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Abstract 

This paper studies the performance limitation of 
an LTI multivariable discretetime system in t.racking 
a reference signal which is a linear combination of a 
st,ep signal and several sinusoids with different frequen- 
cies. It, attempts to extend some recent results for 
continuoustime syshems on the same issue. The track- 
ing performance is measured by tlie energy of the er- 
ror between the output of the plant and the reference 
signal. Our purpose is t.o find t,he fundamental linrita- 
tion for the attainalile tracking performance, undcr any 
control structure and paramet.ers, in terms of the char- 
act,eristic.s and st,ructural paraineters of the given plant 
as well as the reference signal under consideration. It, is 
showii that this fundamental limitation depends on t,he 
interaction betwecn the reference signal and t,he non- 
niininiuin phase zeros of the plant and their frequency 
dependent directional information. 

Keywords: Iinear system structure, Pcrfornrance 
limitation, Optimal Tracking, Nonmininium phase. 

1 Introduct ion 

Tracking a given signal is a common task in feed- 
back control systenis. This papcr will consider the best 
achievable performance, often called performance limit 
in t,he litcrature, of IXI discretc-tirne systcms in track- 
ing given reference signals. The signals under consider- 
ation are a linear contbinat,ion of a step atid several si- 
nusoids in various frequencies. In general, these signals 
can be modelled ils outputs of a signal generator. The 
state of this generator contribut,es further information 
to the feedback controller in addition to the reference 
signal itself. In light of this, we first consider the case 
where the full statc information of t,he reference signal 
is available for the cotitroiler. Then the case where only 
the reference signal is available will he considered. 

The setup where full informnt,ioir is available is de- 
picted i n  Figure l. Here X is a nnit delay operator; 
P(A) is the given plant transfer matrix; K(X)  is the 
controller transfer matrix which is to be designed; S(X) 
is the exosystem which is excited by a unit inipulse d(k) 
and gencrates t.he reference. The coiitroller is assumed 
to have full information of the reference in the sense 
that it, takcs the state ,u(k) of the exosysteni S(A), i n  
addition to t,he measurenient y(k) of the plant, as its 
inpnts. Whether or not the niea~urenient y(R) contains 
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Figure 1: A general two-parameter control structure 

the full iiiformation of the plant, i.e., the state of the 
plant. is not iniportant. The tracking probleni is to de- 
sign a controller K(X) so that the closed loop system is 
internally stabilized and the plant output z ( k )  asymp- 
totically tracks ti reference signal ~ ( k )  of the form: 

n 

I=-" 

where W I ,  1 = O , i l , .  . .,in, are distinct real frequen- 
cies satisfying w-I = -U( and V I ,  1 = 0, il, . . . , in, are 
cotriplei vectors satisfying v-1 = 9. Implicitly, we have 
wo = 0 and is real. The reference defined in such 
a way is always a real valued signal. We use the vec- 
tor v = [U', ... u l l  U; v i . . .  U;]' to capture 
the magnit~nde and phase iuforniation of all frequency 
components of the reference. The tracking performance 
is usually measured by the energy of transient tracking 
error: 

The problem considered in this paper is to find an ex- 
plicit expression of the skiallest tracking error, i.e., the 
performance limit of the system, 

J, , t (v )  = infJ(v) K (3) 

when tlie controller K is chosen among all possible sta- 
bilising 2DOF controllers. In this paper, we achieve 
t,his understanding in the form of an explicit, simple, 
and informative relationship between this performance 
limit and t,he plant characteristics as well its the pa- 
rameter vector v of the reference. 

If we are interested in an overall performance mea- 
sure of the feedback system in tracking all rcferences 
of the type (l), then we normally turn our attention to 
art averaged version of the tracking error arid we nor- 
mally take the average over all possible v whose entries 
have zero mean, are mutually uncorrelated, and have a 
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unit variance. Such an averaged performance measure 
is given by 

J = E{J(o)  : E(v) = O,E(vu’) = I } .  ( 4 )  

In t.his case, the perforiuance limitation becomes 

Jopt = inf J. ( 5 )  K 

I t  turns out that the solution to t,his problem is sim- 
ple enough to be.stated as follows: Under some minor 
itssumptions, 

where q; , i  = 1 , 2 , .  , . ,m, are the nonminimum phase 
zeros. i.e., those zeros inside the unit circle, of the trans- 
fer function from u ( k )  to z(k). 

