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Abstract 

In this paper, we address the performance limitation 
issues in estimation problems. Specifically, we study 
the performance limitations in four cases: (1) estimat- 
ing the output of an LTI system under the corruption 
of a white noise, (2) estimating a Brownian motion in- 
put of an LTI system from the output measurement, 
(3) estimating the output of an LTI system under the 
corruption of a Brownian noise, (4) estimating a white 
noise input of an LTI system from the output measure- 
ment. In each case we find and characterize explicitly 
how the best achievable estimation errors may relate 
to certain simple, intrinsic system characteristics. 

1 Introduction 

+-A$+ + 
Z 

Figure 1: A general estimation problem 

A standard estimation problem can often be schemat- 

ically shown by Fig. 1. Here P = [ ] is an LTI 
plant, U is the input to the plant, n is the measurement 
noise, z is the signal to be estimated, y is the measured 
signal, and 2 is the estimate of z. Often U and n are 
modelled as stochastic processes with known statistical 
means and covariances. We shall assume, without loss 
of generality, that the means of the stochastic processes 
are zero. The objective is to design an LTI filter F so 
that the steady state error variance 

V = ):% E[e( t ) ' e ( t ) ]  

is small. Clearly, for V to be finite for nontrivial U and 
n, it is necessary that F E RR, and H - FG E RX,. 
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This condition is also necessary and sufficient for the 
error to be bounded for arbitrary initial conditions of P 
and F ,  i.e., for the filter to be a bounded error estima- 
tor (BEE). There is an extensive theory for optimally 
designing the filter F to minimize V, see for example 
[l, 2,  61. The optimal error variance is given by 

V* = inf V. 
F,H-FGERRm 

Our interest in this paper is not to find the optimal 
filter F ,  which is addressed by the standard optimal 
filtering theory. Rather, we are interested in discov- 
ering how V* may be related to the intrinsic charac- 
teristics of the plant P in some special, yet important 
cases. Since V' gives a fundamental limit in achieving 
certain benchmark performance objectives in filtering 
problems, a simple relationship between V* and the 
plant characteristics will not only provide a deep un- 
derstanding and insightful knowledge on the estimation 
problems, but also can be used to assess the quality of 
different filter designs and to rule out impossible or un- 
realistic design objectives a priori. 

The variance V gives an overall measure on the size of 
the steady state estimation error. Sometimes, we may 
wish to focus on some more detailed features of the er- 
ror. For example we may be interested in a certain com- 
ponent of the estimation error projected to a certain di- 
rection, and henceforth the variance of the projection, 
which gives a measure of the error in the specific direc- 
tion of concern. Assume that z ( t ) ,  Z ( t ) ,  e ( t )  E Rm. Let 
[ E Rm be a vector of unit length representing a direc- 
tion in Rm. Then the projection of e ( t )  to the direction 
represented by is given by ['e(t) and its steady state 
variance is given by 

The best achievable error in the [ direction is then 
determined by 

inf Vc. v; = F,H-FGER'H, 

The optimal or near-optimal filter in minimizing Vc in 
general depends on E.  This very fact may limit the 
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usefulness of V;, since we are usually more interested 
in the directional error information under an optimal 
or near-optimal filter designed for all directions, i.e., 
designed to minimize V .  Let {Fk} be a sequence of 
filters satisfying Fk,H - FkG E %?,'U, such that the 
corresponding sequence of errors {ek} satisfies 

lim 
k - x c  

lim 
t+w 

Then we are more interested in 

v*([) = lim lim ~ [ ( [ ' e k ( t ) ) ~ ] .  
k + m  t+m 

In this paper, we will also derive the relations between V;, V*(<) and the characteristics of the plant P for the 
same cases when that for V* is considered. 

