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Abstract. This paper studies the cheap regulator problem and the cheap servomechanism 
problem for non-minimum phase systems. Some well-known properties of the "perfect regu
lation" (Frands, 1979; Kwakernaak and Sivan, 1972; Scherzinger and Davison, 1985) and the 
"perfect tracking" (Davison and Scherzinger, 1987) problem of minimum phase systems are 
generalized to systems which may be non-minimum phase. It is shown that a fundamental 
limitation exists re the speed of tracking and disturbance rejection for a non-minimum phase 
system, and that this limitation is completely characterized by the location of the unstable 
transmission zeros of the system. Furthermore, this limitation provides a quantitative mea
sure of the "degree of difficulty" which is inherent in the control of such non· minimum phase 
systems. 
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1 INTRODUCTION 

It has long been realized that minimum phase systems have cer
tain advantages over non-minimum phase systems; in particu
lar, minimum phase systems have the desirable property that 
their response can be made arbitrarily fast with no "peaking" 
occurring in the output. This, however, is not the case for non
minimum phase systems. See, e.g. (Davison and Scherzinger, 
1987; Francis, 1979; Kwakernaak and Sivan, 1972a; Scherzinger 
and Davison, 1985). In particular, in studying the "perfect con
trol problem" for a "high gain servo controller" and the "ro
bust servo controller" (Davison and Scherzinger, 1987), it is 
shown that a necessary condition which must be satisfied in 
order to obtain "perfect control" is that the system must be 
minimum phase. On the other hand, it is to be recognized that 
not all non-minimum phase systems behave the same; for exam
ple, some non-minimum phase systems produce results which 
are "almost as good" as minimum phase systems, whereas other 
non-minimum phase systems are indeed "almost impossible" to 
control. 

In this paper, we first study the cheap quadratic regulator 
problem for non-minimum phase systems, which is the limiting 
case of the optimal quadratic regulator problem when the weight 
on the input energy of the performance index goes to zero. When 
a special state space realization is adopted, it is shown that a 
simple expression for the limiting performance can be obtained. 
This result is then applied to the study of the cheap optimal 
servomechanism problem, in which the original servomechanism 
problem is transformed to a linear quadratic regulator problem 
and the cheap control of this regulator problem is then stud
ied. Two control schemes are considered. One is the high gain 
servomechanism controller (Davison and Scherzinger, 1987); the 
other is the robust servomechanism controller (Davison, 1976b). 
It is shown that for any non-minimum phase system there exists 
a fundamental limitation on the resultant optimal cost which 
characterizes the transient behavior of the closed loop system. 
This limitation can be completely characterized by the number 
and the locations of the transmission zeros of the system con
tained in the open right half of the complex plane, and it pro
vides a quantitative measure of the "degree of difficulty" wh:ch 
is inherent in the control of a non-minimum phase system. 

·This work has been supported by the Na.tura.1 Sciences a.nd Engineering 
Research Council of Canada under grant no. A4396. 
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2 PRELIMINARIES 

Throughout this paper, a transfer matrix means a proper real 
rational matrix. Let F(s) be a r X rn transfer matrix. F(s) is 
said to be tall (or wide, square) if r ~ rn (or r :S rn, r = rn). 
By a realization of F(s), we mean a 4-tuple of matrices over the 
real numbers (A,B,C,D) such that D+C(sI - A)-IB = F(s). 
The following notation is used to divide the complex plane into 
three parts: C+ = {s E C : ~(s) > O}, CO = {s E C : ~(s) = O}, 
c- = {s E C : ~(s) < O}. A transfer matrix is said to be stable 
if all of its poles are contained in C-, and a square real matrix 
is said to be stable if all of its eigenvalues are contained in C-. 

