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Performance Limitations of Non-minimum 
Phase Systems in the Servomechanism 

Problem*t 

L. QIU~t and E. J. DAVISON§ 

A fundamental limitation exists in the achievable transient performance 
which is possible to be obtained in the tracking and disturbance rejection of 
a non-minimum phase system, and this limitation can be characterized 
completely by the number and locations of the right-half plane zeros. 
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Abst~cl--This paper studies the cheap regulator problem 
and the cheap servomechanism problem for systems which 
may be non-minimum phase. The study extends some 
well-known properties of "perfect regulation" and the 
"perfect tracking and disturbance rejection" of minimum 
phase systems to non-minimum phase systems. It is shown 
that perfect rejection to disturbances applied to the plant 
input can be achieved no matter whether the system is 
minimum phase or non-minimum phase, whereas a 
fundamental limitation exists in the achievable transient 
performance of tracking and rejection to disturbances 
applied to the plant output for a non-minimum phase 
system, and that this limitation can be simply and completely 
characterized by the number and locations of those zeros of 
the system which lie in the right half of the complex plane. 
Furthermore, this limitation provides a quantitative measure 
of the "degree of difficulty" which is inherent in the control 
of such non-minimum phase systems. 

1. INTRODUCTION 

IT HAS LON~ bEEN realized that minimum phase 
systems have certain advantages over non- 
minimum phase systems; for example, right- 
invertible minimum phase systems can achieve 
perfect regulation (Kwakernaak and Sivan, 
1972b; Francis, 1979; Scherzinger and Davison, 
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1985) and perfect tracking/disturbance rejection 
(Davison and Chow, 1977; Davison and 
Scherzinger, 1987). These properties, however, 
are not possessed by non-minimum phase 
systems. In addition, a non-minimum phase 
system, unlike minimum phase systems, has 
various fundamental limitations associated with 
the achievable closed loop transfer matrix 
(Cheng and Desoer, 1980) the achievable closed 
loop gain margin (Tannenbaum, 1980) LQG 
loop transfer recovery (Stein and Athans, 1987; 
Zhang and Freudenberg, 1990) sensitivity or 
complementary sensitivity minimization (Freud- 
enberg and Looze, 1985; Francis, 1987) model 
reference adaptive control (Miller and Davison, 
1989) etc. On the other hand, it has been recog- 
nized that not all non-minimum phase systems 
behave in the same way; for example, some non- 
minimum phase systems produce results which 
are "almost as good" as minimum phase 
systems, whereas other non-minimum phase 
systems are indeed "almost impossible" to 
control. It is the purpose of this paper to study 
the quality of non-minimum phase systems with 
respect to tracking and disturbance rejection. 
We will show that for each non-minimum phase 
system there exists a fundamental limitation on 
the achievable transient response of the system. 
This limitation has a simple characterization in 
terms of the number and the locations of those 
zeros of the system which lie in the open-right 
complex plane, and provides a quantitative 
measure of the "degree of difficulty" which is 
inherent in the control of a non-minimum phase 
system. 

In this paper, we first study the cheap linear 
quadratic regulator (LQR) problem for non- 
minimum phase systems. Consider a linear 
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time-invariant system described by 

Yc = A x  + Bu, x ( 0 ) = x o ,  
(1) 

y =  Cx + Du, 

where u , x , y  are finite dimensional vectors 
depending on the time t. Assume that 
(A, B, C, D) is stabilizable and detectable, and 
consider also the associated optimal cost 
functional 

J~ = rain (y ' y  + e2u'u) dt. (2) 
u JO  

The cheap LQR problem concerns the limit 

J0 := lim J,. It is shown in this paper that J0 has a 
E---~0 

very simple expression when (A, B, C, D) has a 
particular special structure. This expression is 
not very important per se since very few systems 
have such a special structure. However,  the 
significance of the result lies in the fact that for 
every transfer matrix, there always exists a 
realization which has such a special structure. 
Therefore the result has important applications 
in control problems which depend only on the 
system transfer matrix rather than on the 
internal realization of the system. The cheap 
optimal servomechanism problem, which is the 
focus of this paper, belongs to this class of 
problems. An expression for Jo involving the 
concept of "zero directions" was obtained by 
Shaked (Grimble and Johnson, 1988) for the 
case when D is a zero matrix and A, B, C are 
general matrices; this expression, although 
interesting, is quite complicated and is not 
convenient to use in our application. 

Consider now a system with noise corrupted 
input and output: 

Yc=Ax + B ( u + ~ ) ,  x(O)=O, 
(3) 

y =  Cx + D(u  + ~) + rl, 

where ~ is the input disturbance, r/is the output 
disturbance. We assume again that (A, B, C, D) 
is stabilizable and detectable. A control problem 
which often arises is to design a controller for 
system (3) such that the overall system is 
internally stable and such that the output y 
asymptotically tracks a reference signal Yrcf for 
arbitrary ~, r /and Yrcf contained in a certain class 
of signals. This problem is called a 
servomechanism problem. It is well-known that a 
general servomechanism problem can be treated 
as one with the reference signal being equal to 
zero since the distinguishing role between Yrct 
and r/ disappears if the tracking error y -yrof is 
taken to be the output under consideration. 
Therefore,  we will assume that y~¢f = 0 through- 
out the paper. In practice, a controller which 

solves the servomechanism problem is also 
required to have a good transient response, i.e. 
it is desired that the closed loop system should 
have a "fast speed of response" without 
"excessive peaking/oscillation" occurring in the 
output y and other system variables, as they 
approach their steady state values. To achieve 
such a response, we seek a controller which 
generates an input to achieve the following 
optimal quadratic cost functional 