One should note tht performance limitations in estima- 
tion have been studied recently in [4,5,9,10] in various 
settings. In [4, 5 , 9 ] ,  the sensitivity and complimentary 
sensitivity functions of an estimation problem are de- 
fined and it is shown that they must satisfy certain in- 
tegral constraints independent of filter design. In [lo], 
a time domain technique is used to study the perfor- 
mance limitations in some special cases where one of n 
and U is diminishingly small and the other is either a 
white noise or a Brownian motion process. 

This paper addresses similar problems as in [lo] and 
their extensions, but is pursued from a pure input- 
output point of view using frequency domain tech- 
niques. We investigate the issues in more detail by 
providing directional information on the best errors. 
Our results are dual to those in [3, 71 where the perfor- 
mance limitations of tracking and regulation problems 
are considered. The new investigation provides more 
insights into the performance limitations of estimation 
problems. 

2 Preliminaries 

Let G be a continuous time FDLTI system. We will 
use the same notation G to denote its transfer matrix. 
Assume that G is left invertible. The poles and zeros 
of G, including multiplicity, are defined according to 
its Smith-McMillan form. A zero of G is said to be 
nonminimum phase if it has positive real part. G is said 
to be minimum phase if it has no nonminimum phase 
zero; otherwise it is said to be nonminimum phase. A 
pole of G is said to be antistable if it has a positive real 
part. G is said to be semistable if it has no antistable 
pole; otherwise it is said to be strictly unstable. As 
usual, G is said to be stable if all of its poles have 
negative real parts; otherwise it is said to be unstable. 

Suppose that G is stable and z is a nonminimum phase 
zero of G. Then, there exists a vector U of unit length 
such that 

G(z)u  = 0. 

We call U a (right or input) zero vector corresponding 
to the zero z. Let the nonminimum phase zeros of G be 

ordered as z1,z2, . . . , z,. Let also 771 be a zero vector 
corresponding to z1. Define 

Here 77; means the conjugate transpose of 771 . Note that 
G1 is so constructed that it is inner, has only one zero 
at z1 with 71 as a zero vector. Now GG,' has zeros 
z2,z3,. . . , zy.  Find a zero vector 712 corresponding to 
the zero 22 of GG;', and define 

2 Re z2 
G ~ ( s )  = I - - 772 71; s + z; 

It follows that GG,'GT1 has zeros z3,z4,. . . , zy.  Con- 
tinue this process until 71,. . . , qv and G I , .  . . ,G, are 
obtained. Then we have one vector corresponding to 
each nonminimum phase zero, and the procedure yields 
a factorization of G in the form of 

G = GoG" * * . G I ,  (1) 

where Go has no nonminimum phase zeros and 

2 Re z, 
G ~ ( s )  = I - - Vi qt s + z; 

Since Gi is inner, has the only zero at ti, and has 
as a zero vector corresponding to zi, it will be called a 
matrix Blaschke factor. Accordingly, the product 

G, G,. . .G] 

will be called a matrix Blaschke product. The vec- 
tors 71,. . . , r],, will be called zero Blaschke vectors 
of G corresponding to the nonminimum phase zeros 
z1,z2,. . . , z,,. These vectors depend on the order of 
the nonminimum phase zeros. One might be concerned 
with the possible complex coefficients appearing in Gi 
when some of the nonminimum phase zeros are com- 
plex. However, if we order a pair of complex conjugate 
nonminimum phase zeros adjacently, then the corre- 
sponding pair of Blaschke factors will have complex 
conjugate coefficient and their product is then real ra- 
tional and this also leads to real rational Go. 

The choice of Gi as in (2) seems ad hoc, notwithstand- 
ing that G, has to be unitary, has the only zero at zi 
with as a zero vector corresponding to zi. Another 
choice, among infinite many possible ones, is 

(3) 

and if this choice is adopted, the same procedure can 
be used to find a factorization of the form (1) .  In the 
latter case, the Blaschke vectors are not the same. We 
see that for the first choice Gi(oo) = I ,  whereas for the 
second choice G,(O) = I .  We will use both construc- 
tions in the sequel. For purpose of distinction, we will 
call the factorization resulting from the first choice (2) 
that of Type I and the one from the second choice (3) 
of type 11. 
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For an unstable G, there exist stable real rational ma- 
trix functions 

[ -% $ ] 3 [ ;  ;] 
such that 

G = NM-' = i I 2 - 1 f i  

and [ - -  ;I[ M Y  +. 

