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Abstract 

A new family of metrics, called pointwise gap metrics, in the 
space of real rational matrices of fixed size is developed in this 
paper. These metrics are then used to study open loop and closed 
loop stability robustness of lumped linear time-invariant finite 
dimensional continnous time systems. It is shown that pointwise 
gap metrics have the desired qualitative properties for the study 
of stability robustness. Necessary and sufficient conditions on 
the open and closed loop stability robustness are obtained in 
terms of the radii of the pointwise gap metric balls centered at 
the nominal plant and/or the nominal controller. Comparison 
of the new metric with the available metrics, e.g. the gap metric 
and the graph metric, is made. All these metrics induce the same 
topology. Surprisingly, it is shown that many of the quantitative 
properties of pointwise gap metrics are the same as those of the 
gap metric, although they differ in value. A notable distinct 
property of pointwise gap metrics is that in the scalar case they 
have a very simple expression which is potentially useful to access 
the relationship between the uncertainty of physical parameters 
and uncertainty measured by pointwise gap metrics. 

1 Introduction 

The study of the stability robustness problem concerns the stability of 
uncertain systems. If such a study is to  be carried out quantitatively, it 
is necessary to have a mechanism to measure the size of the uncertainty. 
A metric in the space of the systems under consideration can provide 
such a mechanism. In this paper, we consider the stability robustiless 
of real rational matrices and assume that these matrices are transfer 
matrices of lumped linear time-invariant finite-dimensional continuous 
time systems. Hence, a real rational matrix is said to be stable if it is 
bounded in C+, where C+ = {s E C : %(s) > 0). The purpose of this 
paper is to  develop a metric in the space of all real rat,ional matrices of 
certain size which facilitates the study of stability robustness. Before 
proceeding, we have to know what are the requirements for such a 
metric. 

Let P be the field of all real rational functions and let S be the 
ring of all stable real rational functions. Then P can be considered as 
the quotient field of S. We denote naturally by Ppxm and SPxm the 
sets of all p x m matrices over (field) P and (ring) S respectively. 

Each element of Ppxm corresponds to an open loop system. If 
FO E SpXm, i.e. FO is stable, a desired property of the metric to  be 
developed is that Fo has certain stability robustness under the metric, 
which means that any uncertain system F which is close to Fo should 
be stable. Formally, this requires that SPxm be an open subset of 
p p x m .  

To study closed loop stability robustness, consider the standard 
feedback configuration shown in Figure 1. 

Figure 1: The Standard Feedback System 
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In Figure 1, P E Ppxm represents the plant and C E P m X p  the 
controller. By the closed loop transfer matrix of the feedback config- 

uration, we mean the transfer matrix from [ :: ] :o [ zi ] which is 

given by 

- ( I  - cP)-1 C(I  - PC)-' - 

In order for H(P, C) to  exist, ( I  - C P )  has to  be invertible. If this is 
the case, we say that the closed loop system, or simply the pair (P, C), 
is well-posed. If we denote the set of all well-posed pairs, which is a 
subset of Ppxm x P m X p ,  by W ( p ,  m), then H defines a function from 
W(p,  m) to P(p+m)x(p+m).  This function is injective since ' 

Let us denote the range of H(P, C), which is a subset of P(p+m)x(p+m),  
by C ( p ,  m). Then H is a bijective function from W ( p ,  m) to C(p ,  m). A 
desired property of the metric to  be developed for closed loop stability 
robustness analysis is that if (P0,Co) E W(p,m) and (P ,C)  is close 
to (Po, CO), then (P, C) E W(p,m) and H(P, C) is close to  H(P0,Co). 
Formally, this is equivalent to  the requirement that W(p,  m) be an 
open subset of Ppxm x 'PmXp and that the function H from W(p,  m) 
to C ( p ,  m)  be continuous. 

The closed loop system given by the feedback configuration is said 
to be stable if the closed loop transfer matrix H(P,C) is stable. In 
this case, we say that C stabilizes P. The open loop and closed loop 
requirements together now imply that if (Po, CO) is well-posed and 
H(Po, CO) is stable, then (P, C) is well-posed and H(P, C) is stable for 
(P ,  C) close to (PO, CO). 