J~ = rain (y ' y  + eZ•'a) dt, (4) 

where ti is a variable associated with the 
transient behaviour of the input u. The problem 

concerning the limit Jo: = lim J~ is called the 
E ~ 0  

cheap servomechanism problem. It is clear that 
J~ and J0 depend on the controller structure used 
since the controller structure will determine the 
physical meaning of a. In this paper, we first 
look at the ideal case: we assume that the system 
parameters are exactly known and that the 
disturbances are measurable. In this case, a 
feedforward controller structure can be used 
(Davison, 1973). It is shown in this case that J0 is 
a quadratic form on the output disturbance only, 
and that a norm of this quadratic form can be 
characterized explicitly by the locations of the 
zeros of system (3) which lie in the open right 
hand side of the complex plane. In practice, the 
system parameters are always somewhat uncer- 
tain and it is often impossible to measure the 
disturbances; in this case, the servomechanism 
problem is still solvable but the controller has to 
contain an internal model of the disturbances, 
see e.g. Francis and Wonham (1976) and 
Davison (1976). Such a controller is called a 
robust servomechanism controller. We will show 
in this case that J,~ has the same characteristics as 
in the feedforward controller case, i.e. J0 is a 
quadratic form on the output disturbance only 
and a norm of this quadratic form can be 
characterized explicitly in the same way by the 
locations of those zeros of sytem (3) which lie in 
the open right hand side of the complex plane. 
The significance of the results for the feedfor- 
ward controller lies in that it tells us what is the 
best possible result that can be achieved in the 
ideal case, while the results for the robust 
servomechanism controller show that even 
though the controller does not have as much 
information, the limiting performance is identi- 
cal to the ideal case. 

The structure of this paper is as follows: 
Section 2 gives some preliminary material on the 
factorization of a system into the product of an 
inner system and a minimum phase systems. 
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Section 3 gives the main result on the cheap 
LQR problem for a special system resulting from 
the factorization given in Section 2. Section 4 
studies the servomechanism problem with cheap 
quadratic cost using feedforward controllers. 
Section 5 studies the same problem using robust 
controllers. It is assumed in Sections 4 and 5 that 
the disturbances are constant signals. Section 6 
extends the result obtained in Sections 4 and 5 to 
sinusoidal disturbances. Section 7 contains an 
example. Section 8 contains conclusions. 

2. PRELIMINARIES 

The transfer matrix F of the system (1) or (3) 
is given by 

F(s) = O + C(sI - A) - 'B .  (5) 

Conversely, a four-tuple of real matrices 
(A, B, C, D) is said to be a realization of a 
proper real rational matrix (transfer matrix in 
short) F if (5) is satisfied. Throughout this paper, 
the following notation is used to divide the 
complex plane into three parts: C + = { s ~  
C : R e ( s ) > 0 } ,  C ° = { s e C : R e ( s ) = O } ,  C - =  
{s e C :Re  (s)<0}.  A transfer matrix is said to 
be stable if all of its poles are contained in C- ,  
and a square constant real matrix is said to be 
stable if all of its eigenvalues are contained in 
C-. 

The zeros of a transfer matrix are defined to 
be the roots of the numerator polynomials of the 
nonzero elements of its Smith-McMillan form. 
A transfer matrix is said to be minimum phase if 
it has no zeros in C+; otherwise it is said to be 
non-minimum phase. The zeros of system (1), 
system (3) or simply a realization (A, B, C, D) 
are defined to be the roots of the invariant 

polynomials of the matrix [ A - M  B]  
C 

Similarly, we can define the concepts of 
minimum phase and non-minimum phase for 
system (1), system (3) and a four-tuple 
(A, B, C, D), as was done for a transfer matrix. 
Although the zeros of a real rational matrix and 
those of its realization may be different, their 
minimum phase or non-minimum phase property 
is always the same as long as the realization is 
stabilizable and detectable. 

Associated with any realization (A, B, C, D) 
in which A is stable, there are two Lyapunov 
equations: 

A P  + PA' = - B B ' ,  (6) 

A'Q + QA = -C 'C .  (7) 

The solutions P, Q to equations (6)-(7) are 
called the controllability grammian and the 
observability grammian of (A, B, C, D), 

respectively. A minimal realization (A, B, C, D) 
of a stable transfer matrix F is called a balanced 
realization if the solutions P, Q to equations 
(6)-(7) are diagonal and equal. It is shown in 
Moore (1981) that every stable transfer matrix 
has a balanced realization. Procedures to find a 
balanced realization from any minimal realiza- 
tion of a stable transfer matrix are given in 
Moore (1981) and Laub et al. (1987). 

A stable transfer matrix F is called inner if 
F'( -s )F(s )  = L All the zeros of an inner matrix 
must be located in C ÷. 

Lemma 1 (Glover, 1984). Let (A, B, C, D) be a 
balanced realization of an inner matrix F and let 
P, Q be the solutions to equations (6)-(7). Then 

(a) P = Q = I ,  

(b) D'O = I, 

(c) D ' C + B ' = O ,  D B ' + C = O .  

A transfer matrix F is said to be right- 
invertible if F has full row rank for at least one 
s • C .  If ( A , B , C , D )  is any realization of F, 
then the right-invertibility of F is equivalent to 

the fact that [ a  C M  B ]  has full row rank for 

at least one ~. e C. Therefore, no confusion will 
be caused when we talk about the right- 
invertibility of system (1), system (3) or 
realization (A, B, C, D). 

The following factorization result serves as a 
foundation for our development. It is noted here 
that when the poles and/or zeros of two transfer 
matrices are compared in the following, we 
consider not only their values but also their 
multiplicities in the Smith-McMillan sense. 

Lemma 2. A transfer matrix F can always be 
factorized as F = F~F2 such that F~ is inner, F2 is 
minimum phase and right-invertible, and the 
unstable poles of Fz are equal to the unstable 
poles of F. 

The result has been known for a long time but 
its original proof is hard to trace. Readers are 
referred to Qiu and Davison (1990) for a proof 
and Zhang and Freudenberg (1990) for a proof 
of its dual version. 

Given a transfer matrix F, let F = F~Fz be the 
factorization described in Lemma 2. Let 
(At, B1, Ct, Dr) be a balanced realization of F~ 
and let (A2, Be, C2, DE) be any stabilizable and 
detectable realization of F2. Then a stabilizable 
and detectable realization of F is given by 

Z = [ o 1  BIC2], [BBD2 ] 
az  d B = ' (8) 

C=[C1 DIC2], D=DID2.  

