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Abstract

This paper studies the performance limitation of
an LTI multivariable discrete-time system in tracking
a reference signal which is a linear combination of a
step signal and several sinusoids with different frequen-
cies. It attempts to extend some recent results for
continuous-time systems on the same issue. The track-
ing performance is measured by the energy of the er-
ror between the output of the plant and the reference
signal. Qur purpose is to find the fundamental limita-
tion for the attainable tracking performance, under any
control structure and parameters, in terms of the char-
acteristics and structural parameters of the given plant
as well as the reference signal under consideration. It is
shown that this fundamental limitation depends on the
interaction between the reference signal and the non-
minimum phase zeros of the plant and their frequency
dependent directional information.

Keywords: Linear system structure, Performance
limitation, Optimal Tracking, Nonminimum phase.

1 Imtroduction

Tracking a given signal is a common task in feed-
back control systems. This paper will consider the best
achievable performance, often called performance limit
in the lUterature, of LTT discrete-time systems in track-
ing given reference signals. The signals under consider~
ation are a linear combination of a step and several si-
nusoids in various frequencies. In general, these signals
can be modelled as outputs of a signal generator. The
state of this generator contributes further information
to the feedback controller in addition to the reference
signal itself. In light of this, we first consider the case
where the full state information of the reference signal
is available for the controtler. Then the case where only
the reference signal is available will be considered.

The setup where full information is available is de-
picted in Figure 1. Here A is a unit delay operator;
P(A) is the given plant transfer matrix; K{\) is the
controller transfer matrix which is to be designed; S(A)
is the exosystem which is excited by a unit impulse 3(%)
and generates the reference. The controller is assumed
to have fill information of the reference in the sense
that it takes the state v(k) of the exosystem S(A), in
addition to the measurement y{k) of the plant, as its
inputs. Whether or not the measurement y{k) contains
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Figure 1: A general two-parameter control structure

the full information of the plant, i.e., the state of the
plant, is not important. The tracking problem is to de-
sign a controller K'(A) so that the closed loop system is
internally stabilized and the plant output z(k) asymp-
totically tracks a reference signal r(k) of the form:

n

r(k) = 3wt )

l=—n

where wi, { = 0,=£1,...,En, are distinct real frequen-
cles satisfyingw_; = —wyand v, [ = 0,1, ..., £n, are
complex vectors satisfying v_; = %,. Implicitly, we have
wy = 0 and ug is real. The reference defined in such
a way is always a real valued signal. We use the vec-
tor v = [wr, - vX; wj vi-- vy to capture
the magnitude and phase information of all frequency
components of the reference. The tracking performance
is usually measured by the energy of transient tracking
eITor:

J(w)y =Y lietk) = 2(0)IP = 3~ fle(®)?. ()
k=0 k=0

The problem considered in this paper is to find an ex-
plicit expression of the smallest tracking error, i.e., the
performance limit of the system,

Jopt(v) = iﬁf J(v) (3)

when the controller X is chosen among all possible sta-
bilizing 2DOF controllers. In this paper, we achieve
this understanding in the form of an explicit, simple,
and informative relationship between this performance
limit and the plant characteristics as well as the pa-
rameter vector v of the reference.

If we are interested in an overall performance mea-
sure of the feedback system in tracking all references
of the type (1), then we normally turn our attention to
an averaged version of the tracking error and we nor-
mally take the average over all possible v whose entries
have zero mean, are mutually uncorrelated, and have a
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unit variance. Such an averaged performance measure
is given by

J=E{J(t): B(v)=0,Bw) =1} (4
In this case, the performance limitation becomes

Jopt = fof . | (5)

It turns cut that the solution to this problem is sim-
ple enough to be'stated as follows: Under some minor
assumptions,

1+ e/
Jopr = Z z 1 — ey, (6)
i=1l{==-n
where g;,i = 1,2,...,m, are the nonminimum phase
zeros, 1.e., those zeros inside the unit circle, of the trans-
fer function from u(k) to z(k).

Results of this sort first appeared for continuous
time systems (3], [6]. The discrete time version only
started to appear in recent years [5], {12]. For the case
when r(k) is a step signal of the form r(&) = v,k 2 0,
it is shown in (3]

e + 4
Jopt(v)=nvuzzl o cos L(vm)

i=1

where 7; is a vector associated with the zero ¢; and

Further study for other types of reference signals, in-
cluding a sinusoid with a single frequency, was carried
out in {12

In formula (6), the assumption that the state of the
exosystem is available to the controller is crucial. This
simply means that not only the reference but also the
magnitude and phase information of all of its frequency
compoenents is known to the controller. This may look
unrealistic in the first glance, but this gives a limitation
niore fundamental to any other one assuming a partial
information structure. Note that when the reference
only contains a constant term, the value of the reference
already gives its full information.