The transmission zeros of a realization (A, B, C, D) are de
fined to be the complex numbers A which make the matrix 

reduce rank. The transmission zeros of a transfer matrix F(s) 
are defined to be the transmission zeros of its minimal realiza
tion. It can be shown that the transmission zeros of F( s) are 
also the roots of the numerator polynomials of the diagonal el
ements of the Smith-McMillan form of F(s). F(s) is said to be 
minimum phase if it has no transmission zeros in C+; otherwise 
it is said to be non-minimum phase. For more details about 
transmission zeros, see (Davison and Wong, 1974). 

Associated with any realization (A, B, C, D) in which A is 
stable, there are two Lyapunov equations: 

AP+PA' 

A'Q + QA 

-BB' 

-C'C. 

(1) 

(2) 

The solutions P, Q to equation (1)-(2) are called the controlla
bility gramian and the observability gramian of (A, B, C, D) re
spectively. A minimal realization (A, B, C, D) of a stable trans
fer matrix F( s) is called a balanced realization if the solution 
P, Q to equations (1)-(2) are die.gonal and equal. The diagonal 
elements of such P or Q are called the Hankel singular values of 
F(s). It is shown in (Moore, 1981) that every transfer matrix 
has a balanced realization. A proced ure to find a balanced real
ization from any minimal realization of a transfer matrix is also 
given in (Moore, 1981). 



A stable transfer matrix F(s) is called inner if F'( -8)F(8) = 
1 . An inner transfer matrix must be tall. All the transmission 
zeros of an inner transfer matrix must be located in C+ . 

Lemma 1 (Glover, 1984) Let (A, B, C, D) be a minimal real
ization of an inner transfer matrix F(8) and let P, Q be the 
80lutions to equations (1)-(2). Then 

(a) PQ = I, 

(b) D'D = I, 

(c) D'C + B'Q = 0, DB' + CP = O. 

Corollary 1 Let (A, B, C, D) be a balanced realization of an in
ner transfer matrix F(8) and let P, Q be the solutions to equa
tion8 (1)-(2). Then 

(a) P = Q = I, 

(b) D'D = I, 

(c) D'C + B' = 0, DB' + C = O. 

A stable transfer matrix F(8) is outer if F(8) has full row 
rank for every 8 E C+. The concept of outer matrices is not as 
important as that of inner matrices in our development. Instead , 
we are more interested in the class of transfer matrices which are 
minimum phase and wide. Clearly, outer matrices belong to this 
class, but a matrix in this class does not have to be stable. 

The following factorization result, which serves as a founda
tion for our development, is obtained. It is remarked here that 
when the poles and/or zeros of two transfer matrices are com
pared in the following, we consider not only their values but also 
their multiplicities in the Smith-McMillan sense. 

Lemma 2 A transfer matrix F(s) can always be factorized as 
F(8) = FI(8)F2(8) such that FI(s) is inner, F2(s) is minimum 
-phase and wide, and the unstable poles of F2(s) are equal to the 
unstable poles of F(s). 

Proof: In this proof, we will use the notation RHoo to denote the 
set of all stable transfer matrices and will use some knowledge 
of the factorization theory in RHoo (Francis, 1987). It is known 
that F(s) can be decomposed as F(s) = F.(s) + Fo(s) where 
F.(s) E RHoo and Fo(s) is strictly unstable, i.e. all its poles are 
contained in CO U C+. The first factorization result we have 
to use is the coprime factorization result which says that any 
transfer matrix G(s) can be factorized as G(s) = N(s)M-I(s) 
where N(s),M(s) E RHoo and there exist X(s), Yes) E RHoo 
such that 

X(s)N(s) + Y(s)M(s) = I 

Moreover, M(s) can be chosen so that M-I(S) is proper (Fran
cis, 1987). Let N(s)M-I(s) be such a coprime factorization of 
Fo(8). Then the transmission zeros of M(8) are the poles of 
Fo(8). Let L(s) be any matrix (compatible in size) in RHoo with 
the property that L-I(8) E RHoo and M(8)L-I(S),N(s)L-I are 
proper. The existence of such L(8) can be verified simply by 
choosing L(8) = I. Then 

F(s) = F.(s) + N(s)L-I(s)L(s)M-I(s) 

= [F.(8)M(s)L- I(s) + N(s)L-I(s)]L(8)M-I(s) 

in which F.(8)M(s)L-I(s) + N(s)L-I(s) belongs to RHoo, 
L(s)M-I(s) is minimum phase, square and its unstable poles 
are the unstable poles of F( s) . 