AI.'TO ~ 2 - 6  
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This realization is called a factorized realization 
of F and plays an important role in the 
development. 

The following lemma gives some useful 
properties of right-invertible transfer matrices 
with respect to the factorization described in 
Lemma 2. 

Lemma 3. Let  F be a right-invertible transfer 
matrix and let F =F~F2 be the factorization 
described in Lemma 2. Then F~ is square, the 
zeros of F~ are equal to those zeros of F 
contained in C +, and the poles of F~ are equal to 
the negatives of the zeros of F1. 

Proof. Let F be r × m. Then F~ has r rows and at 
most r columns. If F~ has less than r columns, 
then the rank of F is less than r for all s ~ C, 
which contradicts the assumption that F is 
right-invertible. Therefore  F~ must have r 
columns, i.e. it must be square. It follows 
directly from the identity F~l(s)= F;(-s)  that 
the poles of F~ are equal to the negatives of the 
zeros of F~. 

Let (A, B, C, D) be a factorized realization of 
F. Those zeros of F which are contained in C ÷ 
are the complex numbers ~. ~ C ÷ which make the 
matrix 

I A ,  o M  B~Cz BID2-] 
A 2 -  )tI B2 [ ,  

L C) DIC2 D~D2J 

reduce rank. Adding -B~D~ t times of the third 
row to the first row and multiplying the third row 
by D~-~, we transform the above matrix into 

A 2 -  A1 Bz . 

D? C1 C2 D2 

Hence the zeros of F in C + are the eigenvalues 
of A ~ -  B~DT~C~. Notice from Lemma 1 that 

Al - BID~-1Ct =At  + BID{1D1B~ 

= A1 + BIB~ 

= Al - (Ai + A'l) = - A ' I .  

This completes the proof. [] 

We end this section with a few words about 
the norm of quadratic forms. A (real) quadratic 
form f on v e E P  is a function of the form 
f ( v ) = v ' Q v  for some symmetric matrix Q 
EP×p. Therefore  a norm of Q gives a norm of 
the quadratic form f. The trace norm of Q, i.e. 
the sum of the singular values of Q, is of 
particular interest. If Q is positive semi-definite, 
then its trace norm is equal to its trace. The 

following lemma gives a physical meaning to the 
trace norm. Let  ~(-) denote the expectation 
operator.  

Lemma 4 (Levine and Athans, 1970). Let  
Q ~ ~P×P be a positive semi-definite matrix and 
let v be a random vector in ~P with ~(v)  = 0 and 
~(vv') = I. Then ~(v'Qv) = tr Q. 

3. CHEAP LQR PROBLEM 

Consider the cheap LQR problem defined by 
(1)-(2). It is known that JE = x[)P, xo and that the 
optimal control which stabilizes the system and 
which achieves the optimal cost is given by 
u = -(e21 + D'D)- I (B 'P ,  + D'C)x, where P, is 
the unique positive semi-definite solution to the 
following algebraic Riccati equation (ARE)  

[A - B(E2I + D'D)- 'D'CI 'P~ 

+ P,[A - B(e21 + D'D)- tD'C]  

+ C'[I - D(E2I + D'D)-~D']C 

- P,B(eZl + D 'D) - IB 'p ,  = O. (9) 

It is easy to show (Kwakernaak and Sivan 
(1972b)) that P, monotonically decreases as e 

goes to zero, and so the limit P0 := lim P, exists. 

The following result was proved in Scherzinger 
and Davison (1985); the same result for the case 
when D = 0 was obtained in Kwakernaak and 
Sivan (1972b) and Francis (1979). 

Lemma 5. P 0 = 0  if and only if (A, B, C, D) is 
minimum phase and right-invertible, 

For systems which do not satisfy the 
conditions given in Lemma 5, (Francis, 1979) 
characterized the null space of P0, which is 
simply the set of all x0 with J0 = 0, and (Saberi 
and Sannuti, 1987) gave a complete decomposi- 
tion of the state space in terms of the transient 
speed of the state trajectories. In the following, 
we will show that P0 takes on a very simple form 
if (A, B, C, D) is a factorized realization of an 
arbitrary transfer matrix. 

Lemma 6. Let (A, B, C, D) be a factorized 
realization of a transfer matrix. Then P , =  

[~ 0 ] ,  where P~2 is the unique positive 
P,z 

semi-definite solution to the A RE 

[A2 - B2(¢21 + D6D2)-ID6C2I'P,2 

+ P~2[A2 - B2(e21 + D~Dz)-tD~Cz] 

+ C~[I - Dz(e21 + D~D2)-ID2]C2 

- P, zBz(E21 + D6Dz)-IB2p,2 = O. 
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[x,] 
Let x = be partitioned accordingly with the 

x2 
partition of A. Then the optimal control is given 
by u = -(e21 + D~D2)-~(B~P~2 + D~C2)x2. 

The proof of the first statement of this lemma 
is obtained simply by verifying that the given 
solution indeed satisfies ARE (9). The second 
statement follows by using Lemma 1. The details 
of the proof are dry algebra and are omitted. 

A direct application of Lemma 6 leads to the 
following corollary. 

Corollary 1. If (A, B, C, D) is a balanced 
realization of an inner transfer matrix, then 
P~ -- I and the optimal control is u = 0. 

Since any minimal realization of a transfer 
matrix is similar to a balanced realization, this 
corollary implies that if (,4, B, C, D) is a 
minimal realization of an inner matrix, then the 
optimal control of the system (1) under cost (2) 
is always zero, and thus the optimal performance 
is independent of e. This is consistent with the 
well-known fact that cheap control asymptoti- 
cally puts all the poles of the closed loop system 
to the mirror points of the system's zeros in C + 
with respect to the imaginary axes. Since an 
inner matrix already has this property, no 
control is therefore needed to make it optimal. 

Since (A2, B2, C 2, 02) is a stabilizable and 
detectable realization of a minimum phase and 
right-invertible transfer matrix, the following 
theorem is obtained immediately from Lemmas 
5 and 6. (In the statement of the theorem, we 
assume that PE is partitioned accordingly with 
the partition of A given in (8).) 

