, mechanical vibrating systems and 
signal processing (see [12], [l], [5] and references therein). 
During the last twenty years, various algorithms have been 
developed for parameter estimation of the signal (see [1]- 
[7], [ l l] ,  [12] and references therein). The existing works 
usually assume that the signal is perfectly known. However, 
in real systems, the signals could be distorted by trans- 
mission channels, measurement devices, etc. To remove the 
distortions, certain signal estimation methods are employed. 
The problem under consideration in this paper is to find 
some fundamental limitations on the signal estimation from 
the system’s characteristics and some signal’s parameters 
under all possible estimator designs. Since random sinu- 
soidal signals include many different types, we select a 
typical random sinusoidal signal as the design benchmark. 
In this case, the signal is a sinusoid with amplitude and 
phase related to two independent random walk processes. 
Our results show that the estimation performance limit of 
the system depends on the nonminimum phase zeros and 
the frequency of the sinusoid. Furthermore, the performance 
limits of prediction and smoothing are addressed. It is re- 
vealed that the prediction performance limit increases as the 
prediction step increases, while the smoothing performance 
limit approaches zero as the smoothing step tends to infinity. 

The notation used throughout this paper is fairly standard. 
For any complex number denote their conjugate, real and 
imaginary part by (.)*, R .) and I .), respectively. 
Denote the expectation of a random variable by E {. ) Let 
the open unit disk and the unit circle be denoted by D and 
T, respectively. The usual Lebesgue space of all possibly 
square integral functions on T is denoted by L2. The norm 
in the space L2 is denoted by 1 1  . Ib, where the norm of a 
function f (  A) in the space L2 is defined by 

The set of those functions in L2, which are analytic on the 
complementary set of ID, U T ,  is denoted by 1-12, and the 
set of those functions in L2,  which are analytic on D and 
vanish at the origin, is denoted by 1-1;. It is well known 
that 7 - l ~  and 1-1; are indeed orthogonally complementary to 
each other as subspaces of &. ‘IdFt, is the set of all stable 
functions (see, for example [17]). For any complex function 
f ( A ) ,  denote the function .f*(&) by f N ( A ) .  
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11. PROBLEM FORMULATION 

In this section, we will formulate the problems to be 
studied. The system shown in Figure 1 is considered. Here 

I I 

U U 
Fig 1. An estimator structure 

X = z-l is a unit delay operator; G(X) is the given plant 
transfer function; and Q(X) is the estimator transfer function 
which is to be developed. The parameter d in the part of 
Ad depends on the problems under consideration. For an 
estimation problem, d is selected as d = 0. For a prediction 
problem, this parameter is selected a negative integer (i.e., 
d 0) and \dl denotes the prediction step, while for a 
smoothing problem, d is selected a positive integer (i.e., 
d 0) and d stands for the smoothing step. y(k) is the 
measured signal, v(k) is the transmitted signal, 6(k) is the 
signal under estimation and 6 ( k )  is its estimate. Denote the 
A-transform of v(k) by V(X). 

The estimation performance is measured by the energy 
of estimation error: 

03 

J = E I ~ v ( ~ c )  - .i(l~)ll~ = E C lle(k)112 . (1) 

It follows from Parseval's relationship and the structure of 
the system that 

Lo I {io I 
J = E { IIPd - Q ( X ) G ( X )  V(A)ll;} 

1 27r = A [ev3 - &(ep3 )G(eC3 ) S(e-j ) 

- &(ep3 )G(eP3 ) * d  (2) 

where S(e-3 ) is the power spectrum of the signal v(k). 
The signal to be estimated is given by 

v(k) a-l(k)e-J 0' + al(k)eJ 0' (3) 

where a - l ( k )  and a l ( k )  are random amplitudes and mu- 
tually independent. Furthermore, a - l ( k )  and al ( k )  are 
generated by the autoregressive (AR) processes 

Q ( k )  Q ( k -  1) U l ( k ) ,  1 = -1'1 (4) 

where {ul ( k ) }  are independent and identically distributed 
(i.i.d.) normal random variables with 

E {uz(k)) = 0 ,  TUL(7) E {uz(k)uz(k + 7 ) )  = 6(7 ) .  