This paper gives a rather complete picture for the
tracking performance limitation problem for general
reference containing several frequency components. We
first give some new insight on linear system structure.
‘We show that each nonminimum phase zero has asso-
ciated frequency dependent directions. A key technical
result in this paper is a relation among directions at
different frequencies. By using this technical resuit,
we derive an expression for Jop{v) which elegantly ex-
hibits the effect of the plant nonminimum phase zeros
and the interaction between each frequency component
and the directions mentioned above.

Figure 2 shows the structure of an LTI discrete-time
system in which only the reference is available for the
controller K(A). If the parameter vector v of the ref-
erence is available for controller design, then we will
obtain & v dependent controller K(A) and the same
performance limit Jop:(v) as that of the systems shown
in Figure 1. However, this is an idea case. A more prac-
tical case is that the parameter vector v is not available
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Figure 2: A two-parameter control structure with only
reference information

for.the controller K. In this case, we turn our atten-
tion to an averaged version of the tracking error Jop:
defined in (4} and (5). It turns out that deriving a sim-
ple expression for J,p is hard for the general reference
of the form (1). We will consider instead a special case
when (k) is a scalar signal containing a single sinusoid

w(k) = v_je IV 4oy edWE,
Under some mild assumptions, we are able to find that

e ; .
1+e™ g 14ef¥g
Topt = Z—J: (1 - g~dvg iz efvg;

2 2 n ) w
+=asin?2 Y [4(1 - i) + 2]

sinw ; ( ¢} 2
where Z(1 — e77“¢;) stands for the phase or argument
of the complex number 1—e™“q;. Comparing this with
the performance limit in the full reference information

case, which is
1+elvg
1—eivg )’

Jopt = Z (1 — C__jwqi +
i=1

we are able to pinpoint exactly the performance dete-

rioration due to the limited information.

The organization of this paper is as follows. In Sec-
tion 2, preliminary materials on linear system factoriza-
tions are presented. It is shown that a right-invertible
system can be factorized as a cascade connection of se-
ries of first order inner factors and a minimum phase
factor. The factorization is frequency dependent. The
inner factors then contain all the information associ-
ated to the nonminimum phase zeros. In Section 3,
we formally formulate the problems studied and then
state and discuss the main result and some of its con-
sequences for the case where the full state information
is available. Section 4 gives result for the case where
only reference signal is available. Section 5 is the con-
clusion. The proofs of the main results in Section 3 and
4 are given in Appendix.

The notation used throughout this paper is fairly
standard. For any complex number, vector and matrix,
denote their conjugate, transpose, conjugate transpose,
real and imaginary part by (-}, ()7, (-}*, Re(-) and
Im{-), respectively. Denote the expectation of a ran-
dom variable by E {-}. Let the open unit disk, the unit
circle, and the part of the complex plane outside of the
unit disk together with the infinity be denoted by D,
T, and D° respectively. The usual Lebesgue space of
all possibly vector valued square integral functions on
T is denoted by £5. The set of those functions in Cy
which are analytic on I is denoted by M3 and the set of
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those functions in £ which are analytic on ID° and van-
ish at the infinity is denoted by Hz. It is well-known
that H; and Mz are indeed orthogonal complement to
each other as subspaces of £5. The Euclidean vector
norm and the norm in the space £ are both denoted
by || - llz. RHoo is the set of all stable, rational transfer
matrices {see [14]). Finally, the inner product between
two complex vectors u,v is defined by {u,v) '= u*v.

2 Preliminaries

Let G(A) be a real rational matrix representing the
transfer function of a discrete time finite-dimensional,
linear time invariant (FDLTI) system. Let us assume
that G(A) is right invertible. Tts poles and zeros (in-
cluding multiplicity} are defined in the usual way ac-
cording to its Smith-MacMillan form. G{X) is said to
be minimum phase if it is free of zeros in ID; otherwise
it is said to be nonminimum phase.

It is worth noticing that a particular class of non-
minimuin phase zeros are those at the origin. Such
nonminimum phase zeros are possibly caused by pure
delays in the output channels.