Theorem 1. Let (A, B, C, D) be a factorized 
realization of a transfer matrix. Then 

°0] 
4. FEEDFORWARD SERVOMECHANISM 

CONTROLLER 
In the rest of this paper, we apply Theorem 1 

to study various optimal servomechanism prob- 
lems with transient performance measured by 
cheap quadratic functionals. Consider the 
servomechanism problem for system (3). Denote 
the zeros of (A, B, C, D) which are contained in 
C + (if any) by A1, ~ ' 2 ,  " ' "  , ~ ' l "  To achieve clarity 
in the presentation, we assume in this and the 
next section that the disturbances are constant 
signals. The results will be extended to the 
sinusoidal signals in Section 6. 

In order for the servomechanism problem to 

be solvable, it is necessary and sufficient to have 
the following assumption. 

rA B]  
Assumption 1. Assume that ],~ ,~[ has full 

t. g,-. L i d  
row rank. 

Assumption 1 implies that system (3) is 
right-invertible and has no zero at the origin. 
Assume that disturbances ~ and r/ are measur- 
able. Then under Assumption 1, the following 
feedforward controller solves the servomechan- 
ism problem: 

u = Kx - ~ - [D - (C + DK)(A + BK)-'B]*q, 
(10) 

where K is any matrix which makes A + B K  
stable and [.]*= [.],([.][.],)-1 (Davison, 1973). 
The inverse involved exists due to Assumption 1. 

Assume controller (10) is applied to the 
system (3). The dosed loop stability implies that 
the input and the state of the system will 
approach constant values in the steady-state. 
Denote the steady-state values of the input and 
the state by t~ and 2, respectively. Then a and 2 
must satisfy equations 

0 = + B ( a  + 

0 -- (?2 + D(fi + ~) + 77, 

~ = K 2 - ~  

- [D - (C  + D K ) ( A  + BK)-IB]*~I. 

Let the transient part of the input and the state 
be denoted by ~ : = u - f i  and 2 : = x - 2 ,  
respectively. Then these values are governed by 
the following equations: 

=A2 + Ba, 2 ( 0 ) = - 2 ,  

y=  (?2+ Da, 

~= K2. 

These equations suggest that in order to have 
a good transient response, we can choose K to 
achieve the following optimal quadratic cost 
functional: 

J~ = main (y 'y + e2t~'/~) dt. (11) 

From the knowledge of the LQR problem, J~ is 
a positive semi-definite quadratic form on 
2(0) = - 2 ,  which in turn is linear in ~ and r/. 
Hence, JE is a positive semi-definite quadratic 
form on ~ and 7?. Since J~ monotonically 
decreases as e 2 goes to zero, it follows that 
J0 := lim J~ exists. The following theorem says 

E ~ 0  

that Jo is a positive semi-definite quadratic form 
on r/ only, i.e. Jo is independent of the input 
disturbance, and that a norm of Jo can be simply 
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given by the locations of the zeros of system (3) 
in C +. 

Theorem 2. Jo = rl'Hrl for some positive semi- 
l 1 

definite H and tr H = 2 i=~E ~ .  

Proof. The nature of the problem setup 
indicates that J ,  depends solely on the transfer 
matrix F of system (3). Therefore, we can 
assume that (A, B, C, D) is a factorized 
realization which is of the form of (8). Let 
F~(s)=D, + C , ( s I - A , ) - t B ,  and Fz ( s )=Dz+  
Cz(sI-Az)-IB2.  Since F is right-invertible by 
Assumption 1, it follows from Lemma 3 that Ft 
must be square and that the poles of F1 are 

-~q, -~-2 . . . . .  -~q. 
It is known that J ,=~' (O)Pd(O)=~'Pd,  

where P, is the unique positive semi-definite 
solution of ARE (9). By Theorem 1, P0:= 

l i m P , = [ ~  ~]. Let £ be partitioned as 07= 
E ~ 0  

Ixl ]  according to partition as given by the of A 
"~2 

(8); then Jo = ~[~,. 
Now assume that the closed loop system is at 

steady-state. The output of FI must be - r /  and 
the output of F2 is therefore -FT~(0)r/. It then 
follows that Xl=A~1BIFF1(0)rl- Let H =  
F-(~(O)B[A'j-IA~JB,F~(O). Then Jo= r/'Hr/. 
Since the matrix Fl(0) is unitary, it follows that 

tr n = tr (B[A~-~A?~B~) = tr (A{~B~B[A'~-~). 

By using Lemmas 1 and 3, we obtain 

tr H = - t r  [ATe(A1 + A~)A'1-1] 

i 1 
= - 2  tr (Z;l)  = 2i~=l ~i [] 

It is not a surprise that the feedforward 
controller (10) produces perfect control, i.e. 
J0=0,  for the case when only the input 
disturbance is present, even if the system (3) is 
non-minimum phase. In fact, the feedforward 
controller generates a signal which completely 
cancels the input disturbance. However for the 
case when the output disturbance is present, 
perfect control cannot be obtained for non- 
minimum phase systems, and a norm (or an 
averaging effect) of the optimal performance J ,  

t 1 
is now bounded from below by 2 Z T-. This 

i ~ l  ^i 
/ 1 

result shows that 2 E can be considered as a 
i=J ~ i 

quantitative measure of the degree of difficulty 
in solving the servomechanism problem for 
non-minimum phase systems with constant 
disturbances. This result also emphasizes the fact 

that not all non-minimum phase systems behave 
the same. A system with a small positive zero is 
more difficult to control than a system whose 
zeros in C ÷ are far away from the origin. On the 
other hand, a conjugate pair of complex zeros 
o~+jfl in C + with a:<< Ifll will not cause signifi- 
cant difficulty in control since its contribution 

4o: 
to the limiting performance J0 is cr 2 + /32 . This 

later phenomenon has been observed in Davison 
and Gesing (1985) in the control design for a 
large flexible space structure. A similar result to 
Theorem 2 was given in Morari and Zafiriou 
(1989) for SISO systems by using frequency 
domain techniques. 