The second factorization result we have to use is the inner
outer factorization result which says that any G(s) E RHoo can 
be factorized as G(s) = G;(s)Go(s) where GI(s) is inner and 
Go(s) is outer (Chen, 1987). Let the inner outer factorization of 
F.(s)M(s)L-I(s) + N(s)L-I(s) be F;(s)Fo(s) and let FI(s) = 
F;(s) and F2(s) = Fo(s)L(s)M-I(s). Then we immediately have 
that F(s) = FI(s)F2(s) and FI(s) is inner. For all s E C+, 
Fo(s) has full row rank and L(s)M-I(S) is a nonsingular square 
matrix. Therefore F2 (s) must have full row rank for all s E C+, 
which means that F2 (s) must be minimum phase and wide. 0 

Given a transfer matrix F(s) , let F(s) = H(s)F2(s) be the 
factorization described in Lemma 2. Let (AI,BI,CI,D I) be a 
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balanced realization of FI(s) and (A 2, B2, C2, D2) be any stabi
lizable and detectable realization of F2(s). Then a stabilizable 
and detectable realization of F(s) is given by 

A = [AI B I C2 
o A2 B = [ Bt2 ] (3) 

C = [Cl D I C2 ] D = DID2. 

This realization is called a factorized realization of F( s) and 
plays an important role in the development. 

A class of transfer matrices called right-invertible transfer 
matrices deserves special treatment . A transfer matrix F( s) is 
said to be right-invertible if it has full row rank for at least one 
sEC. If (A , B,C,D) is a realization of F(s), then the right
invertibility of F(s) is equivalent to the fact that 

has full row rank for at least one .x E C. The following lemma 
gives some useful properties of right-invertible transfer matrices 
with respect to the factorization described by Lemma 2. 

Lemma 3 Let F( s) be a right-invertible transfer matrix and let 
F(s) = FI(s)F2(s) be the factorization described in Lemma 2. 
Then FI(s) is square, the transmission zeros of FI(s) are equal 
to those transmission zeros of F(s) contained in C+, and the 
poles of FI(s) are equal to the negative of the transmission zeros 
of FI(s ). 

Proof: Let F(s) be r X m . Then FI(s) has r rows and at most 
r columns. If FI(s) has less than r columns, then the rank of 
FI(s) is less than r for all SEC, which implies that the rank 
of F( s) is less than r for all sEC. This contradicts with the 
fact that F(s) is right-invertible. Therefore FI(s) must have r 
columns, i.e. it must be square. 

The transmission zeros of FI(s) are the poles of FI-I(s). A 
minimal realization of FI-I(s) is given by 

(AI - BIDIICJ,BIDII,-DIICJ,DII), 

where DII exists, so that the transmission zeros of FI(s) are 
equal to the eigenvalues of AI - BIDIICI. For the proof of the 
remaining part of the lemma, it is enough to show that 

(a) the eigenvalues of Al - BIDIICI are equal to the negative 
of the eigenvalues of AI; 

(b) the eigenvalues of AI - BIDIIC. are equal to those trans
mission zeros of F( s) contained in C+. 

By Corollary 1, 

This proves (a). 

A. + BIDII DIB; 

A.+B.B; 

AI-(AI+A~) 

-A~ . 