The amplitude model (4) generates a random walk process. 
The autocorrelation function of the signal v(k) in (3) is 

E { a-1 ( ~ c ) a ~ ,  (IC - T I }  e--3 oke3 
+ ~ { a l ( / c ) a ; ( k  - 7 ) )  e3 o'e-3 o ( ' - ~ )  

T ( T )  

= T , - ~  (7)e-j O7 + r,,(T)eJ O T .  (5) 

Following the discussion in [l], its power spectrum is 

1 1 1 
S(X) 

1 - 
1 - - 

3 0 1 -d-le-j 0 + 1 - -3 0 1 e X-le.1 0 .  

(6) 

A minimum phase V ( X )  is obtained via spectral factoriza- 
tion such that 

S(X) V(X)P-(X) (7) 

and 
e3(+%) e-3(%.. 2 4) 

1 - X  3 0 + k - X  -3 0 '  e 

e3(iiia-3rr -3(EQ-3ii 
2 4 )  e 2 4 )  

1 - ~ 3 0 + & - ~ - - 3 o ' e  WO E [7r 27r). 

J IIIXd - Q(X)G(X)  V(X)ll;. (9) 

woE[O,7r )  

(8) 
1 W )  

The estimation performance J in ( 2 )  is now written as 

Noticing (2) and (7), the function V ( X )  is an averaged 
function of V(X) in certain sense. 

To guarantee its numerical stability, the estimator Q(X) 
is selected from 'Ha. Our task is to find an explicit form of 
the smallest averaged estimation error, i.e., the performance 
limit of the system in estimating the random sinusoidal 
signal (3) ,  

Jo = in J (10) 

Let G(X) be a real rational function representing the transfer 
function of an LTI discrete time system and 41, 4 2 ,  . . . , qm 
be the nonminimum phase zeros of G(X) .  Assume that each 
pair of complex conjugate zeros is ordered in adjacent order. 
Denote a Blaschke factor associated with nonminimum zero 

&EX, 

4 2  by 
- 42 q,rx-l' 

Then G(X) can be factorized as 

G(X) Gi(X). . G" (X)Go(X) .  (1 1) 

where Go(X)  has no nonminimum phase zeros. This fac- 
torization is referred to as the inner-outer factorization. The 
product 

Gi (A) Gl(X). . G m ( X )  

is called a Blaschke product. 

111. PERFORMANCE LIMITS OF OPTIMAL ESTIMATION 
AND PREDICTION 

Let us go back to the setup shown in Figure 1. In order 
for the estimation problem to be meaningful and solvable, 
we make the following assumption throughout the paper. 

Assumption I: G(X) has no zeros at e-j 0 and e j  0. 
Now we are ready to discuss the minimal value of the 

estimation performance function J .  When d = 0, a nice and 
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explicit formula is obtained for the case where the periodic 
random signal w(IC) is 

where a-1 ( I C )  and a1 ( I C )  are the AR processes given by (4) 
and mutually independent. This result will then be extended 
to the prediction problem. 

Theorem I :  Let G(X) have nonminimum phase zeros 
41,. . ., qm. Then the performance limit of optimal estima- 
tion is given by 

m 1 + qie- j  0 

1 - qie-j o 
+ 

1 + qiej  0 
1 - qiej 0 

Note that due to limited space, only the proof of Theorem 
1 is presented in Appendix A. The proofs of the other 
theorems in the remainder of this paper are omitted, but 
the details can be found in [14]. 

We now discuss the performance limit of optimal predic- 
tion. In this problem, the parameter d in Figure 1 is selected 
as a negative integer (i.e., d 0) while the prediction step 
is Id](> 0). The performance function is given by 

J = II [Ad - Q(X)G(X) 11; 

This equality shows that the prediction problem for the 
system is equivalent to an estimation problem of the system 
with extra Id1 step delays. Since a unit delay causes one 
nonminimum phase zero at the origin, the system XldlG(X) 
has Id1 nonminimum phase zeros at the origin in addition 
to the nonminimum phase zeros of the system G(X). 
Therefore, straightforwardly applying Theorem 1 leads to 
following result. 