5. ROBUST SERVOMECHANISM CONTROLLER 
In practical applications, the parameters of 

system (3) are always somewhat uncertain and 
we often do not have access to the disturbances. 
In either case, controller (10) cannot generally 
be used. To overcome these difficulties, a robust 
servomechanism controller has been proposed 
to solve the servomechanism problem (Davison, 
1976). The robust servomechanism controller 
does not require the disturbances to be 
measured, but must contain a servocompensator 
which contains the modes of the disturbances. A 
significant advantage of the robust servomechan- 
ism controller over the feedforward controller is 
that tracking and disturbance rejection occur for 
all perturbations in the system provided only 
that the perturbed closed loop system remains 
stable. 

Assume again that Assumption 1 holds. The 
robust servomechanism controller for system (3) 
with constant disturbances can take the following 
form 

2 = y ,  z(0) = 0, 
(12) 

u = Kox + Kz, 

where [K0 K] is chosen to stabilize matrix 

On combining the original system and the 
servo-compensator (the integrator), the aug- 
mented system with input u and output z is then 
described by the state-space equation: 

[,(o)] 
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The action of the controller becomes that of a 

state feedback, i.e. u = [ K o  K][X]. Define new 

variables: $ := ~, ~ := ~, ~ := ti. On noticing that 
= y, the augmented system then becomes 

_- 

1 ~(0)j = [D B ~] [~ ] ,  (13, 

y_-,o 

and the controller becomes t~=[K0 K] 

[zX-]. It can be easily shown that system 

([A ~], [DB], [0 I], 0), 
is always stabilizable and detectable under 
Assumption 1 and the assumption that 
(A, B, C, D) is stabilizable and detectable. 

This suggests that in order to have a good 
transient response, we can choose [Ko K] to 
achieve the following optimal quadratic cost 
functional 

J,  = min -/~° (y'y + e2t~'~) dt. (14) 
~2 a 0 

By the same argument as made in the last 
section, we see that J ,  is a positive semi-definite 
quadratic form on ~ and r/, and that Jo := lim J,  

exists. The statement of the following theorem is 
exactly the same as in Theorem 2. 

Theorem 3. Jo = r/'Hr/ for some real positive 
t 1 

semi-definite H and tr H = 2 i~1--- 3.i--" 

Proof. Again J ,  depends solely on the transfer 
matrix F of system (3). Therefore ( A, B, C, D) 
can be assumed to be a factorized realization of 
the form of (8). Consequently (13) can be 
rewritten as 

['~] r A1 BIC2 i]['~] [BID2I 
L G  DiG2 LD'D2"~ (15) 

y = [ 0  0 I] , 

with initial condition 

l [BID2 
o ]. 

J 

Let 

and 

I -A1 B1 01 
T =  0 0 1 , 

C1 D1 0 

= T  2 . 

£2 

Assumption 1 guarantees that T is invertible. 
System (15) can then be transformed to 

I ~ l  [ i  I BI 0 lF£1l I I  | I 0 ] 
= 0 C2ll /+ D2 t2, 

LX2J 0 A2/L£2_I LB2_I 

y=[C1 D1 0] £ , 

L£2J 

and the initial condition then becomes 

£2(o)J L D, D2 

(16) 

Note that (16) is a factorized realization with 

(A1, BI, C1, DO being inner and ( [~  C2], 
.42-1 

- -[D21 [I 0],0)- being minimum phase and 
B2 ' 

right-invertible. Let P~ be the unique positive 
semi-definite solution to the ARE associated 
with system (16) and optimal cost functional 
(14). Theorem 1 leads to 

lira PE = 0 , 
E---~ 0 0 

and Jo = £[(0)£1(0). Direct calculation shows that 

£1(0)=[/ 00]T-'LDIB~, 0, 
= - A [ 1 B 1 F T 1 ( O )  rl . 

where FI(0) = D 1 - CIA;1B1. Let H = 
F'I-I(O)B~A~-~A{IB1Fll(O). Then Jo = T/'H~/. 

The rest of the proof now proceeds in exactly 
the same way as done in the last part of the 
proof of Theorem 2. [] 

Two interesting points can be observed on 
comparing Theorem 3 with Theorem 2. Firstly, 
although we can no longer completely cancel the 
input disturbance when the robust ser- 
vomechanism controller is used (as was done for 



344 L. Quu and E. J. DAVISON 

the feedforward controller) perfect control still 
occurs for the case when only the input 
disturbance is present even if the system is 
non-minimum phase. In other words, no matter  
whether the system is minimum phase or not, 
the robust servomechanism controller 's reaction 
to the input disturbance can be made arbitrarily 
fast. This result is perhaps somewhat surprising. 
Secondly, we are concerned if the use of the 
robust servomechanism controller sacrifices the 
potential performance of the controlled system, 
in comparison to the use of the feedforward 
controller. Since the variable t~ in (11) and (14) 
have different physical meanings, it may appear 
that the norms of Jo given in Theorem 2 and 
Theorem 3 are incomparable. However,  it has 
been shown in Kwakernaak and Sivan (1972b) 
that if we denote the outputs of the optimal 
system in both cases by y,,  then Jo= 
lim ~ y ' y ¢  dr, i.e. when e is small, J, essentially 
e ~ 0  

contains only the output term. Therefore ,  in 
both cases, the limiting transient speed of the 
output, measured by a norm of J0, are the same. 
In other words, the use of the robust 
servomechanism controller will not lead to a 
significant loss in the potential limiting perfor- 
mance of the system. 

6. S I N U S O I D A L  D I S T U R B A N C E S  

In this section, we extend the results obtained 
in the last two sections to the case when the 
disturbances are sinusoidal signals. We will 
obtain results which are in the same spirit as in 
Theorems 2-3. 

Assume that the disturbances in system (3) are 
now of the following form 

~(t) = ~ l  sin tot + ~e2 cos tot, (17) 

O(t) = 77el sin tot + 7"/e 2 COS tot, (18) 

[ ~ ' ]  and r /~:=[  ~M] are real where ~ := L~e2J ~e2 J 

constant vectors. In order for the servomechan- 
ism problem to be solvable for system (3) with 
disturbances of the form (17)-(18),  it is 
necessary and sufficient to have the following 
assumption. 