Let G(A) = N(AN)M~Y()), where M()),N(A) €
RHoo, be a right coprime factorization of G{). Let
g € C be a nonminimum phase zero of G{A}. Then ¢
is also a nonminimum phase zero of N{A) and there
exists a unit vector n such that n*N(q) = 0. We call
the vector  a (left or gutput) zero vector of G(A) cor-
responding to the nonminimum phase zero q.

Let us now order the nonminimum phase zeros of
G(A) (or N(A) equivalently) as ¢1,¢2,-..,¢m. Assume
that each pair of complex conjugate zeros are ordered
in adjacent order. Let us also fix a frequency wy € R.
We first find a unit vector 1,1 of G(A) corresponding
to ¢; and define

l—e"“’lfq‘1 A—g
Gun(M) = Uwzl[ el _‘76 1=Agy ? } u:gl (7)

where {7, is a unitary matrix with the first column
equal to 1,,1. Here G, 1 () is so constructed that it is
inner, has the only zero at g1 with n,,1 as a zere vector
corresponding to g1, and Gy (jun) = 1. Since it is a
generalization of the standard scalar Blaschke factor,
we call it a matrix Blaschke factor at the frequency
wy and call 9,1 a corresponding Blaschke vector. Also
notice that the choice of sther columns in U, is imma-
terial. Now G} (A)G(A) has zeros g2,¢a, - . ., gm. Find

a Zero vector gy, of G5 (A)G(A) corresponding to g,
and define

*
u;?

l—ej”‘q; A—gp
Gw;Z(A) = Uw;2[ e-"“"l—q(z) 1—1\92' b

where U,z is a unitary matrix with the first col-
umn equal to 7,2 Then GL(A)GL(A)G(A) has
Zeros gz, G4y .. 0m. Continue this process until
Blaschke vectors nu,1,...,7%w,m and Blaschke factors
Gun(A}, . .., GumlA) are obtained. This procedure
shows that G(A) can be factorized as

G(A) = Gt (A) - Guym (W) G0l A) (8)
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where G,,i()) is in the same form as that of G,,1(})
in (7). and Gu,0(A) has no nonminimum phase zero.
Let us call such a factorization a cascade factorization
at frequency w;, which is shown schematically in Fig-
ure 3. In this factorization, each Blaschke vector and
Blaschke factor correspond to one nonminimum phase
zero. Keep in mind that these vectors and factors de-
pend on the order of the nonminimurm zeros, as well as
on the frequency w;. The product

wal()‘] et Gwlm(k‘)

is called a matrix Blaschke product.

— ™ GugO()‘) [_'JGw;m()‘)r_’ A Gw:l("‘) "

Figure 3: Cascade factorization

One should note that even though the order of
q1,42, - . -, @m 1S fixed, the factorization at the frequency
wp is not unique since 7,,; is not uniquely determined.
Furthermore, if we have 2n + 1 different frequencies
wi,l = 0,%1,...,4&n, then the factorizations at differ-
ent frequencies are in general different. Nevertheless,
they can be intimately related if we make the choices
properly. For example, it is easy to see from the above
construction that 7,,;, the first Blaschke vector, can be
chosen independent of wy. The following lemma pro-
vides such relations and is the key technical result that
leads to the main result of this paper.

Lemma 2.1 Suppose that the order of q1,q2, ..., qm i3
fixed., Also suppose that we are given 2n -+ 1 different
freguencies wy,l = 0,£1,...,xn. Then the 2n+1 cas-
cade factorizations (8) can be chosen so that for all
LI =0,21,-- ,xnendi=1,2,...,m,

nwfi = Guirl(ejw‘ )Gwy2(ejw‘) e Gwi;i—l(eju()"]wyi-(
g

Proof: See [11].
For SISO LTI discrete-time systems, proper choices

of Blaschke vectors are given as below:

1—qi e —q

1-q1-elvg

1-q, e — gy
I—gi11—edvgl |

r)‘wki =

for k =0,%1,--- ,£n.

3 The Main Result

Let us go back to the setup shown in Figure 1. The
measurement output y{k) of the plant is assumed to be
different from the tracking output z{t). We denote the
transfer function from w(k) to z(k) by (A) and that
from u(k) to y(k) by H(N), ie., P(X) = [ g(('j\)) j in
order for the tracking problem to be meaningful and
solvable, we make the following assumptions through-
out the paper.

Assumption 3.1
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1. P(X), G(») and H(X) hove the same unstable
poles.