The requirements given above are qualitative in nature since only 
the existence of stability robustness is asked; these requirements only 
depend on the topology induced by the metric, but not on the quan- 
titative values of the metric. However, such existence arguments are 
usually not enough. We also want to  use the metric to  determine how 
much uncertainty can be tolerated on a stable transfer matrix F in or- 
der to maintain stability, and how much uncertainty can be tolerated 
on a pair (P, C) E W(T,  m)  with stable H(P, C) such that the closed 
loop system is still stable. This requires that the metric developed 
should have certain desirable quantitative properties so that the ques- 
tions above can be easily answered in terms of the size of uncertainty 
measured by the metric. 

Two metrics serving our purpose have been developed in the last 
decade. One is the gap metric introduced by Zames and El-Sakkary 
1201 and the second one is the graph metric defined by Vidyasagar [19]. 
Both metrics induce the same topology in PPxm and this topology 
satisfies our requirements. However, they possess different quantitative 
properties. A computable formula of the gap metric is given in [7]; 
simple necessary and sufficient conditions are derived in [8] for the 
open loop and closed loop stability robustness in terms of the radii of 
the gap metric balls centered a t  the nominal plant and/or the nominal 
controller, and a procedure is given in [8] to  design a robust controller 
which maximizes the closed loop stability robustness with respect to  
plant uncertainty. In contrast, the graph metric is difficult to  compute, 
the quantitative conditions for the open loop and closed loop stability 
robustness in terms of the graph metric are conservative, and it is not 
clear how to  incorporate it in the design of robust control systems. 
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For the stability robustness analysis of SISO systems, El-Sakkary [5] 
defines a metric in P which is based on the chord distance of the values 
of the transfer functions on the Riemann sphere. This metric induces 
the same topology in P as the gap metric and the graph metric. The 
advantage of this metric is that i t  has a simple expression in terms of 
the transfer functions which may provide an access to the relationship 
between the uncertainty of physical parameters and the uncertainty 
measured by the metric. 

In this paper, we develop a new family of metrics, called pointwise 
gap metrics. I t  is shown that pointwise gap metrics induce the same 
topology as the gap metric and the graph metric, but differ from them 
in value. Pointwise gap metrics are in principle computable directly 
from its definition. In the scalar case, this family of metrics degenerates 
to a single metric and this metric turns out t o  be exactly the same as 
the metric defined in [5]. Necessary and sufficient conditions on the 
open loop and closed loop stability robustness are obtained in terms 
of the radii of the pointwise gap metric balls centered at  the nominal 
plant and/or the nominal controller. Surprisingly, the conditions are 
nearly identical t o  the ones obtained in [8], in which the gap metric is 
used. From this we can conclude that a closed loop system is robust 
with respect to the gap metric if and only if it is robust with respect 
to any of the pointwise gap metrics. The same procedure in [8] can be 
used to  design a controller with optimal closed loop stability robustness 
measured by pointwise gap metrics. 

Throughout this paper, we always assume that the singular values 
of a matrix A E CPXm are ordered nonincreasingly and denote the i- 
t h  singular value of A by o;(A), i = 1,2,. . . , min{p, m}. The matrix 
norms used in this paper, denoted by 1 1 . 1 1 ,  belong to the family of 
unitarily invariant matrix norms, i.e. matrix norms satisfying 

(a) IJUAVII = IlAll for all A E CpXm and all compatible unitary ma- 
trices U, V ,  and 

(b) I(uw*(( = (1u(12((w1(2 for all U E C p  and z1 E C". 

For an introduction to unitarily invariant matrix norms, see [14]. Fre- 
quently used examples of unitarily invariant matrix norms are the spec- 

tral norm llAlls = al(A),  Frobenius norm IlAll~ = [ C ~ ~ t p ' m ) a ~ ( A ) ] 3  

and the trace norm IlAllt = CZ;{"'"' ai(A). A clear distinction has to 
be made in this paper between a real rational matrix and its value at a 
certain point in the complex plane. If F denotes a p x m real rational 
matrix, then F ( s ) ,  where s E C is not a pole of F ,  is considered to be 
a matrix in Cpxm and is just equal to the value of F at  s. Thus F * ( s )  
means a matrix in CmXp which is the conjugate transpose of F ( s )  and 
is equal t o  F'(s*). By a norm on real rational matrices, we always 
mean in this paper a norm belonging to  the following class of norms: 
the norm on stable real rational matrices corresponding to an arbitrary 
unitarily invariant norm 11 . 1 1 ,  also denoted by 11 . 1 1 ,  is defined by 

In particular, the norm of F corresponding to the spectral norm is 
denoted by ~ ~ F ~ ~ s .  Since all unitarily invariant norms are equivalent, 
so are all norms on real rational matrices. A useful fact, as a conse- 
quence of the maximum modulus principle, is that supsEc+ llF(s)11 = 
SUPwER l lF( jw) l l .  