Assumpt ion  2. Assume that C has 
full row rank. 

Assumption 2 implies that system (3) is 
right-invertible and has no zero at/'to. 

First, we consider the ideal case when the 
system parameters (A, B, C, D) are exactly 
known, and the disturbances as well as their 

derivatives are available for measurement.  In 
this case, the following feedforward controller 
solves the servomechanism problem: 

u = K x -  ~ -  Re {[D + (C + D K )  

x ( j to l  - A  - BK) - ]BI*}r l  

1 
- - -  I m  { [ D  + (C + D K )  

to 

X ( j t o l - A  - B K ) - ' B ] * } ~ ,  (19) 

where K is any matrix which makes A + B K  
stable and [ . ] ,=  [.],([.][.],)-1 (Davison, 1973). 
The inverse involved exists due to Assumption 2. 

Assume controller (19) is applied to system 
(3), and assume that the steady-state signals of 
the input and the state are given by fi and 2, 
respectively. Then ~ and 2 must satisfy 
equations: 

= A £  + Bfi + B~, 

0 =  C2 + Dfi + D f f+  r/, 

fi =/<2 - ~ - Re {[D + (C + D K )  

× ( j tol  - A - B K ) - ' B ] * } r  t 

1 
- - - I m  {[D + ( C + D K )  

to 

× ( j t o l -  A - BK) - IB]~)O.  

Let the transient part of the input and the state 
be denoted by f i : = u - a  and 2 : = x - 2 ,  
respectively. Then these values are governed by 
the following equations: 

.~ = A 2  + Ba, 2(0)  = - 2 ( 0 ) ,  

y =  C2 + D&, 

f i = K 2 .  

These equations suggest that in order to have 
a good transient response, we can choose K to 
achieve the following optimal quadratic cost 
functional 

JE = rnin (y 'y  + E2a ' U )  dt. (20) 

From the knowledge of the LQR problem, J ,  is 
a positive semi-definite quadratic form on 
2(0) = -2 (0) ,  which in turn depends linearly on 
~e and r/e. Hence J ,  is a positive semidefinite 
quadratic form on ~e and r/c. Since J ,  decreases 
monotonically as ¢ 2 goes to zero, it follows that 

Jo:= l imJ ,  exists. The following theorem says 

that J0 is a positive semidefinite quadratic form 
on q,, only and a norm of Jo is given by a simple 
expression involving only the zeros of the system 
(3) in C ÷. 
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T h e o r e m  4. Jo = r f  M r b  for some positive semi- 
definite M and 

t r M = ~ ( ~ l  + 1 
/ = ,  

Proof .  Similar to the constant disturbance case, 
we can assume that (A, B, C, D) is a factorized 
realization of the form of (8). Let Ff fs )=  
D1 + C l ( s l  - A 1 ) - l B l  and F2(s) = D 2 + C 2 ( s i  - 
A 2 ) - l B 2  . Since system (3) is assumed to be 
right-invertible, it follows from Lemma 3 that F~ 
must be square and that the poles of F1 are given 
by -Al,  -A2 . . . .  , -At. 

It is known that JE = £ ' (0 )Pd(0)  = Y'(0)Pd(0) 
where PE is the unique positive semidefinite 
solution of ARE (9). By Theorem 1, Po:= 

l i m P ~ = [ ~  ~]. Let £ be partitioned as £ =  
e--*.0 

[x l ]  according to the partition of A given by (8); 
x2 

then J0 = ~(0)~1(0). 
Now assume that the closed loop system is at 

steady-state. The output of F1 must be -r / .  To 
obtain the state ~ of F1, we use ~ ( . )  to denote 
the Laplace transform operator. Then Xl is 
related to r /by 

5£(X,) = - ( s I  - A1 ) - 'B IF{ ' ( s )~SE(r l ) .  

Let L ( s ) = ( s l - A O - 1 B ~ F ? I ( s ) .  Steady state 
sinusoidal analysis tells us that 

Xl = - R e  L(/ ' to )rl - 1 Im L ( j t o  )il. 
to 

Hence, 

~,(0) = - R e  L(j to)rle2 - Im L(/.to)rle 1. 

Let 

J im L ( j t o )  ] ' , .  M = L ( j t o )  Re L(jto)]. Re L(/'to)J tim 

Then J0 = r l 'Mrle  and 

tr M = tr [ L * ( j t o ) L ( j t o ) ]  

= tr [Fl*-~( j to)B~( j toI  - A1 )  *-~ 

x ( j t o l  - A , ) - ' B , F F ~ ( / . t o ) ]  

= tr [B[(/.toI - A1)*-~(/ . tol  - A , ) - ~ B , ]  

= tr [ ( j to l  - A 1 ) - ' B I B ~ ( - / . t o I  - A;)-q. 
By using Lemmas 1 and 3, we obtain 

t r M  = tr [(/.o91 - A O  -~ 

X ( j t o l  - A ,  - j t o I  - a ~ ) ( - / . t o I  - AI)- ' ]  

= tr [ ( - / . to l  - A ; )  -~ + (/'toI - AD -1] 

= ~ (  1 ~ )  

~=1 ~ - j t o  + " [] 

In this case, we see that a system with zeros in 
C + close to j to, where to is the frequency of the 
disturbances, is more difficult to control than a 
system whose zeros in C + are far away from/'to. 

We can see, as in the constant disturbance 
case, that the feedforward controller (19) cannot 
be used either when the system parameters 
(A, B, C, D) are uncertain or when the distur- 
bances are not available for measurement. The 
robust servomechanism controller does not have 
these disadvantages. The robust servomechanism 
controller for disturbance signals of the form 
(17)-(18) can take the following form (Davison, 
1976) 

[~lz] = [~ - 0 2 ' ] [ z Z ~ ] + [ ~ ] Y ,  

[z,(0)]  = 0, (21) 

z2(O) J 

u = Kox  + KlZ l  + K2z2, 

where [Ko K1 K2] is chosen to stabilize the 
following matrix 

0 --0921 + [Ko Ki K2]. 