Theorem 2: Let G(X) have nonminimum phase zeros 
41, . . ., qm. Then, the performance limit of Id/-step optimal 
prediction is given by 

It should be mentioned that the results in Theorem 1 and 
2 can be extended to the case where the signal has multiple 
frequencies (see E141 for details). 

Iv. PERFORMANCE LIMIT OF OPTIMAL SMOOTHING 

In this section, the performance function under consider- 
ation is given by 

J = II [Ad - Q(X)G(X) V ( X )  11: (13) 

where d 0 is the delay steps in smoothing and, the 
averaged A-transform of the signal under estimation V(X) 
is given in (8). 

Theorem 3: Suppose that the system G(X) has only one 
nonminimum phase zero 41. Then the smoothing perfor- 
mance limit is given by 

This theorem shows that the larger the smoothing,step 
d is, the smaller the performance limit of the optimal 
smoother is. The performance limit approaches zero as 
d -+ m. Intuitively, this is easily understandable. This 
statement also holds for a system with more than one 
nonminimum phase zeros. 

Observation: Suppose that the system has more than 
one nonminimum phase zeros. Then the performance limit 
approaches zero as the smoothing step goes to infinity. 

V. CONCLUSIONS 
In this paper, the best achievable performance in estimat- 

ing an input of an SISO discrete-time system from its output 
has been discussed. A simple and explicit formula has been 
obtained for the case where the input is a sinusoid with 
amplitude and phase related to two mutually independent 
random walk processes. This result shows that the perfor- 
mance limit depends on the nonminimum phase zeros of 
the system and the interaction between the frequency of 
the signal and these zeros. Furthermore, the best achievable 
performance has been discussed for optimal prediction and 
smoothing, and similar results have been obtained for the 
system. It has been shown that for the prediction problem, 
the performance limit increases as the prediction step in- 
creases. On the other hand, for the smoothing problem, the 
performance limit will reach zero when the smoothing step 
tends to infinity. 

APPENDIX A 
PROOF OF THEOREM 1 

In this problem, the signal under estimation is the &rrent 
transmitted signal w(IC), i.e., d = 0. Following the discussion 
in Section 11, the estimation performance function is given 
by 

J = II [1 - G(X)Q(X) V(X) 112 
where the minimum phase solution of V ( X )  is given in (8). 
Denote the inner-outer factorization of G(X) by 

where GI (A), . . ., G, (A) are associated with nonminimum 
phase zeros 41, . . ., qm, respectively. 
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For the case in which the frequency W O  of the transmitted 
signal belongs to [0, T ) ,  the estimation performance J can 
be rewritten as 

and 

can be made to belong to 3-12 by properly choosing Q ( X ) .  
It then follows that 

Due to the facts that V ( X )  has minimum phase zeros and 
shares all the poles on the imaginary axis with 

there exists a Q(A) such that 

Define 

From the definition of G1(X), it holds that 

GT1(X) - GF1(e- jWo) - - 1-ql l-qlq; 
1 - Xejwl 1 - Xejwo 1-q;  (1-q1&O)(X-q1) 

Then we have 

Substituting (A-2) into (A-1) yields 

Repeating the above steps, we get 
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Define 

- j (  - QfQi)vTwOivkJOi 
( - q i e j  0) -q,’ej  0 ) e - j  o 

Clearly, J ,  = J ,  + Jo . Simple algebra shows that 

1 + qie-j  0 

1 - qiej 0 + 1 - qie-j  0 

J ,  = Z ( l + q i e j  

In the remaining part of this proof, induction will be used 
to show 

and notice the fact that 

Hence, the first term of J ,  is given by 

To carry out the induction, we assume that the sum of the 
first IC - 1 terms of J ,  is 

Thus, the sum of the first IC terms of J ,  is given by 
2 

s WO 
s 2(d1 + ’  ’ +4k). 