2 Canonical Angles and Gaps 

We introduce, in this section, the concepts of canonical angles and 
gaps between subspaces of the unitary space C". The origins of these 
concepts are hard to trace, but a good set of references is given in 
[2]. See also [l] for the computation of canonical angles. A detailed 
treatment of these concepts is also given in [16] with emphasis in their 
application in the study of pointwise gap metrics. 

Let X and y be subspaces of C" with dim(X) = dim(Y) = l and 
let X I  and Y1 be matrices whose columns form orthonormal bases of X 
and Y respectively. Since IIY;Xllls 5 1, all singular values of Y;X1 are 
bounded by 1. Hence there exists an angle 8, in [0, such that cos 8, = 

g~- ;+l (Y ;X l )  for i = 1,2, .  . . ,1. Furthermore, the singular values of 
17x1 are invariant t o  the choice of XI and 6 and are determined 
by X and Y completely. This leads to  our definition: the angles { O i ,  

i = 1 , 2 , .  . . , 1 }  are called the canonical angles between X and Y .  
Let 1 1  . 11 be any unitarily invariant norm. Let B i ,  i = 1,2, .  . . , I ,  be 

the i-th canonical angles between X and y .  The gap between subspaces 
X and Y corresponding to norm 11 ' 1 1  is defined as 

y(X, Y )  = IIdiag(sinBl,sinOZ,. . .,sin&)11. 

Apparently, a gap y depends on the underlying norm 11 . ] I .  If 11 
is the spectral norm 11 . l is ,  then the corresponding gap is denoted by 
ys. The value of ys is always in [0,1]. Denote the range of some matrix 
by R(.). The following result concerns the computation of gaps. 

Proposition 1 Let X and Y be subspaces of C" with equal dimen- 
sions. Suppose X = [ X I  X2] and Y = [YI Yz] are unitary matrices 
with X = R(X1) and y = R ( 6 ) .  Then 

Let us denote by rl(C") the set of all l-dimensional subspaces of 
Cn. Then y is a function from r,(Cn) x r l (Cn)  to [0, m). 

Proposition 2 ([12]) y is a metric on rl(C") and the metric space 
(rL(C"), y) is compact. 

A different proof of Proposition 2 is given in [16]. 

3 Definition of Pointwise Gap Metrics 

It is well-known that every real rational matrix has both a right- 
coprime factorization and a left-coprime factorization over the ring 
of all stable real rational functions. This means that for each real ra- 
tional matrix F ,  there exist stable real rational matrices M ,  N ,  U ,  V, 
and M, I?, 0, such that F = N M - l  = M - l N  and UM+VN = I, 
Go  + fie = I. Right-coprime factorizations of a real rational matrix 
are not unique, but the set of all right-coprime factorizations can be 
parameterized by a free unimodular matrix. A stable square real ra- 
tional matrix is said to  be unimodular if its inverse exists and is stable. 
Let NM-' be a right-coprime factorization of F E Ppxm. Then the 
set of all right-coprime factorizations of F is given by { ( N D ) ( M D ) - '  : 
D E SmX" is unimodular}. A similar parameterization exists for left- 
coprime factorizations. We refer t o  [19] and [6] for detailed exposition 
of coprime factorizations. 

Let NM-I  be a right-coprime factorization of F E Ppxm. Al- 
though such a factorization is not unique, the parameterization of all 
right-coprime factorizations given in the last paragraph shows that the 

subspace R ([ 1) E Cp+m at  each s E Cf is uniquely deter- 

mined by F.  'Denote this subspace by G(F, s). The right-coprimeness 
of N and M implies that the dimension of G(F, s) is m for all s E C+. 