Since the factorized realization is stabilizable and detectable, 
those transmission zeros of F( s) which are contained in C+ are 
the complex numbers .x E C+ which make the matrix 

reduce rank. This matrix can be shown to be similar to the 
matrix 

[

AI - BIDJIC. - AI 

DIICI 

This proves (b) . 0 



3 CHEAP LQR PROBLEM 

Let F(s) be a transfer matrix and let (A,B,C,D) be a stabi
lizable and detectable realization of F( s). Consider the linear 
time-invariant system defined by (A , B , C , D): 

Y 

Ax+Bv., 

Cx + Dv. 

x(o) = xo ( 4) 

and consider the optimal linear quadratic regulator problem of 
this system with respect to the cost 

J, = l:"' (y'y + {x'x)dt, {> o. (5) 

The problem concerning the limit of J, as { "'" 0 is called the 
cheap LQR problem. It is known that the optimal control which 
minimizes J, is given by v. = -(fl + D'D)-l(B'P, + D'C)x , the 
optimal value of J, is given by x~P,xo , where P, is the unique 
positive semi-definite solution to the algebraic Riccat i equation 
(ARE) 

[A - B(fl + D'D)-lD'C]'P, + P,[A - B(fl + D'D)-lD'C] 

+C'[I - D(fl + D'D)-lD']C - P,B(fl + D'D)-lB'P, = 0:6) 

It is easy to show that P, is a monotonically increasing func
tion of { > 0, and so the limit of P, as { "'" 0 exists. 

Lemma 4 (Scherzinger and Davison, 1985) Let (A, B, C, D) be 
a stabilizable and detectable realization of a transfer matrix F(s) , 
and let P, be the unique positive semi-definite solution to ARE 
(6). Then P, -+ 0 as ("'" 0 if F(s) is minimum phase and wide. 

The condition in Lemma 4 is also necessary if matrices B 
and C are assumed to have full column rank and full row rank 
respectively. The same result for the case when D = 0 is ob
tained in (Francis, 1979; Kwakernaak and Sivan, 1972a). The 
main purpose of this section is to give a result on the limit of P, 
as { "'" 0 for systems which do not satisfy the condition given in 
Lemma 4. 

Lemma 5 Let (A, B, C, D) be a factorized reaiization of any 
transfer matrix F( s). Then the unique positive semi-definite 

solution P, to ARE (6) is given by [~ :'2]' where P<2 is the 

unique positive semi-definite solution to the ARE 

[A2 - B 2( fl + D~D2)-1 D;C2]' P,2 

+ P,2[A2 - B2(fl + D~D2)-lD;C2] 
+ CW - D2(d + D~D2)-lD2]C2 

P,2B2(d + D~D2)-IB2P'2 = o. 

Let x = [ :: ] be partitioned accordingly with the partition of 

A given by (3). Then the optimal control of system (,0 under 
cost (5) is given by v. = -(d + D~D2)-1(B~P'2 + D2C2)X2 . 

The proof of the first statement of this lemma is obtained 
simply by checking that the given solution indeed satisfies ARE 
(6) . The second statement follows by using Corollary 1. The 
details of the proof are omitted. 

Direct application of Lemma 5 and Corollary 1 leads to the 
following corollary. 

Corollary 2 If(A, B, C, D) is a balanced realization of an inner 
transfer matrix, then the unique positive semi-definite solution 
P, to the ARE (6) is P, = I and the optimal control of system 
(4) under cost (5) is u = o. 

Since any minima.! realization of a transfer matrix is similar 
to a ba.!anced rea.lization, the corollary implies that if (A, B, C , D) 
is a minima.! realization of an inner transfer matrix, then the op
tima.! control of the system (4) under cost (5) is a.!ways zero and 
thus the optima.! performance is independent of {. This is consis
tent with the well-known fact that cheap control asymptotically 
puts all the poles of the closed loop system to the mirror points of 
the system's unstable zeros with respect to the imaginary axes . 
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Since an inner matrix already has this property, no control is 
needed to make it optimal. 

Since (A2' B 2, C2, D2) is a stabilizable and detectable rea.liza
tion of a minimum phase and wide system, the following theorem 
is obtained immediately from Lemma 4-5. (In the statement of 
the theorem, we assume that P, is partitioned accordingly with 
the partition of A given in (3).) 