2. G(A) has no zere at /1 = 0,41, ,n,

The first item in the assumption means that the mea-
surement can be used to stabilize the system and at the
same time does not introduce any additional unstable
modes. A more precise way of stating this is that if

P(A) = [ IE((;)) ]M‘l()\) is a coprime factorization,

then we assume that N{A)M~1(A) and L{NM (N
are also coprime factorizations. The second item is
of course necessary for the solvability of the tracking
problem.

Now it is ready to state our main result.

Theorem 3.1 Let G()\) have nonminimum phase ze-

TOS q1,G3,-..,0m With associoted Blaschke vectors
Bl s Magms ¢ = 0,...,n, sotisfying Lemma 2.1.
Then

Z ('ﬂwuln U!)
eJW‘t g;

i-——n

=§:Z Z(l—fh%

l=—nlt=—n

Jopele) = Z (1 —qq)

( Uty n—w;i> {n—wt; i Ut')
g} (1~ )
(10}

Proof: See Appendix A.

This formula for the performance limit clearly shows
that it depends on the nonminimum phase zeros in an
additive way and the contribution of each nonminimum
phase zero to the performance limitation depends in
a quadratic way on the frequency components of the
reference. It also clearly shows how various frequency
components enter the performance limitation through
the inner products with the Blaschke vectors at the
corresponding frequencies.

In the case when n = 0, i.e., the reference only has
a step compoenent, we get

opt Z C qzqilz)l Mo V )'2 Z 1 +Zil(nﬂ1"v)|2'

i=1

This is exactly the formula given in [5], [12].

The proof of Theorem 3.1 also shows that a con-
troller, or a sequence of controllers, independent of
¥ can be found to attain the performance limitation.
Therefore

Jo;pt
= ing{J(v) Ev) =

= E{inf J(v) : E(v) =

-ey Z(l 497

i=lil=—nl'=—

E(vw*)=1T1} (1)
E(vw*) =T} (12)

n:u‘,iE(Ul’”;‘)n—w:i
e~Tugt)(1 - e g;)

n—w‘in“u}(i
— e gl (1 — edug;)

=& 1 —qq! 14 g
gZ T chungf = sz-

l=— i=l]l=—n

Qiqz‘) (1 _

This immediately leads to the following theorem.
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Theorem 3.2 Let G(s) have nonminimum phase ze-
708 §1,42, .., 9m- Then

GG 1+ e 14 e
opt ;;; [1 _ egwlqt |2 ;I—Z-:n 1— er;q

(13)

4 Design Limitation from Partial Information
of the Reference

In this section, the performance limit of optimal
tracking problem is discussed for the system shown in

Fig. 2. Denote P(A) = [gg))] and assume that As-

sumption 3.1 holds. Moreover, 1t is assumed that only
reference signal of the system is available for a con-
troller. To solve this tracking problem, we will start at
the same setup as that in the Section 3. If the mag-
nitude and phase information v of all frequency com-
ponents of the reference is still available for controller
design, a v-dependent controller and performance limit
Jopt{v) as that in last section can be obtained. It must
be noted that this is only an idea case. Here we will
consider a more practical case where the parameter
vector v is unknown for controller designing. To find
meaningful sclution for the tracking problem, we will
consider the average tracking performance J defined in
(4). But, in this case, the exchange of the infimum
and expectation in the the step from (11) to (12) is no
longer valid. Furthermore, the result in Theorem 3.2 is
no longer true. Essentially, this constraint is caused by
the partial information of the reference signal. It will
be shown that more performance limitation is imposed
on the optimal tracking problem by this constraint.

In general, without full information of a reference
signal, it is very complicated to find the performance
limit. for a tracking problem. In this paper, we only
discuss the performance limit of a SISO linear system in
tracking a single frequency sinusoidal signal as follows:

rlk) = vre~ T 4y edE, (14)

The magnitude and phase information of the reference
is denoted by v’ = [v_; »].

Thecrem 4.1 Let G{\) have nonminimum phase ze-
108 g1, 1Oy Then,

Ay e
Jopz = Z (1 “e—j“q,- +

i=1

1+eg
1 - edwg;

2 2 - —jw w
+—sin 2;[[(1—6 qi)+5]. (15}

Proof: See [11].