Results of this sort first appeared for continnous 
time systems [31, 161. The discrete time version only 
started to appear in recent years [5 ] ,  (121. For the case 
when r ( k )  is a step signal of the form r(k) = 0, k 2 0, 
i t  is shown in [5] 

where ;I. is a vector associated with the zero q, and 

f i r ther  study for other types of reference signals, in- 
cluding a sinusoid with a single frequency, was carried 
out in [ l Z ]  

In forinula (6), the assumption that the state of the 
esosystem is available to the controller is crucial. This 
siniply nieans that not only the reference hut also the 
magnitude and phase information of all of its frequency 
components is known to the controller. This may look 
unrealistic in the first glance, but this gives a limitation 
more fundamental to any other one assuming a partial 
inforrnat,ion structure. Note that when the reference 
only contains a constant term, the value of the reference 
already gives its full information, 

This paper gives a rather coniplete picture for the 
tracking performance limitation problem for general 
reference containing several frequency componenhs. We 
first give some new’insight on linear syst,em structure. 
We show that each nonmioimum phase zero has ass- 
ciated frequency dependent directions. A key technical 
result in this paper is a relation anlong directions at  
different frequencies. By using this technical result, 
we derive an expression for Jort(u) which elegantly ex- 
hibits the effect of the plant nonminimum phase zeros 
and the interaction between each frequency component 
and the directions mentioned above. 

Figure 2 shows the structure of an LTI discrete-time 
system in which only the reference is available for the 
cont,roller K(A).  If the parame.ter vector v of the ref- 
erence is available for controller design, then we will 
obtain a dependent controller K(X) and the same 
performance limit Jopt(v) as that of the systems shown 
in Figure 1. However, this is an idea case. A more prac- 
tical case is that the parameter vector U is not available 

Figure 2: A two-parameter control structure with only 
reference information 

for the controller K .  In this case, we turn our atten- 
tion to an averaged version of the tracking error JOpt 
defined in (4) and ( 5 ) .  I t  turns out that deriving a sim- 
ple expression for JoPt is hard for the general reference 
of the form (1). We will consider instead a special case 
when r ( k )  is a scalar signal containing a single sinusoid 

v ( k )  = v-le-”k + v1eiwk. 

Under some inild assumptions, we are able to find that 

where L(1 - e-Jwq;) stands for the phase or argument, 
of the complex number l-e-’”q,. Comparing this with 
the perforniance limit in the full reference information 
case, which is 

we are able to pinpoint exactly the performance dete- 
rioration due to the limited information. 

The organization of this paper is as follows. In Sec- 
tion 2: preliminary materials on linear system factoriza- 
tions arc presented. It is shown that a right-invertible 
system can be factorized as  a cascade connection of se- 
ries of first order inner factors and a minimum phase 
factor. The factorization is frequency dependent. The 
inner factors then contain all the information associ- 
ated to  the nonminimum phase zeros. In Section 3, 
we formally formulate the problenis studied and then 
state and discuss the main result and some of its con- 
sequences for the case where the full state information 
is available. Section 4 gives result for the case where 
only reference signal is available. Section 5 is the con- 
clusion. The proofs of the main results in Section 3 and 
4 are given in Appendix. 

The notation used throughout this paper is fairly 
standard. For any complex number, vector and matrix, 
denote their conjugate, transpose, conjugate t,ranspose, 
real and imaginary part by (.), (.)T, (.)*, Re(.) and 
Im(.), respectively. Denote the expectation of a ran- 
doni variable by E {.}. Let the open unit disk, the unit 
circle, and the part of the complex plane outside of the 
unit disk together with the infinity be denoted by D, 
T, and ED‘ respectively. The usual Lebesgue space of 
all possibly vector valued square integral functions on 
Y is denoted by L2. The set of those functions in L2 
which are analyt,ic on D is denoted by H2 and the set of 
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those functions in Cz which are a n d  icon and van- 

that  X 2  and 7-1: are indeed orthogonal complement to  
each other as subspaces of Lz. The Euclidean vector 
norm and the norm in the space C2 are both denoted 
by 11. RH, is the set of all stable, rational transfer 
matrices (see 1141). Finally, the inner product between 
two complex vectors u,v is defined by (.,U) := U%. 