This is called a doubly coprime factorization of G. Note 
that the nonminimum phase zeros of G are the nonmin- 
imum phase zeros of N and the anti_stable poles of G 
are the nonminimum phase zeros of M .  If we order the 
antistable poles of G as pl , p 2 , .  . . ,p,, and the nonmin- 
imum phase zeros of G as 21, z2,. . . , z,, then M and 
N can be factorized as 

n;i = n;iOn;i,,..*n;il 
fi = &N" ... Nl 

with 
2 Rep, 

&(s) = I - - <a<;, s +pf 
i = 1,2  ,..., p (4) 

or 

Ci<i*, i = 1,2  ,..., p ( 5 )  n;r.( ) - 1- -- 
Pa s + p ;  

2Repi s 
I S  - 

and 
2 Re zi R~(s) = I - -T,I~Q;, i = 1,2 , .  . . , Y (6) s + zf 

or 
2Re2, s fi.( I S  ) - - I  - -- 7)i?$, i = 1,2  ,..., Y (7) 

za s + z; 

where <I, (2:. . . , <, are zero Blaschke vectors (of type 
I or 11) of M and 71,772,. . . ,q, are those of I?. Here 
also I&, and MO have no nonminimum phase zeros. 

Consequently, for any real rational matrix G with 
nonminimum phase zeros z1,z2, . . . , z, and antistable 
poles pl ,a,. . . , p P ,  it can always be factorized to 

as shown in Fig. 2, where 

and Go is a real rational matrix with neither nonmini- 
mum phase zero nor antistable pole. Although coprime 
factorizations of G are not unique, this does not affect 
factorization (8). 71,712, . . . ,7, are called zero Blaschke 
vectors (of type I or 11) and cl, (2, . . . , C, pole Blaschke 
vectors (of type I or 11) of G. 

-+&.- Go pz' .++ 
Figure 2: Cascade factorization 

3 Estimation under White Measurement Noise 

Figure 3: Estimation under measurement noise 

Consider the estimation problem shown in Fig. 3. Here 
G is a given FDLTI plant, and n is a standard white 
noise. The purpose is to design a stable LTI filter F 
such that it generates an estimate 2 of the true output 
z using the corrupted output y. This problem is clearly 
a special case of the general estimation problem stated 

in Sect. 1 with P = [ ] and U = 0. The error of 

estimation is given by Fn. Since n is a standard white 
noise, the steady state variance of the error is given by 

v = llF112" 
where 1) 112 is the 3 t 2  norm. If we want V to be finite, 
we need to have F(oo) = 0, in addition to F, G - FG E 
RX,. Therefore 

Let G = be a left coprime factorization of G. 
Then F E RX, and G - FG = ( I  - F)G = ( I  - 
F)A?-l& E RX, if and only if I - F = QM for some 
Q E R31,. Therefore 

V' = inf 111 - QMllX. 

Now assume that G has antistable poles pl , p 2 , .  . . , p ,  
with G, c 2 ,  . . . , [,, being the corresponding pole 
Blaschke vectors of type I. Then it? has the factoriza- 
tion 