Let y be the gap between the m-dimensional subspaces of CP+" 
corresponding to  a unitarily invariant norm 11 .I(. Define a function 
6 : P p x m  x Ppxm --f [0,03) by 

Proposition 3 6 is a metric on P p x m .  

We call 6 a pointwise gap metric on Ppxm corresponding to the 
unitary invariant norm 1 1  .II. If the underlying norm used to define the 
pointwise gap metric is I( .  (Is, then the corresponding pointwise gap 
metric is written as 6,. The space Ppxm equipped with a pointwise gap 
metric forms a metric space. Since all unitarily invariant matrix norms 
are equivalent, all pointwise gap metrics are uniformly equivalent (- 
see [18] for the definitions). 

Let N M - I  be a right-coprime factorization of F and a-'@ be a 
left-coprime factorization of F .  Then an orthonormal basis of Q(F,  s) 
is given by the columns of 
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[ ] [ M * ( s ) M ( s )  + N * ( s ) N ( s ) ] 4 .  

Since - N M  + a N  = 0, an orthonormal basis of the orthogonal com- 
plement of o ( F ,  s) is given by the columns of 

It follows from Proposition 1 that for F1, FZ E PXm, 

Y[B(Fl, s ) ,G(Fz ,  s)l 

= [a,(s)lvi,l(s) + N2(s)8;(s)]-~[-8z(s) A&(.)] /I 
where NIM;' is a right-coprime factorization of F1 and &;'Nz is 
a left-coprime factorization of Fz. Then 6(Fl,Fz) can be obtained by 
taking the supremum over C+. One might wonder if an analogue of the 
maximum modulus principle exists in this case, i.e. if the supremum 
over C+ can be replaced by a supremum over { j w  : w E W}. Unfortu- 
nately, examples can be constructed to rule out such an expectation. 
Therefore, the computation of pointwise gap metrics becomes a non- 
concave maximization problem over a two-dimensional domain which 
in principle can be solved by a two-dimensional brute force search tech- 
nique. It is shown in [16] that this maximization problem can actually 
be solved by carrying out a one-dimensional brute force search together 
with a one-dimensional bisection search. A more efficient method to  
compute pointwise gap metrics is yet to  be found. 

4 The Pointwise Gap Metric in the Scalar 
Case 

Suppose that F; is a scalar real rational function and N;M,:' is a (right- 
or left-) coprime factorization for i = 1,2. Then by (3), 

Y[G(Fl, SI, G(Fz, s)l 

= [IM1(s)I2 + lN1(s)l21-+[-N2(s) Mz(.)l 

If we use the arithmetic in C U {a} instead of C, we have 

This is simply the chordal metric between Fl(s) and Fz(s) which is the 
chordal distance of the stereographic projections of F'(s) and Fz(s) on 
the Riemann sphere [13]. The pointwise gap metric for scalar real 
rational functions is then given by 

This formula gives a very clear and intuitive geometric interpretation 
of the pointwise gap metric for scalar real rational functions: i t  is no 
more than the supremum of the difference between the values of the 
transfer functions over all s E C+, where the difference is measured by 
the chordal metric. 

The metric (4) was actually proposed by El-Sakkary [5] to study 
the robustness of SISO systems. We have just shown that it is simply 
a special case of pointwise gap metrics. Therefore, almost all results 
in [5] can be obtained by specializing the results given in this paper. 

2 

5 Qualitative Properties of Pointwise Gap 
Metrics 

First, we will examine the open loop qualitative properties of pointwise 
gap metrics. To start with, we give a lemma regarding the pointwise 
gap metric corresponding to the spectral norm. 

Lemma 1 FOT each stable real rational matrix F ,  

Now let 6 be a pointwise gap metric corresponding to  any unitarily 
invariant norm. Denote by B(F0, T )  the gap metric open ball centered 
at  FO E PpXm with radius T ,  i.e. B(F0, T )  = { F  E Ppxm : 6(F, Fo) < T } .  
In particular, B,(Fo,r) = { F  E PpXm : 6,(F,Fo) < T } .  Note that a 
real rational matrix with all elements equal to  zero is denoted by 0, 
with its size determined by the context. 

Theorem 1 SPxm is an open subset of (Ppxm,6). In particular, 
S P X "  = q o ,  1). 