Theorem 1 Let (A, B , C, D) be a factorized realization of a 
transfer matrix F(s), and let P, be the unique positive semi-

definite solution to ARE (6). Then P, -+ [~ ~] as ( -+ o. 

4 HIGH GAIN SERVOMECHANISM 
CONTROLLER 

Consider a plant described by the state space equation: 

Ax + Bu + Bw, x(O) = 0 

Y Cx + Dv. + Dw+ '1 

e Yre! - y. 

(7) 

where w is the input disturbance, '1 is the output disturbance 
and Yre! is the output reference. Assume that w, '1 and Yref 

are constant signals. A control problem which often arises is 
to design a controller for system (7) such that the closed loop 
system is stable, and such that the tracking error e -+ 0 as 
t -+ 00 for arbitrary w, '1 and Yre!. In order for this to be possible, 
the following assumption is necessary (Davison, 1976a) . 

Assumption 1 Assume that system (7) satisfies the following 
condition: 

(a) (A, B , C, D) is stabilizable and detectable; 

(b) [~ ~] has full row rank. 

Assumption l(b) implies that F(s) = D + C(sI - A)-l B is 
right-invertible and has no transmission zeros at the origin. 

Under Assumption 1, it can be shown that the following 
controller can accomplish the required task: 

v. [D - (C + DK)(A + BK)-l B]te 

+ {K - [D - (C + DK)(A + BK)-l B]t(C + DK)}x(8) 

where K is any matrix which makes A + BK stable and Mt 
denotes the Moore-Penrose pseudo-inverse of matrix M. As
sumption 1 implies that M = D - (C + DK)(A + BK)-l B has 
full row rank so that Mt = M'(M M')-l . It is easy to check 
that the closed loop state matrix of (7)-(8) is given by A + BK 
which is stable. The fact that the error e goes to zero is proved 
in (Davison and Scherzinger, 1987). 

Now assume controller (8) is applied to system (7), and as
sume that the steady-state values of the input and the state are 
given by u and x respectively. Let v := v. - u and z := x-x. 
Then u, x must satisfy equations 

o Ax + Bu + Bw 

Yre! Cx + Du + Dw + '1, 

and as a result, system (7) can be written as 

e 

Equation (9) suggests that 

Az+Bv 

Cz + Dv.. 

J, = l°O(e'e + w'v)dt 

(9) 

(10) 

can be used as a performance index for the closed loop sys
tem, where the stabilizing gain matrix K is chosen to minimize 
the performance index J, . The purpose of this section is to in
vestigate the behavior of J, as { "'" O. It is obvious that J, 
in general depends on Yre!, wand '1. It is shown in (Davison 



and Scherzinger, 1987) that lim,,,o J, = 0 for all Yref, wand ", 
if (A, B, C, D) is minimum phase. We would like to determine 
what the limit ofiirn."o J, is when (A , B, C, D) is non-minimum 
phase. Before stating our main result, we review some results 
on quadratic forms. 

Let W be an Euc1idean space with inner product (', .). A 
quadratic form Q on W is a function W ..... R mapping w to 
Q(w) = (w , Hw) where H is a given (real) Hermitian operator 
on W. The quadratic form Q uniquely determine the matrix 
H and is completely characterized by H. The collection of all 
quadratic forms on W is a linear space and clearly is isomorphic 
to the linear space of all Hermitian operators on W. A quadratic 
form Q is said to be positive semi-definite if Q(w) ~ 0 for all 
w E W. A quadratic form is positive semi-definite if and only if 
its corresponding Hermitian operator is positive semi-definite. A 
partial ordering can then be defined in the space of all quadratic 
forms on W: Q\ ~ Q2 if Q\ - Q2 is positive semi-definite. Define 
the norm of a quadratic form to be the norm of its corresponding 
Hermitian operator. In the following, we always use the operator 
norm which is given by the sum of all of the singular values of 
the operator. For positive semi-definite quadratic forms, which 
are the type we are interested in, this norm is equal to the trace 
of the corresponding Hermitian operator and it has following 
two properties: 

Lemma 6 (Levine and Athans, 1970) Let Q be a positive semi
definite quadmtic form on Euclidean space RP with the usual 
inner product (w\, W2) = W;W2' and let w be a mndom vector in 
RP with E(w) = 0 and E{ww'} = I. Then E{Q(w)} = IIQII . 