ish at the infinity is denoted by H 2 .  I? It is well-known 

2 Preliminaries 

Let G(X) be a real rational matrix representing the 
transfer function of a discrete time finitdimensional, 
linear time invariant (FDLTJ) system. Let us assume 
that G(X) is right invertible. Its poles and zeros (in- 
cluding multiplicity) are defined in the usual way ac- 
cording t o  its Smith-MacMillan form. G(X) is said to  
be minimum phase if it is f r e ~  of zeros in ilD; otherwise 
it is said to  be nonminimum phase. 

It is worth noticing that a particular class of non- 
minimum phase zeros are those at the origin. Such 
nonminimum phase zerns are possibly caused by pure 
delays in the output channels. 

Let G(X) = N(X)M-'(X), where M(X),N(X) E 
RX,, be a right coprime factorization of G(X). Let 
q E C be a nnnminimum phase zero of G(X). Then q 
is also a nonminimum phase zero of N(X)  and there 
exists a unit vector q such that q*N(q) = 0. We call 
the vector q a (left or output) zero vector of G(X) cor- 
responding to the nonminimum phase zero q. 

Let us now order the nonminimum phase zeros of 
G(X) (or N(X)  equivalently) as q1, qa, .  . . ,q,,,. Assume 
that each pair of complex conjugate zeros are ordered 
in adjacent order. Let us also fix a frequency w1 E W. 
We first find a unit vector qwlwil of G(X) corresponding 
to  q1 and define 

where U,,, is a unit,ary matrix with the first column 
equal to  qUwll. Here G,,,(X) is so constructed that it is 
inner, has the only zero at q1 with qw,l as a zero vector 
corresponding to  91, and GUl1(jwi) = I .  Since it is a 
generalization of the standard scalar Blaschke factor, 
we call it a matrix Blaschke factor at the frequency 
WI and call q,,~ a corresponding Blaschke vector. Also 
notice that the choice of other columns in U,, 1 is imma- 
terial. Now G;,: (X)G(X) has zeros q2, q 3 , .  . . , qm. Find 
a zero vector qw12 of G;:,(X)G(X) corresponding to  qs 
and define 

where UWiz is a unitary matrix with the first col- 
umn equal to qw,2. Then G;,',(X)G;:,(X)G(X) has 
zeros q3,q4,. . . , qm. Continue this process until 
Blaschke vectors I lyI l , .  . . , q,,, and Blaschke factors 
Gwtl(A), . . . ,G,?,,,(A) are obtained. This procedure 
shows that  C(X) can he factorized as 

G(X) = G~,I(X)'..G,,(X)G,,O(X) (8) 

where G,,,(X) is in the same form as that of G,,,(X) 
in (7). and G,,o(X) has no nonminimum phase zero. 
Let us call such a factorization a cascade factorization 
at frequency wi, which is shown schematically in Fig- 
ure 3. In this factorization, each Blaschke vector and 
Blaschke factor correspond to  one nonminimum phase 
zero. Keep in mind that these vectors and factors de 
pend on the order of the nnnminimum zeros, as well as 
on the frequency w1. The product 

G,,i(X)...G,,m(X) 

is called a matrix Blaschke product. 

Figure 3: Cascade factorization 

One should note that even though the order of 
91, q 2 , .  , . , qm is fixed, the Factorization at the frequency 
w1 is not unique since q,,, is not uniquely determined. 
Furthermore, if we have 2n + 1 different frequencies 
wl,  1 = 0, il,. . .,in, then the factorizations at differ- 
ent Frequencies are in general different. Nevert,heless, 
they can be. intimately related if we make the choices 
properly. For example, it is easy to see from the above 
construction that qwll, the first Blaschke vector, can be 
chosen independent of w ~ .  The Following lemma pro- 
vides such relations and is the key technical result that  
leads to the main result of this paper. 