Since the pointwise gap metrics corresponding to  different unitar- 
ily invariant norms are equivalent, the first sentence of Theorem 1 is 
actually implied by the second sentence. Theorem 1 gives a major 
qualitative property of pointwise gap metrics; besides, it gives a pre- 
cise quantitative characterization of the stable and the unstable real 
rational matrices in terms of the pointwise gap metric corresponding to  
the spectral norm: all stable matrices are in the open unit ball centered 
a t  the origin and the unstable ones are on the unit sphere. 

More open loop properties of pointwise gap metrics are given in the 
following. 

Propos i t ion  4 FOT any F1, Fz E SpXm, 

An important consequence of Proposition 4 is that it identifies the 
topologies in S p X m  induced by pointwise gap metrics and norms. 

Corollary 1 The topology in SPxm induced by a pointwise gap metric 
and that induced b y  a norm are the same. 

For each F E P p X m ,  we have F' E PmXp. Furthermore, if F is 
stable, so is F'. Hence F + F' is a bijection between P p X m  and F m X p  

which preserves stability. The following result says that this bijection 
is actually an isometry under a pointwise gap metric. 

The following two remarks, which are verified in [16] using exam- 
ples, provide some topological insight to  pointwise gap metrics. 

(i) A linear space with a metric is called a metric linear space if the 
addition of vectors and the multiplication by scalars are contin- 
uous operations [17]. The space P p x m  is a linear space over the 
field P,  but ('PpXm, 6) is not a metric linear space. In fact, both 
operations are not continuous. 

(ii) If we consider the space Ppxm as the ( p  x m)-fold product space 
of P, a natural question to ask is whether the topology in PXm 
induced by a pointwise gap metric is the product topology of the 
topology in P induced by the pointwise gap metric in 'P, The 
answer for this question is negative. 

In the rest of this section, we work towards the qualitative closed 
loop properties of pointwise gap metrics. Consider the feedback config- 
uration shown in Figure 1; in this case, different spaces of real rational 
matrices are involved. If the plant space is PpXm, then the controller 
space is Pmxp and the closed loop transfer matrices are in the space 
P ( p + m ) x ( p + m ) .  We will allow the pointwise gap metrics in these spaces 
to be induced by different unitarily invariant matrix norms. In addi- 
tion to the spaces mentioned above, another space we have to  consider 
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is the product space of plant-controller pairs PpXm x Pmxp.  In the 
following, we do not need a metric in the product space Ppxm x PmXp,  
but we do need a topology in the product space. The topology is 
assumed t o  be the product topology generated from the gap metric 
topologies in Ppxm and PmXp. 

The following result shows that the topology on block diagonal 
matrices induced by a pointwise gap metric is the product topology of 
topologies on individual diagonal blocks. 

Proposition 6 Let F1,Gl E Pplxml and Fz,Gz E PPzxmz. Then 

The following result shows that the multiplication of real rational 
matrices by unimodular matrices is continuous. 

Proposition 7 Let F1, F2 E Ppxm and let G E S p x p ,  H 6 Smxm be 
unimodular matrices. Then 

In our applications, the matrices G and H are orthogonal matrices. 
In this case, the inequalities in Proposition 7 degenerate to an equality. 

Corollary 2 Let F1, Fz E PpXm and let G E W p x P  and H e R m X m  be 
orthogonal matrices. Then 

6(GFlH,GFzH) = 6(F1, Fz). 

The following result shows that the addition of real rational matri- 
ces by a stable real rational matrix is continuous. 

Proposition 8 Let F1, Fz E Ppxm and G E SPxm. Then 

6(G t Fi ,G+ F2) i $(2+ llG113 t I I G I I . ~ ~ ) ~ ( F I , F z )  

6(Fi,Fz) i +(2 + 11G113 + I l G l l s d m ) 6 ( G  t 4,  G + Fz) .  

An important special case in our application happens when G = I .  
We have the following corollary for this case. 

Corollary 3 Let F1, FZ E Ppxm.  Then 

6(F1,F2) 5 V ~ ( I + F I , I + F Z ) .  

Proposition 9 If F1, Fz E P m x m  are invertible, then 

6( F;', F;') = 6( F1, Fz). 

The study of well-posedness of a plant-controller pair requires the 
following result in the set of invertible matrices. 