I 0 

The augmented system (with input u and 
output z2) is then described by the state-space 
equation E,] [A00 ]ix] 

21 = C 0 - o ) 2 1  z 1 

22 0 I 0 zl 

+ (u + ~ ) +  7/, [ Z l ( O ) |  = O, 

LzdO) J 

h = [ O  0 I1 zi . 

Z2 

Define new variables £ := £ + to2x, zl := ~ 
+ to2Z1, Z2 ]= Z2 "1- (-/)2Z2, and t~ :=/ i  + w2u. On 

noting that ~2 + w2z2 = Y, the augmented system 
then becomes 

Ei°  levi Ei] zl = 0 - 21 zl + ti, 

~2 i ~2 

y = [ 0  0 I1 i l  , 

LizJ 

where 

(22) 

([: olI l ) 
A 0 0 B 

0 - 21 , , [0  0 I ] ,0  

I 
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is always stabilizable and detectable under 
Assumption 2 and the assumption that 
(A, B, C, D)  is stabilizable and detectable. 

The initial condition of system (22) is given by 

[ ~(o) ] 

el(O)/ 
22(0) J 

[z00  
=12:,(0)  = C 0 - 21 / 2 J ( O ) ]  

L22(0) 0 1 0 L 22(0) _] 

EZ] + [a(0) + ~(O)l + 0(o) 

= 0 - ~o-1 

I 0 

x [u(o) + ~(o)1 + ,fro) 

[z] + [u(O) + ~(o)1 + /fro). 

These equations suggest that in order to have 
a good transient response, we can choose 
[Ko K~ K2] to achieve the following optimal 
quadratic cost functional 

J ,  = main (y 'y  + ezti't~) at. (23) 

Again the optimal cost J ,  is a positive 
semi-definite quadratic form on ~e and r/e, and 

J0 = lira J ,  exists, The statement of the next 

theorem is exactly the same as that of Theorem 
4. 

Theorem 5. Jo = rf Mrle for some positive semi- 
definite M and 

,=, ~ ) "  

Proof. Again we can assume that (A, B, C, D) 
is a factorized realization of F which is of the 
form of (8). Consequently (22) can be written as 

"~2 = A 2 0 0 "~2 

Z2 ZI LC1 D~C2 0 -0)21 I 0 Z72 ZI 

+ D 2 u, (24) 

y = [ 0  0 0 1] 

LZ:zJ 

Let 

T =  0 0 0 I , 
CIA1 C1B1 D, 

C1 D1 0 

and 

= T 21 . 

~, b2j 
2 

Assumption 2 guarantees that T is invertible. 
System (24) is then transformed to 

[A 1 i ~ [  = 0 0 I 21 
0 -roe1 0 C2 22 

LX2A 0 0 0 A2 £2 

+ fi, 
D2 

LB2_] 

["] y = [ C I  Ol 0 0] ff-i 
22 " 

2 

System (25) is in the factorized 
(A1, B1, Cl, D1) being inner and 

form with 

(i 0 ,0] 01 ) 
--0)21 0 C 2 , D2 , [1 0 0] ,0  , 

0 0 A 2 LB2J 

being minimum phase and right-invertible. Let 
P, be the unique positive semi-definite solution 
of the A R E  associated with system (25) and the 
optimal cost functional (23). Theorem 1 leads to 

[, o o 
P o : = l i m P ¢ =  0 0 0 

~ o  0 0 0 

0 0 0 

and Jo = £[(0)£,(0). 
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The initial condition :~1(0) can be obtained as: 

i x ( o ) = [ 1  o o 

= [i 0 0 [A, 
x{Lc 0, 

L.%(o) A 
0IT -1 

BIC2 0 

Az 0 

D1C2 0 

0 1 

 21] 
I J) +  (0)1 + ,7(0) x(i:i2 °:juo 

Straightforward computat ion leads to: 

.f,(O) = - [ ( A ,  - B I D ( ' C , )  2 + 0)211-' 
× [(A, - B~DTLC1)B,DT'o(O) 

+ BlD?~il(O)] 

= - [ ( A I  - B,DI1CI)  2 + o)21] -1 

x [(A, - BID-('C,)B,DT'rl~ 2 

+ 0)BID?~rM]. 

Let L(s) = ( s l - A 1  + B1D{tC~)-~BID-( 1. Then 
simple algebra shows that 

L(s) = (sl - A , ) - ' B 1  

× [D, + Cl(sl - A1)- IB, ]  - '  

= (sl -A1 ) - 'B IFF ' ( s ) ,  
and 

£,(0) = - R e  [L(j0))]rb2 - Im [L(j0))]rM. 

Let 

[ I m  L(j0)) 3' 
M = [ R e  L(/'0))J [ lm L(j0)) Re L(j0))]. 

Then J0 = r/ 'MrM The rest of  this proof  is the 
same as the last part  of  the proof  of  Theorem 
4. [] 

Again we have two similar observations as in 
the constant disturbance case. Firstly, perfect 
control still occurs for the case when only the 
input disturbance is present ,  even if the system is 
non-minimum phase. Secondly, the use of the 
robust servomechanism controller does not lead 
to a significant loss in the potential  limiting 
performance of the system, compared  to the 
feedforward controller case. 

7. AN EXAMPLE 
An experimental  flexible beam system is 

described by the following transfer function 
(MacLean,  1990) 

F(s) 

8.26s 4 - 1.60s 3 - 2878s 2 + 453s + 95400 

= 5S  6 "1- 4.83s 5 + 231234 + 4884 '3 + 60657s 2 + 40.5s ' 

which has a state space model  of the form (3) 
given by 

7_0.996 - 4 6 3  

A =  

- 9 7 . 8  

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

1 

0 

0 
B ~ -  

0 

0 

0 

c = [0 

-12131 -8 .11  

0 0 

0 0 

0 0 

1 0 

0 1 

0 
~ 

0 

0 

0 

0 

0 

Note that this is not in the factorized form as in 
(8). 