The notation E( ·) in Lemma 6 denotes the expectation op
erator. Lemma 6 can be interpreted that the norm of Q is the 
"average" value of Q( w) over all w on a sphere with radius ,;p. 

Let W\ be a subspace of W, and let Q be a quadratic form 
on W. Then the restriction of Q on W\, denoted by QIW\ , is a 
quadratic form on W\ . 

Lemma 7 Let W\, W 2 be mutually orthogonal subspaces of 
an Euclidean space W , and let Q be a positive semi-definite 

quadmtic form on W . Then IIQIW\II + IIQIW211 = IIQI(W\ + 
W2)1I · 

Proof: Let H be the corresponding operator of Q and let W3 
be the orthogonal complement of W\ + W 2 • Then H can be 
represented by the following 3 X 3 matrix with operator entries: 

where H;j = P;HIWj and Pi, i = 1,2,3 is the projection ofW 
onto W; . In this case, Hll and Hn are r·ust the correspond-

ing operators of QIW\ and Q IW2 , and HHll HH\2] is the 
2\ 22 

corresponding operator of QI(W\ + W2) ' The positive semi

defini.tenes[s ;;\ H ~~2PI]ies the positive semi-~efiniteness of H ll , 

Hn and H2\ Hn . The lemma then directly follows from 

h f h [
Hll H\2] t e act t at trHll + trH22 = tr H2\ H22 . 0 

If W has an orthogonal decomposition {W\, W 2, ... , W q}, 
i.e. W\, W 2, ... , Wq are mutually orthogonal and their sum is 
W, then IIQII, as well as any IIQI L:;d Wdl where I C {I, 2, .. . , q}, 
is completely determined by allIIQIW;II, i = 1,2, . . . , q. 

Now let W be the space of all vectors of the form [ ~ l. 
Yref 

The inner product on W is defined as usual, e.g. (w\, W2) 
w; W2' Define subspaces 

{[ ~ 1 E W : Yref = 0, " = O} 
Yref 
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W" 
{L:f] 

E W: Yref = 0, w = O} 

Wy {[ Y:f 1 E W : w = 0, " = O}. 

Then W., Ww and W" form an orthogonal decomposition ofW. 

Theorem 2 Given the system (7), assume that Assumption 1 
holds; then the performance index J, given by (10) is a positive 
semi-definite quadmtic form on W, and J, is a monotonically 
increasing function of (. Let lirn."o J, = Jo, and let the tmns
mission zeros of (A, B, C, D) which are contained in C+ be given 

>'1, A2, ... , A/; then 

1IJ0IWwli 

IIJoIW"11 

o 

This result states that the high gain servomechanism con
troller (8) produces perfect control, i.e. the optimal perfor
mance goes to zero as ( "" 0, for the case when input distur
bances are only present, even if the system (7) is non-minimum 
phase. However for the case when output disturbances or/and 
nonzero reference are present, perfect control cannot be obtained 
for non-minimum phase systems, and the optimal performance 
J, is now bounded from below by 2 L:l=\ t . This result shows 

that L:l=\ t can be considered as a quantitative measure of the 
degree of difficulty in the control of non-minimum phase systems. 
This result also emphasizes the fact that not all non-minimum 
phase systems behave the same. For example, a plant with one 
unstable transmission zero at IJ has a degree of difficulty equal to 
t which is large if IJ is small, whereas a plant with two unstable 
transmission zeros at IJ ± j<7 has a degree of difficulty equal to 
92-Z:u2 which is small if <7 > IJ . 
The proof of Theorem 2: Since the initial condition of sys
tem (7) is assumed to be zero, the input-output relation of the 
system (7) is determined solely by its transfer matrix F(s) = 
D + C(sI - A)-\ B . Thus (A , B, C, D) can be assumed to be 
the factorized realization of F(s) which is of the form of (3). 
Let F\(s) = D\ + C\(sI - A\)-\B\ and F2 (s) = D2 + C2(sI
A2 )-\ B2 • Since F(s) is assumed to be right-invertible, it follows 
from Lemma 4 that F\(s) must be square and the poles of F\(s) 
are -A\ , -A2, .. . , -A/. 