In Theorem 3.2, it is shown that, if the full infor-
mation of the reference (14) is available, the tracking
performance limit of the linear system P(A) is given by

™ . .
_ 1+e g  1+e’q
o = Zl (1 ~eiog T 1 vy,
=

Theorem 4.1 gives explicit expression of the tracking
performance limit for the case where the full state infor-
mation of the reference is unavailable. This expression
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reveals that an extra limitation caused by this partial
information is imposed on the tracking performance.
Indeed, in this case, the controller has to estimate the
state of reference first and then track the reference
based on the estimated information. The extra limi-
tation on the tracking performance is from the cost of
estimation.

5 Conclusions

In this paper, a formula is obtained for the best
tracking performance for discrete-time LTI multivari-
able systems when the reference is a gjven linear com-
bination of step and sinusoidal signals. This formula
clearly reveals the role that each nonminimum phase
zero, as well as its associated frequency dependent di-
rections, plays towards the performance limitation. A
formula is also obtained for the average tracking perfor-
mance for all references with the same frequency corn-
ponents.

APPENDIX A

Proof of the Theorem 3.1

Now let us consider the tracking problem as shown
in Figure 1. Let G(A] = N(A)JM~L()) be a coprime
factorization. By using the parameterization of all sta-
bilizing two degree of freedom controllers (13|, we can
see that, under Assumption 3.1, all possible transfer
functions from vi{k) to z{k) are given by N(MQ(X)
where () is an arbitrary M, transfer matrix which
can be designed. Let us denote the A-transform of r(k)
by R(A) and that of v(k) by V{A). Then the integral
square error (2) becomes

J(v) = |[R(}) = N(MQUV (Ml
Notice that N(A) is stable and its nonminimum phase
zeros are the same as those of G(A). If G{A) is factored
as
G(A) = Gup1(A) - Guym (A)Gugo(A) (A-1)
where G.,:(A) is a Blaschke factor of the form of (7)

and G,0(A) is minimum phase. Then N()) has inner-
outer factorization

N(A)= Gin(A) m(A)
= [Gwl( ) wnm(/\)MGwoO()')A’{(AH'

The tracking performance J(v} can be rewritten as

J(v)

n

Z L

L 1 — eduw

l=—n 2

T G;}] ((’.)J‘wl)'”[
[ in (’\) Z 1— Aeng - JZ 1 — Aedwi

{=—mn

2

I

2

n —1y i
Gin ((Z jwl)w
+ Z 1 — deiwr

~ Nous (/\)Q()\)V(/\)]

Li=—n

2
It is easy to see that

-1 = Ui
VDY T
i=—n

1 — Aegwr

3 Galle My
i

=—n

and

B G (emdw Ui
5o Cale T @)

l=—n
can be made to belong te H2 by properly choosing
@(z). It then follows that

—1¢p—dun 2
Gin (6 )Ul

J( A) Z ,\eij - Z 1 — )hefwr
!=—n I=—n 2
2L G ey, ‘
+ [Z —11,1——A_63'T = Nowt(MNQAV(A)|| (A-2)
=—n 5
Without loss of generality, we can assume
T
V(A):{ Iy vg vy ] )
1 — defw-n 1 = defwo 1 — defwn

Partition Q{X) consistently as
RN =[Q-n(X) - Qol¥)
and let
QuA) = Ni(e )G H e ) + (1= ™) Qi)

where Nl (e~} is a right inverse of Ny (e™7*).
Then we have

Qn(M)]

= G emd )y
> —1—_(;—-)—’ = Nowt(M)QV (A)
l=—n
; w ey O (€790
= (AT Jeit
O {ir- Nt
—Nout(/‘\)él(k)vt} € Ho.
Notice that .
. G lte—duw
[I"N”“t(’\)Ngut(e_JM)]%de_jJilﬂ H2» l= =My, N

and Ny () is outer. Then we can always find Q;()\),

{=0,%£l,...,+n, such that
2
G, (e 3‘”*)1)1
Eﬂ o~ New(NQAV(Y) 0

This shows that the second term of (A-Z) can be made
arbitrarily small by choosing Q(}, independent of v.
Consequently,

n n -1y —d 2
_ U G (e7¥)y
Jopi(v) = tz 1= et Gmle PRV
=—n . =—n 2
Following the definition of G (A} in (A-1) and selecting
wo = 0, we have
n .
e Coi(N) _ Gal{e )
Topi(v)= 12 { [1 — e 1- e |
=—n
_.__GO_]'I (e—_j ‘ Hﬁ."?ﬁ G(Jnl(e Jui) :
T Doei H GoilA) — el “
2
(A-3)
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It is easily be verified that