Following the similar steps as shown above and by induc- 
tion, we can get 

n z 
Jo = s 2(d1 + .  . + d m ) .  

’($1 + .  . + +m). 

s WO 

Similarly, for the case WO E [T 2 ~ ) ,  we have 
2 

s WO 
s -- Jo = 

Finally, the fact that 

leads to the result in this theorem. 0 

REFERENCES 
0. Besson, and P. Stoica, “Sinusoidal signals with random amplitude: 
Least-squares estimators and their statistical analysis,” IEEE Traps. 
Signal Processing, vol. 43, no. 11, pp. 2733-2744, 1995. 
0. Besson, and P. Stoica, “Estimation of the parameters of a 
random amplitude sinusoid by correlation fitting,” ZEEE Trans. Signal 
Processing, vol. 44, no. 11, pp. 2911-2916, 1996. 
J. H. Braslavsky, M. M. Seron, D. G. Mayne, and P. V. Kokotovic, 
“Limiting performance of optimal linear filters”, Automatica, vol 35, 
pp. 189-199, 1999. 
A. B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication 
System: An Introduction to Signals and Noise in Electrical Com- 
munication, 4th Ed., McGraw-Hill, New York, 2002. 
A. V. Dandawate, and G. B. Giannakis, “Nonparametric polyspectral 
estimators for kth-order (almost) cyclostationary processes dan- 
dawate,” IEEE Trans. Information Theory, vol. 40, no. 1, pp. 67-84, 
1994. 
T. Frederick and N. Erdol, “Time-frequency estimation for cyclo- 
stationary signals,” in Proc. 1996 IEEE Int. Con$ Acoust., Speech, 
Signal Process., vol. 5 ,  Atlanta, GA, May 1996, pp. 2928-2931. 
H. Li and Q. Cheng, “Some estimation problems for harmonics 
in muliplicative and additive noise,”, in Proc. 3rd International 
Conference on Signal Processing, vol. 1, Beijing, China, Oct. 1996, 

B. Picinbono, Random Signals and Systems. Prentice Hall: Engle- 
wood Cliffs, NJ, 1993. 
L. Qiu, Z. Ren and J. Chen, “Performance limitations in estimation”, 
Communications in Information and Systems, vol. 2, pp. 371-384, 
2002. 
M. M. Seron, J. H. Braslavsky and G. C. Goodwin, Fundamental 
Limitations in Filtering and Control, Springer-Verlag, London, 1997. 
J. M. Spanjaard and L. B. White, “Adaptive period estimation of a 
class of periodic random processes,” in Proc. 1995 IEEE In?. Cant 
Acoust., Speech, Signal Process., vol. 3, Detroit, MI, May 1995, pp. 
1792-1795. 
P. Stoica, H. Li and J. Li, “Amplitude estimation of sinusoidal 
signals: Survey, new results, and an application,” IEEE Trans. Signal 
Processing, vol. 48, no. 2, pp. 338-352, 2000. 
W. Su, L. Qiu and J. Chen, “Fundamental performance limitations in 
tracking sinusoidal signals”, IEEE Trans. Automat. Contr , vol. 48, 
no. 8, pp. 1371-1380, Aug. 2003. 
W. Su, W. X. Zheng and L. Qiu, “Performance limitations of linear 
discrete-time systems in estimating a periodic random processes”, 
submitted to IEEE Trans. Signal Processing, 2003. 
C. W. Themen, Discrete Random Signals and Statistical Signal 
Processing. Prentice Hall: Englewood Cliffs, NJ, 1992. 
S. Weiss, A. Stenger, R. W. Stewart, and R. Rabenstein, “Steay-state 
performance limitations of subband adaptive filiters,” IEEE Trans. 
Signal Processing, vol. 49, no. 9, pp. 1982-1991, 2001. 
M. Vidyasagar, Control System Synthesis: A Factorization Approach. 
Cambridge, MA: MIT Press, 1985. 

pp. 181-184. 

176 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 16,2021 at 03:32:35 UTC from IEEE Xplore.  Restrictions apply. 