This system has two zeros in C+: A~ = 6.18 and 
A2=17.7. Our  purpose is to solve the ser- 
vomechanism problem for this system with 
respect to a constant reference signal Yra 
(assuming that there are no external distur- 
bances present).  As we have discussed in Section 
1, we can consider y - Y r a  as the output  and 
--Yref as the output disturbance for this problem. 

Let us first apply the feedforward controller of  
the form (10) (with D = 0): 

u = K ~  + [ - C ( A  + BK,)-'B]-'yr~,, 

where K, is chosen to achieve the optimal cost 

J ,  = m2n [(Y - Yref)'(Y -- Yref) 

+ E 2 ( u  - a ) ' ( u  - a)] dr. 

Assume that the system has a zero initial 
condition. Let  £ ,  be the steady state value of the 
state variable; then £ ¢ = - ( A  + BK¢)-~B[ - 

1.65 -0 .331  - 5 7 6  90.6 19080], 

D = 0 .  
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TABLE 1. COMPARISON OF OPTIMAL COSTS FOR FEEDFORWARD 
CONTROLLER CASE 

TABLE 2. COMPARISON OF OPTIMAL COSTS FOR ROBUST 
CONTROLLER CASE 

1 1.21y2¢f 0.957y2~, 2.54 × 10-'y2~r 
10- '  0.640y2¢, 0.592y2¢f 4.86yZ~¢~ 
10 -2 0.513y2~f 0.499y2ef 1.39 X 102y2~f 

3 2 10 -3 0.468y2ef 0.462y2~f 6.70 × 10 yr~f 
10- '  0.448y2~f 0.445y2¢f 2.62 x 105y2~r 

L ly, ~,, 

1 1.78y~ef 1-50y2~r 2.76 × 10- ,y2f  
10- '  0.962y2¢, 0.867y~, 9.49y2¢f 
10 -2 0.690y~¢f 0.650y2~r 4.00 × 102y2~, 
10 -3 0.563y2~f 0.547y~Zcf 1.63 × 104y2¢f 
10 4 0.506y~f 0.497y~f 9.59 × 105yr2~f 
10 -5 0.472y~2 f 0.447y2~r 5.48 × 107y,~f2 

C(A + BK,)- 'B]- 'Yret  and J ,  = ( - £ , ) ' P , ( - £ , ) ,  
where P,  is the unique positive semi-definite 
solution to A R E  (9) (with D = 0 ) .  From 

Theorem 2, we obtain J ,---~2(~.+~)yr2ef = 

0.437y2~e as e---~0. Table 1 gives the computed 
value of J ,  for several different values of e. For 
the convenience of comparison, Table 1 also 
gives 

Jy, := (Y, - Yr¢f)'(Y~ -- Yref) dt, 

and 

Jo  (U, - f i) ' (u,  - fi) dt, : =  

where y ,  and u,  are the output and control 
trajectories of the optimally controlled system. 
The quantities Jr,  and Ju¢ can be obtained as 
tr (CL ,C ' )  and tr ( K , L , K ' ) ,  respectively, where 
L ,  is the solution of the following Lyapunov 
equation 

(A + B K , ) L ,  + L , (A  + BK, ) '  + £~g~ = O. 

It is seen that as e ~ 0, the computed value of 
J ,  is approaching the limiting cost Jo=  0.437y2¢f 
obtained from Theorem 2. 

Now let us apply the robust controller 

2 = y - y~¢f, 

u = Ko,x + K,z ,  

where [K0, K,] is chosen to achieve the optimal 
c o s t  

J,  = rain [(y - yr~f)'(y -- y~f) + e~a'a] dt. 
u a 0 

We know from Section 5 that J ,  = [13 -y~f]P~ 

0 ~ p ,  unique positive where is the 
--Yref J 

semi-definite solution of the following ARE:  

C' + P  A 

+ [ ~ ] I o  , , - ~ , ~ [ ~ ] I , ,  o , , ~ _ - o  

From Theorem 3, we again obtain that 
J,---, 0. 437y~ef as e -~0 .  Table 2 gives the 
computed value of J ,  for several different values 
of e. Table 2 also gives 

Jy~ := (Y~ - Yr~O'(Y~ - Yr,f) dr. 

and 

J '"  := Jo  ti-ti, dt, 

where y,  and u, are the output and control 
trajectories of the optimally controlled system. 
The quantities Jr, and J , ,  can be obtained as 
tr ([0 ILL,[0 l l ' )  and tr ([K0~ K,]L,[Ko~ K,I' ), 
respectively, where L ,  is the solution of the 
following Lyapunov equation 

+ B K K , ] ) L ,  C (oll 
B K 

+ 

K,I)' 

Again, it is seen that as e---> 0, the computed 
value of J ,  is approaching the limiting cost 
J0 = 0.437y~ef obtained from Theorem 3. 

8. CONCLUSION 
This paper considers the cheap regulator 

problem and the cheap optimal servomechanism 
problems for systems which may be non- 
minimum phase. The basic tool used is a 
factorization which factorizes an arbitrary system 
into the product of an inner system and a 
right-invertible minimum phase system. Based 
on this factorization, the study of an arbitrary 
system can be decomposed into the study of an 
inner system and the study of a right-invertible 
minimum phase system. The cheap control 
problem of an inner system becomes easy to 
analyse by exploiting various properties of inner 
matrices, while the cheap control problem of a 
right-invertible minimum phase system has 
already been intensively studied. 
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A novel contribution of this paper is the 
establishment of the fact that the number and 
the locations of the zeros of a system in the open 
right half of the complex plane, are crucial 
factors which determine the best attainable 
closed loop performance of the system. In 
particular, it is shown that the fundamental 
design limitations on the closed loop perfor- 
mance of the servomechanism problem can be 
completely characterized by the number and the 
locations of the zeros of the open loop system 
which lie in the open right half of the complex 
plane. This design limitation can be used to 
evaluate an open loop system, i.e. to determine 
whether the system is "inherently hard to 
control", and to assess a given closed loop 
design, i.e. to determine how near the closed 
loop system's performance is from the best 
attainable. 
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