Lemma 2.1 Suppose that the order of ql ,  9 2 , .  . . , qm i s  
p e d .  Also suppose that we are given 2n + 1 difleient 
frequencies W I ,  1 = 0, *l, . . . , f n .  Then the 2n + 1 cus- 
cude factorizations (8) can be chosen so that for all 
1,1' = 0, i l ; .  . , f n  and i = 1 , 2 , . .  . ,m, 

q,,; = G W , , ~ ( ~ " ' ) G u , . 2 ( $ " ' ' ) ~  ' .  Gw+l(ejw')qu,,i. 
(9) 

Proof: See Ill]. 

of Blaschke vectors are given as: below: 
For SISO LTI discrete-time systems, proper choices 

f o r k = O , f l , . . .  ,in. 

3 The Main Result 

Let us go hack to the setup shown in Figure 1. The 
measurement output y(k) of the plant is assumed to be 
different from the tracking output z(t). We denote the 
transfer function from u(k) to  z(k) by G(X) and that 

from u(k) to  y(k) by H(X), i.e., P(X) = 

order for the tracking problem to be meaningful and 
solvable, we make the following assumptions tbrough- 
out the paper. 

Assumpt ion  3.1 

[ 1' In 
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1. P(X), G(X) and H ( X )  have the  same unstable 

2. G(X) hasnoze roa te 'W1, l=O, f l , . . .  , f n .  

poles. 

The first item in the assumption means that the mea- 
surenient can be used to stabilize the system and at  the 
same time does not introduce any additional unstable 
modes A more precise way of stating this is that if 
P(x) = [ T't) ] M - ~ ( x )  is a coprime factorization, 

then we assunie that N(X)M-'(X) and L(X)M-'(X) 
are also coprime factorizations. The second item is 
of course necessary for the solvability of the tracking 
problem. 

Theorem 3.1 Let G(X) have nonminimum phase ze- 
7us q l , q > , .  . . , qm with associated Blaschke vectors 
7tU, l , .  . . , 7 ~ ~ , , , % ;  1 = 0,. . . , n, satisfying Lemma 2.1. 
Then 

Now it  is ready to state our main result. 

(10) 
Proof: See Appendix A. 

This formula for the performance limit clearly shows 
that it depends on the nonminimum phase zeros in an 
additive way and the contribution of each nonminimum 
phase zero to the performance limitation depends in 
a quadratic way on tbe frequency components of the 
reference. It also clearly shows how various frequency 
components enter the performance limitation through 
the inner products with the Blnschke vectors at the 
corresponding frequencies. 

In the case when n = 0, i.e., tlie reference only has 
a step component, we get 

This is exactly the formula given in 151, 1121. 
The proof of Theorem 3.1 also shows that a con- 

troller, or a sequence of controllers, independent of 
v can be found to  attain the performance limitation. 
Therefore 

Jopt 

= inf K E { J ( u )  : E(v )  = 0, E(vv') = r }  (11) 

(12) = E{inf J (v)  : E(u) = 0, E(vv') = I }  
IC 

This inimediately leads to the following theorem 

Theorem 3.2 Let G(s) have nonminimum phase ze- 
MS q1,9Z1. . . , qm. Then 

4 Design Limitation from Partial Information 
of the Reference 

In this section, the performance limit of optimal 
tracking problem is discussed for the system shown in 

Fig. 2. Denote P(X) = [gii]] and assume that A 5  
sumption 3.1 holds. Moreover, it is assumed that only 
reference signal of the system is available for a con- 
troller. To solve this tracking problem, we will start at 
the same setup as that in the Section 3. If the mag- 
nitude and phase information v of all frequency com- 
ponents of the reference is still available for controller 
design, a u-dependent controller and performance limit 
JOpt(u) as that in last section can be obtained. It must 
be noted that this is only an idea case. Here we will 
consider a more practical case where the parameter 
vector v is unknown for controller designing. To find 
meaningful solution for the tracking problem, we will 
consider the average tracking performance J defined in 
(4). But, in this case, the exchange of the infimum 
and expectation in the the step from (11) to (12) is no 
longer valid. Furthermore, the result in Theorem 3.2 is 
no longer true. Essentially, this constraint is caused by 
the partial information of the reference signal. It will 
be shown that more performance limitation is imposed 
on the optimal tracking problem by this constraint. 