It is known that J, = z'(O)P,z(O) where P, is the unique 
positive semi-definite solution of ARE (6) and 

z(O) = x(O) - X = -x. 

:~: ::::: :::: ::::rtr :::'::,::: :" ::::::::.:: 
ist a linear transformation T such that x = T [ ~ l. It there-

Yref 
fore follows that J, = x' P,x is a positive semi-definite quadratic 
form on W for all ( > O. The fact that J, is monotonically in
creasing with respect ( follows directly from the monotonicity of 
P,. 

By Theorem 1, P, -+ [~ ~] as ( "" O. Let x be partitioned 

as x = [ !: ] according to the partition of A given by (3). Then 

Jo = !~J, = x'[ ~ ~]x = X~x\ . 



Now assume that the system (7), under control (8), is at 
steady-state. The following relation exists 

Yref - 7) = F(O)(u + w) = FI(0)F2(0)(U + w). 

Since 
XI = -All BIF2(0)(U + w), 

where All is well defined, it follows that 

Therefore, the following expression is obtained for Jo: 

where H is used to denote FI (O)'B; A;-I Ail BIFI(O). It becomes 
clear that IIJolWwll = 0 and 

11J01W"1I = 1IJ0IWyll = IIFI(O)'B;A;-I All BIFI(O)II. 

By using the fact that (AI,BI,CI,DI ) is a balanced realiza
tion of square inner function FI(s), we obtain: 

o 

1IJ0IWyll 
tr[FI(O)'B;A;-1 All BIFI(O)] 

tr[FI(O)FI(O)'B;A;-1 All BI ] 

tr[AlIBIB;A;-I] (since FI(s) is square) 

-tr[AlI(AI + A;)A;-I] (by Corollary 1) 

-tr(A;-1 + All) 

-2tr(Ail) 
1 1 1 

2(-+-+· · · +-) (by Lemma 3). 
Al A2 AI 

5 ROBUST SERVOMECHANISM 
CONTROLLER 

Consider system (7), where w, 7) and Yref are constant signals. 
It is now desired to apply a controller to solve the robust ser
vomechanism problem (Davison, 1976b) for (7). Assume that 
Assumption 1 holds. In thls case, a controller which solves the 
problem must include a servo-compensator, and so consider now 
the following controller for (7): 

i e, z(O) = 0 (11) 

u Kox + Kz 

where [Ko K] is chosen to stabilize the following matrix 

(12) 

Controller (11) has the significant ad vantage over controller 
(8) in that tracking and disturbance rejection occur for all per
turbations of the system parameters (A, B, C, D)and controller 
parameters [Ko K], provided only that the perturbed closed loop 
system remains stable. 

The augmented system (with input u and output z), on com
bining the original system and the integrator, is then described 
by the state-space equation: 

[!]=[~ ~][:]+[~](u+W)+[n(7)-Yref) 

[ :i~j] = 0 

z = [0 I] [ : ] . 

Differentiate all variables once, and define new variables: 

X:=X, i:=z, u:=u. 
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On noticing that i = e, the augmented system then becomes 

[n [~~][ n + [ ~ ]u (13) 

[ ~i~n = [~ ~ n [ Y:f 1 
e = [0 I] [ ~ ]. 

where ([ ~ ~], [ ~ ] , [0 1],0) is stabilizable and detectable 

if Assumption 1 holds. 
This suggests that 

(14) 

can be used as a performance index of the closed loop system, 
where the matrix [Ko K] is chosen to minimize the performance 
index J, . The same question to the one studied in last section 
arises: what is the limit of J, as ( goes to zero? It is known that if 
(A, B, C, D) is minimum phase, then lirn..'-,o J, = 0 (Davison and 
Scherzinger, 1987). In this section, we will obtain a result similar 
to Theorem 2 for the case of non-minimum phase systems. 