Proposition 10 The set of invertible matrices in P m x m  is open. 

Consider the following maps: 

(ii). F -+ &F (G is"rea1 orthogonal) 
(iii). F + I t  F ( F  is square) 
(iv). F -+ F-I ( F  is invertible). ' 

An interpretation of Propositions 6-9 and Corollaries 2-3 is that maps 
(i)-(iv) are all continuous and have continuous inverses in their ranges. 
In other words, these maps are homeomorphisms between their do- 
mains and their ranges. (In fact, maps (ii), (iv) are isometries.) This 
interpretation allows us to establish our main result on the qualitative 
closed loop properties of pointwise gap metrics. 

Recall that W ( p , m )  E Ppxm x P m X p  is the set of all well-posed 
(P,  C) pairs, H is a function from W ( p , m )  to  P(p+m)x(ptm) defined 
by (l), and C(p ,m)  is the set of H(P,C) when ( P , C )  E W ( p , m ) .  
The set W ( p , m )  must be open since it is the set of all (P,C) with 

I - 1 y 1 1 invertible and since such a set is simply the 
L A L  J 

inverse image under the composition of the continuous maps (i)-( iii) 
of the set of all invertible matrices in P(pfm)X(p+m),  which is an open 
set. The map H is a composition of maps (i)-(iv); since these maps 
are homeomorphisms, so is H. Therefore we have proved the following 
theorem. 

Theorem 2 The set W ( p ,  m)  is an open subset of Ppxm x P m x p  and 
the map H is a homeomorphism between W ( p ,  m)  and C ( p ,  m). 

Roughly speaking, Theorem 2 says that if (T0,Co) is well-posed 
and P ,  C are sufficiently close to  Po, CO respectively, then (P,C) is 
well-posed and H(P,C) is close to  H(P0,Co). Conversely, if (P0,Co) 
and (P ,  C) are well-posed and H(P, C) is close to H(P0, CO), then P,  
C must be close to  Po, CO respectively. 

6 Quantitative Properties of Pointwise Gap 
Metrics 

Similar to  the preceding section, this section starts with the open loop 
properties and then switchs to the closed loop properties. 

Theorem 3 Let FO E SPxm. Then B(F0,r) c SPxm if and only if 
T 5 d1 - 6:(Fo, 0) .  

We will see later on, that this theorem is only a special case of a 
forthcoming theorem. The bound given in Theorem 3 takes another 
form by using Lemma 1: 

1 

m E '  41 - 6,2(Fo, 0 )  = 

Now let us consider the feedback configuration shown in Figure 1. 
Let the pointwise gap metric in the plant space Ppxm be 61 and that 
in the controller space P m X p  be 62.  The open balls in the two spaces 
take the form 

&(Po,r) = { P  : 6i(p,Po) < T >  

and 
&(CO, T )  = {c : 6z(C, CO) < T}. 

Define a partial function Y : Ppxm x P m X p  -+ R by 

The domain of definition of Y includes all pairs ( P ,  C) such that H( P, C) 
is stable, since we have the identity 

Theorem 4 Let (Po,CO) be given with H(P0,Co) stable. Then the 
following statements are equivalent: 

(a) r I .(Po, CO); 
(b) H(P, CO) is stable for all P E &(PO, T ) ;  
( c )  H(Po,C) is stable for all c E &(c0,r);  
(d) H ( P , C )  is stable for all P ,  C with 

6:(P, PO) + 6i(c, CO) f 261(P, Po)6z(c, CO)$- < T z .  

Note that Theorem 3 is obtained from Theorem 4 on letting CO = 0. 
A graphic interpretation of Theorem 4 is shown in Figure 2. A 

point ( T ~ , T - J )  with 0 5 T ~ , T Z  5 1 in the coordinate system represents 
a set of plant-controller pairs (P, C) which satisfy 61(P, PO) = r1 and 
62(C, CO) = ~ 2 .  The equivalence of (a) and (d) in Theorem 4 says that 
the largest area which contains only stable pairs and whose boundary 
is given by an ellipse with equation 

T f  f T ;  t 2 T i T z J 1 - Y 2 ( P o , C o )  = T 2  
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Figure 2: An Area Containing Only Stable Pairs 

is the shaded area in Figure 2. 
Theorem 4 shows that the function v gives a good measure for the 

closed loop stability robustness. A natural design problem is to  find 
a controller C for a given plant P so that the closed loop stability 
robustness is maximized, i.e. we want to find 

where C is taken from the set of all controllers which stabilize P. This 
problem falls into the 31, optimal control problem which has been 
extensively studied in the recent control literature. The solution for 
general 'Hm optimal control problem can be solved by using iterative 
procedures. However, the particular problem we have here has been 
solved in [ll] and [8] without iteration. 