In general, without full information of a reference 
signal, it is very complicated to  find the performance 
limit for a tracking problem. In this paper, we only 
discuss the performance limit of a SISO linear system in 
tracking a single frequency sinusoidal signal &s follows: 

r(k) = v_le-jWk + vl.?'. 
The magnitude and phase information of the reference 
is denoted by U' = Iv-1 VI]. 

Theorem 4.1 Let G(X) have nonminimum phase ze- 
ros q l ,  . . . , qm . Then, 

(14) 

m 
+ - s i n Z 2 C [ L ( 1 - e - j w q ; ) + ~ ] .  2 .  (15) 

Sin* 

Proof:  See 1111. 
In Theorem 3.2. i t  is shown that, if the full infor- 

mation of the reference (14) is available, the tracking 
performance limit of the linear system P(X) is given by 

Theorem 4.1 gives explicit expression of the tracking 
performance limit for the case where the full state infor- 
mation of the reference is unavailable. This expression 
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reveals that  an extra limitation caused by this partial 
information is imposed on the tracking performance. 
Indeed, in this case, the controller has to estimate the 
state of reference first and then track the reference 
based on the estimated information. The extra limi- 
tation on the tracking performance is from the cost of 
estimation. 

5 Conclusions 
In this paper, a formula is obtained for the best 

tracking performance for discrete-time LTI multivari- 
able systems when the reference is a given linear com- 
bination of step and sinusoidal signals. This formula 
clearly reveals the role that each nonminimum phase 
zero, as well as its associated frequency dependent di- 
rections, plays towards the performance limitation. A 
formula is also obtained for the average tracking perfor- 
mance for all references with the same frequency com- 
ponents. 

APPENDIX A 
Proof of the Theorem 3.1 

Now let us consider the tracking problem as shown 
in Figure 1. Let C(X) = N(X)M-'(X) be a coprime 
factorization. By using the parameterization of all sta- 
bilizing two degree of freedom controllers [131, we can 
see that, under Assumption 3.1, all possible transfer 
functions from v ( k )  to z ( k )  w e  given by N(X)Q(X) 
where Q(A) is an arbitrary 'I, transfer matrix which 
can be designed. Let us denote the A-transform of r ( k )  
by R(X) and tbat of ~ ( k )  by V(X). Then the integral 
square error (2) becomes 

-'(U) = llR(X) - ff(X)Q(X)V(X)IIi. 
Not,ice that, N ( X )  is stable and its nonminimum phase 
zeros are the same as those of G(X). If G(X) is factored 
as 

G(X) = C",l(X)...G,,,(X)G",u(X) (A-1) 

where G,,,(X) is a Blaschke factor of the form of (7) 
and G,,u(X) is minimum phase. Then N(X) has inner- 
outer factorization 

N(X)= G<n(X)ffout(X) 

= [Gu,i(X) . . . ~ ~ , ~ ( X ) ~ I G ~ ~ O ( X ) M ( X ) I .  

The t,racking performance J ( v )  Cal i  be rewritten as 

JbJ) 

It is ewy to see that 

and 

can be made to belong to 'Kz by properly choosing 
Q(z) .  It then follows that 

Without loss of generality, we can assume 

Notice that 

and NOut(X) is outer. Then we can always find Ql(A), 
I = 0, f l , .  . . , fn, such that 

This shows that the second term of (A-2) can he made 
arbitrarily small by choosing &(A),  independent of U.  

Consequently, 

Following the definition of Gi,,(X) in (A-I) and selecting 
WO = 0 . we have 

(A-3) 
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I t  is easily be verified that 

and 

Hence (A-3) is rewrit,ten as below: 

J",t(TJ) 

Rcpeating this procednrc for m - 1 times leads to 

Substituting (A-5) into (A-4) leads to 

J o d u )  

Finally, Lenima 2.1 immediately yields 

This completes the proof 
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