Assume that W, W w , W" and Wy have the same meaning 
as used in the last section, and that the same norm of quadratic 
forms is used . 

Theorem 3 Given the system (7), assume that Assumption 1 
holds; then the performance index J, given by (1.1) is a positive 
semi-definite quadmtic form on W, and J, is a monotonically 
increasing function of L Let lirn..'-,o J, = Jo, and let the tmns
mission zeros of (A, B, C, D) which are contained in C+ be given 
by AI, A2, .. . , AI; then 

1IJ0IWwll 

lIJolW"1I 

IIJolWyll 

o 

Since the same type of result, as obtained for the high gain 
controller case, is also obtained in this case, the discussion fol
lowing Theorem 2 equally applies to this case. 
The proof of Theorem 3: Since the initial condition of system 
(7) is assumed to be zero, the input-output relation of the system 
(7) is determined solely by its transfer matrix F(s) = D+C(sI
A)-I B . Then (A, B, C, D) can be assumed to be the factorized 
realization of F(s) which is of the form of (3). Consequently 
(13) can be rewri tten as 

e 

Let 

and 

Then (15) becomes 

[ :: 1 (16) 

e 



and the initial condition becomes 

OO][w] o 0 ,.,. 

I I Yuf 
(17) 

Let P, be the unique semi-definite solution to the following 
ARE 

[ 

A~ 0 
B; 0 
o q 

-~p,[~: ][0 D~ B2]P, = O. 

Then J, = [x~(O) ZI(0)X2(0)]P,[ xzIg;]. It follows from (17) 
X2(0) 

and the monotonicity of P, that J, is a quadratic form on W for 
all ( > 0 and is monotonically increasing with respect to £. 

Note that (16) is a factorized realization with (AI, B I , Cl, Dd 

being inner and ([ ~ ~~], [ ~~ ], [0 I], 0) being wide and 

minimum phase. By Theorem 1, lim.'\,o P, 

Hence 

Jo 

Direct calculation shows that 

o 
H 
-H 

where H = FI(O)'B;A~-I All B)FI(O) and FI(O) = DI-CIAI ! BI . 
The rest of the proof now proceeds in exactly the same way 

as in the last part of the proof of Theorem 2. 0 

6 CONCLUSION 

This paper considers the cheap regulator problem and the cheap 
optimal servomechanism problem for systems which may be non
minimum phase. The basic tool used is a factorization which 
factorizes an arbitrary system transfer matrix into the product 
of an inner transfer matrix and a wide minimum phase transfer 
matrix. Based on this factorization, the study of an arbitrary 
system can be decomposed into the study of a system with an in
ner transfer matrix and the study of a minimum phase and wide 
system. The cheap control problem of a system with an inner 
transfer matrix becomes easy to analyze by exploiting various 
properties of inner matrices, while the cheap control problem of 
a wide minimum phase system has been intensively studied. 

A novel contribution of this paper is the establishment of the 
fact that the number and the locations of the system's transmis
sion zeros in the open right half of the complex plane, are crucial 
factors of a system which determines the best attainable closed 
loop system performance. In another words, we have shown that 
the design limitations on the closed loop system performance, for 
the servomechanism problem, can be completely characterized 
by the number and the locations of the system's open loop trans
mission zeros in the open right half of the complex plane. This 
design limitation can be used to evaluate an open loop system, 
i.e. to determine whether the system is inherently hard to con
trol, and to assess a given closed loop design, i.e. to determine 
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how near the closed loop system's performance is from the best 
attainable. 

The servomechanism problem considered in this paper is only 
for the case c~ constant reference and disturbances. The ex
tension of the results obtained to more general reference and 
disturbance signals offers a direction for future research. 
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