QE'R'Ws , Q ( c o ) ~ ( m ) = I  

M = M o M , , .  . .MI  

where 

2 Re pi 
Mi(S) = I - - ca c s + p ;  
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Since ai(00) = I ,  i = 1,2, .  . . , p ,  it follows that 
Q(oo)M(m) = I is equivalent to Q(oo)fi,-,(oo) = I .  
Hence, by using the facts that ai, _i = 1,2 , .  . . , p, are 
unitary operators in Lz and that MT1 . ’ .  fi;’ - I E 
E; and I - QMo E 2 2 ,  we obtain 

v* = inf 111 - QA&fi,, . . * Mi 11; 
Q E R H ,  , Q ( . o ) & ( w ) = I  

QER7-L , Q ( ~ ) M o ( c Q ) = I  
- - inf lpy. .  . fi;1 - I + 

I - &Moll; 

Since MO is co-inner with invertible &fo(oo), there ex- 
ists a sequence { Q k }  E ‘RE, with Qk(m)fi~(oo) = I 
such that limk,, 111 - Qkfiollz = 0. This shows 

v* = 11fi;l . . . &j;1 - 111; 
- - 11M;l . . &f;1 - I + I - a1 11; 

111 - Mzll; = 2 c p i .  

= 11fi;l . . . - 111; + 111 - fi& 
P P 

= 
i=l i=l 

Here the first equality follows from the fact that 
is_ a unitary operator in C2, th_e second from that 
M;’ . a;’ - I E E$ and I - M1 E “2, the third by 
repeating the procedure in the first and second equal- 
ities, and the last from straightforward computation. 
The derivation shows that an arbitrarily near-optimal 
Q can be chosen from the sequence { Q k } .  Therefore 

The same reasoning as in the above derivation gives 
I‘ U 

i=l i= 1 

The directional steady state error variance is 

v, = llt’F11;. 
The optimal directional steady state error variance is 

- - inf IIt’(1- QfioiG,, . . . fi~)llz. 
Q€R.H,,Q(m)&o(m)=I 

By following an almost identical derivation as in the 
non-directional case, we can show that the same se- 
quence { Q k }  giving the near-optimal solutions there 
also gives near-optimal solutions herein, for every < E 
Rm. Hence, 

P 

v; = V * ( t )  = 2 ~ p z c o s 2 L ( E , S z ) .  

We have thus established the following theorem. 

Theorem 1 Let G’s antistable poles be pl , p 2 , .  . . ,pP 
with G, c2 ,  . . . , (,, being the corresponding pole Blaschke 
vectors of type I .  Then 

U 

v* = 2 5  
i= 1 

and 
l l  

v; = V*(O = 2Cpicos2L(<,C, ) .  
i= 1 

4 Estimation of Brownian Motion yp+&$ 
+ 

Figure 4: Estimation of a stochastic process 

Consider the estimation problem shown in Fig. 4. Here 
G is a given FDLTI plant, U is the input to the plant 
which is assumed to be a Brownian motion process, 
i.e., the integral of a standard white noise, which can 
be used to model a slowly varying ‘(constant”. Assume 
that G(0) is left invertible. The objective is to design 
an LTI filter F such that it measures the output of 
G and generates an estimate ii of U .  This problem is 
clearly a special case of the general estimation problem 

stated in Sect. 1 with P = [ 7 ] and n = 0. The 

error of estimation is given by (I - FG)u. Since U is a 
Brownian process, the variance of the error is given by 

v = ll( I  - FG)UII;, 

where U ( s )  = f I  is the transfer matrix of rn channels of 
integrators. If we want V to be finite, we need to have 
I - F(O)G(O) = 0, in addition to F, I  - F G  E RE,. 
This requires G(O), the DC gain of of G, to be left in- 
vertible, which will be assumed. Equivalently, we need 
to have F, F G  E E, and F(O)G(O) = I .  Therefore, 

v* = inf l l ( I  - FG)UII$ 
F.FG E R N ,  ,F( O)G( 0) = I  

Let G = M - ’ N  be a left coprime factorization of G. 
Then it is easy to see that F , F G  E E, is equivalent 
to F = QM for some Q E E,. Hence 

v* = Q E R H , , Q ( o ) ~ ~ ( o ) = I  inf l l ( I  - Qfi)Ull;. 