GO_II (A) - G(Tll (B_M) 1
T-aei  1-aedon o Hz
and
Gu_ll {e7 ) Hn—m (e._]u‘ )
L — Aedun H Goi(A) N\eiwt €My

Hence (A-3) is rewritten as below:
Jope (V)

_ G[ﬁi(e‘jw‘) i

B 1 — Aedw

[ GH' )
Z [1 — dedwr
- HCO (/\JH*‘ i G (67 M)[Gul(e 1) Ut]]

I=-n
1= Aedwn

k=2 2

Repeating this procedure for m — 1 times leads to

“GH) & Galle)
Jope{v)= Z [Z dedor E;ﬂ 1 — Aedwt
1 2
I Goite™ (A-9)
K=i~1 9
where HN_I_ Golle#)y=Tfori=1.

From the definition of G;(}), it holds
GtV o Gyille )
1 — hegwi Z 1 — hedw

_l—qi i 1
T l-gqt [Z 1

I=—11

=-n

= 0ig;
—_ ejwi qi

1
7?01‘776]'] X—aq (A-5)
1

Substituting (A-5) into (A-4) leads to

Mo, ]Ul]

immm”%@mm

1 — elwig;

Jvm(’”)

[Z—%?

I=—n

2

H G ey

‘K"z 1

=> (1 -ag)
i=1

Finally, Lemma 2.1 immediately yields

2
z iy V1)
1 — efung,

2

i=—n

om("—") Z(l - qiqt

This completes the proof.

References

{1l J. Chen, L. Qiu and Q. Toker, “Limitations on
maximal tracking accuracy”, IEEE Trans. Automat.
Contr., vol. AC-45, pp. 326-331.

428

G .-jw')’!]l
1 — dedw

. systems®,

[2] H. Kwakernaak and R. Sivan, Linear Optimal
Control Systems, Wiley-Interscience, New York, 1972.

[3] M. Morari and E. Zafiriou, Robust Process Con-
trol, Prentice Hall, Englewood Cliffs, NJ, 1989.

[4] K. Poolla and T. Ting, “Nonlinear Time-Varying
Controllers for Robust Stabilization”. IEEE Trans.
Auto. Contre., 32, pp. 195-200, 1987.

[5] L. Qiu and J. Chen, “Time Domain Character-
izations of Performance Limitations of Feedback Con-
trol”, In Y. Yamamoto and 8. Hara, editors, Learning,
Control and Hybrid Systems, Springer-Verlag, London,
pp. 397-415, 1999.

[6] L. Qiu and E. J. Davison, “Performance limita-
tions of nonminimum phase systems in the servomecha-
nism problem”, Automatica, vol. 29, pp. 337-349, 1993.

[7] M. M. Seron, J. H. Braslavsky and G. C. Good-
win, Fundamental Limitations in Filtering and Con-
trol, Springer-Verlag, London, 1997,

[8] M. M. Seron, J. H. Braslavsky, P. V. Kokotovic,
and . Q. Mayne, “Feedback limitations in nonlinear
systems: from Bode integrals to cheap control”, IEEE
Trans. on Automatic Control, vol. 44, pp. 829-833,
1999,

[9) M. M. Seron, J. H. Braslavsky, D. G. Mayne,
and P. V. Kokotovie, “Limiting performance of optimal
linear filters”, Aufematica, vol 35, pp. 189-199, 1999,

[10] W.S8u,L Qiu, and J. Chen, “Fundamental perfor-
mance limitations in tracking sinusoidal signals”, IEEE
Trans. on Automatic Control, 2002, submitted.

[11] W. Su, L. Qiu, and J. Chen, ”Performance Lim-
itations of Discrete-Time Systems in Tracking Sinu-
soidal Signals”, Working paper 2003.

[12] ©O. Toker, J. Chen and L. Qiu, “Tracking per-
formance limitations in LTT multivariable discrete-time
IEEE Trans. Circuits and Systems, Part I,
vol, 49, 657-670, 2002.

[13] M. Vidyasagar, Conlrol System Synthesis: o
Factorization Approach, Cambridge, MA: MIT Press,
1085.

[14] K. Zhou, J. C. Doyle and K. Glover, Robust
and Optimal Control, Prentice Hall, NJ: Upper Sad-
dle River, 1995, °

Proceedings of the American Control Conference
Denver, Colorado June 4-8, 2003