Let G have nonminimum phase zeros z1, z2, . . . , zv with 
111,112, . . . ,vv being the corresponding input Blaschke 
vectors of type 11. Then N has the factorization 

f l = f i 0 f l v . . . f l 1  
i= 1 
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where 

Since fii(0) = I ,  i = 1,2,. ..,U, it follows that 
Q(O)fi(O) = I is equivalent to Q ( O ) f i o ( O )  = I .  Hence, 
by using the facts that fi,, i = 1,2 , .  . . ,U, are unitary 
operators in L2 and that N;' . . I?;' - I E 7-t: and 
I - QNO E %2, we obtain 

1/* = inf II(I - QfioN" .Nl)Ull; 
Q E R X , , Q ( O ) ~ ~ ~ , ( O ) = I  

Q E ~ ,  , 8 ( o ) f i 0 ( o ) = ~  
- - inf I@v;lfi;l .' * fi" - I )U 

+ ( I  - QfioWII; 
= Il(fi;lfi;l. * fi" - I)Ull; + 

inf Il(I - Qfio)UII;- 
Q E R ' H m  ,Q(O) f io (O)=I  

Since fio is co-inner with invertible fi(!), there exists 
a sequence {Qk} E R%, with Qk(O)No(O) = I such 
that limk-,, ll(I - Qkf i0)Ul lz  = 0. This shows 

I/* = Il(fi;l* * - I)U(lf 
= ll(fi;l . . . R;l - I + I - fi1)q; 
= ll(R;1 * * * fi;1 - I)Ull; + ll(I - Ml)Ull; 

U U .  

The first equality follows from the fact that fi1 
is-a unitary operator in L2, the second from that 
(N;' e - -  N;l - I )U E 'tli and ( I  - N1)U E 7 - t ~ ~  the 
third from repeating the underlying procedure in the 
first and second equalities, and the last from straight- 
forward computation. 

The above derivation shows that an arbitrarily near- 
optimal Q can be chosen from the sequence { Q k } .  Thus 

The same reasoning gives 

The directional steady state error variance is 

q = I I ~ ( I  - FG)UII; .  

The optimal directional steady state error variance is 

By following an almost identical derivation as in the 
non-directional case, we can show that the same se- 
quence {Qk} giving near-optimal solutions there also 

gives near-optimal solutions here for every < E Etm. 
Hence, 

We have thus established the following theorem. 

Theorem 2 Let G's nonminimurn phase zeros be 
2 1 ,  z2,. . . , z, with 771,772, . . . , qv being the correspond- 
ing Blaschke vectors of type 11, then 

v * = 2 c z i  " 1  

i=l 

and 

" 1  
i=l zi 

v; = V*(() = 2 c  -cos2 L((,?)i). 

5 Estimation under Brownian Noise 

Consider the estimation problem considered in Sect. 3, 
but let us assume that the noise n is a Brownian motion 
process instead of a white noise. In this case, the steady 
state variance of the estimation error is given by 

v = IlFNllX 

where N(s) = $1. Following similar arguments as in 
Sect. 3, we get 

v* = inf IlFNllS F,G-FGER?im ,F(O)=O 

- - inf Il(r - &M)NII;. 
Q E R X m  , Q ( O ) k ( O ) = I  

Here we assume that G = M-l f i  is a left coprime fac- 
torization of G. Now assme that G has antistable poles 
PI, p2,. . . ,pp with (1, c2 , .  . . , cp be the corresponding 
pole Blaschke vectors of type 11. Then has the fac- 
torization 

= M O M p . .  . Ml 

where 
- 2Repi s 

M&) = I - -- Ci C;. 
Pi s+pf  

Now the problem becomes similar to the one considered 
in Sect. 4 with Ni replaced by Mi. This enables us 
to obtain the following theorem, based upon similar 
arguments. 

Theorem 3 Let G 's antistable poles be pl , p 2 ,  . . . , p ,  
with Cl, <2, . , C,, being the corresponding pole 
Blaschke vectors of type II. Then 
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and 7 Concluding Remarks  

6 Estimation of W h i t e  Noise 

Consider the estimation problem as in Sect. 4, but now 
we assume that the signal to be estimated U is a white 
noise, instead of a Brownian motion. In this case, the 
variance of the estimation error is given by 

If we want V to be finite, we need to have I - 
F(oo)G(oo) = 0, in addition to F, I - FG E RX,. 
This requires G(oo), the direct feedthrough term of G, 
to be left invertible, which will be assumed. Equiva- 
lently, we need to have F, FG E 31, and F(m)G(oo) = 
I .  Therefore 

Here we assume that G = fi-’N is a left coprime fac- 
torization of G. Now let G have nonminimum phase 
zeros z1, z2, .  . . , z, with q 1 , r ] 2 , .  . . , q ,  being the :orre- 
sponding input Blaschke vectors of type I. Then N has 
the factorization 

where 

The problem then becomes similar to the one consid- 
ered in Sect. 3 with Mi replaced by Ni. Thus, the 
following theorem is obtained. 

Theorem 4 Let G’s nonminimum phase zeros be 
21, z 2 , .  . . ,e,, with 71, q 2 ,  . . . ,q, being the correspond- 
ing Blaschke vectors of type I, then 

v 

v* = 2 c z i  
i= 1 

This paper relates the performance limitations in four 
typical estimation problems to simple characteristics of 
the plants involved. By estimation problems we mean 
actually filtering problems here. The general estima- 
tion problems can include prediction and smoothing 
problems. We are now trying to extend the results in 
this paper to smoothing and prediction problems. 

We have considered two types of noises and signals: 
white noise and Brownian motion. We are trying to 
extending our results to possibly other types of noises 
and signals. 

References 
[l] B. D. 0. Anderson and J. B. Moore, Optimal 
Filtering, Prentice-Hall, 1979. 

[2] K. J. hitrom, Introduction to Stochastic Control 
Theory, Academic Press, 1970. 

[3] J. Chen, L. Qiu, and 0. Toker, “Limitation on 
maximal tracking accuracy,” Proc. 35th IEEE Conf. 
on Decision and Control, pp. 726-731, 1996, also to 
appear in IEEE ?bans. on Automat. Contr.. 
[4] G.C. Goodwin, D.Q. Mayne, and J .  Shim, 
“Trade-offs in linear filter design”, Automatica, vol. 31, 

[5] G.C. Goodwin, M.M. Seron, “hndamental de- 
sign tradeoffs in filtering, prediction, and smoothing,” 
IEEE Trans. Automat. Contr., vol. 42, pp. 1240-1251, 
1997. 

[6] H. Kwakernaak and R. Sivan, Linear Optimal 
Control Systems, Wiley- Interscience, New York, 1972. 

[7] L. Qiu and J. Chen, “Time domain character- 
izations of performance limitations of feedback con- 
trol”, Learning, Control, and Hybrid Systems, Y. Ya- 
mamoto and S. Hara, editors, Springer-Verlag, pp. 397- 
415, 1998. 
[8] L. Qiu and E. J .  Davison, “Performance lim- 
itations of non-minimum phase systems in the ser- 
vomechanism problem”, Automatica, vol. 29, pp. 337- 
349, 1993. 

191 M.M. Seron, J.H. Braslavsky, and G.C. Good- 
win, Fundamental Limitations in Filtering and Con- 
trol, Springer, 1997. 

[IO] M.M. Seron, J.H. Braslavsky, D.G. Mayne, and 
P.V. Kokotovic, “Limiting performance of optimal lin- 
ear filters,” Automatica, 1999. 

pp. 1367-1376,1995. 

and 
U 

y = V*(C) = 2 zz cos2 L(& Vi). 
i=l 

3209 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 07:01:45 UTC from IEEE Xplore.  Restrictions apply. 