7 Multiplication Operators, Compactification 
of Cpxm, and Pointwise Gap Metrics 

In this section, we give connections of pointwise gap metrics to  the 
concepts of the multiplication operators from 317 to  31; and compact- 
ifications of CpXm. Details on the concepts of unbounded operators 
and compactifications can be found in [15] and [18] respectively. 

We denote by 31; the Hardy space of all functions U which are 
analytic in C+, take values in C p ,  and satisfy the uniform square- 
integrability condition: 

For any F E P r x m ,  the multiplication operator from 31y to  31; due to 
F ,  denoted by M F ,  is defined to  be the possibly unbounded operator 
which maps U E 7fy to F u  if F u  is in 31;. The operator MF is 
unbounded if F is unstable since not every Fu is in 31; in this case. 
The domain, the range and the graph of M F  are defined as1 

V ( F )  = ( U E ' H ~ : F ~ E X ; }  
R ( F )  = { F u : u E D ( F ) }  

It is clear that V(F), R ( F )  and G(F)  are linear manifolds in 317, 
7ii and 317 x 31; respectively. 

The graph of M F  can be characterized by right-coprime factoriza- 
tions of F .  

Lemma 2 [19] Let F E Ppxm and NM-' be any right coprime fuc- 
lorization of F .  Then 

'The notation is slightly abused here; D(ilfa) ,  ' R ( M F )  and ~ ( M F )  are abbrevi- 
ated as D(P), 'R (F)  and G(F)  respectively. 

At any fixed s E Cf, the evaluation operator on 31; x 317 maps 
v E 31; x 317 to  v(s) E Cp+". Since G ( F )  is a linear manifold in 
31; x XP, the image of G(F)  under the evaluation operator at  any 
fixed s 6 C+ must be a subspace of Cp+m. By Lemma 2, this subspace 
is just G(F, s) defined in Section 3. Therefore, a pointwise gap metric 
between F1 and F2 in Ppxm can be interpreted using the graphs of the 
multiplication operators M F ~  and Mp2. It is the supremum over all 
s in C' of a gap between the images of the graphs of M F ~  and M F ~  
under the evaluation operator at  s. 

It has been seen from Section 4 that the value of a real rational 
function at  each s E C' is an element of C U {CO}, and the pointwise 
gap metric between two real rational functions is simply the supremum 
over all s E C' of the chordal metric between the values of these two 
functions. It is known that C U {CO} with the chordal metric is a 
one-point compactification of C. The idea for the scalar case can be 
generalized to  the matrix case. It has been shown in Section 2 that 
the set of all I-dimensional subspaces in Cn, denoted by rl(P), is a 
compact metric space if its topology is induced by a gap. 

Proposition 11 r,(Cp+") is a compactification of CPXm. 

Let F E Ppxm and NM-' be a right-coprime factorization of F.  
Then for each s E C+, F uniquely determines-an m-dimensional sub- 

space of Cpfm which is given by R ([ :[:; ]). In other words, the _ -  -, 

value of F ( s )  at each s E C' can be considered as an element in the 
compactification of CPx". A pointwise gap metric between Fl and F2 
is simply the supremum over all s E C+ of the distance between FI(s) 
and F ~ ( s )  measured by a metric in the compactification of CPx". 

8 Comparison to the Gap Metric 

A metric in the space of real rational matrices which has undergone 
extensive studies in recent years is the gap metric. The gap metric on 
real rational matrices is inherited from the gap metric on closed un- 
bounded operators between Banach spaces which has been thoroughly 
studied in [15], and was introduced to  control theory, particularly to 
the stability robustness study, in [20]. Significant contributions to  the 
gap metric study (in control) include [4], [22], [7], (81. The following 
remarks concern the comparison between the gap metric and pointwise 
gap metrics; for details, see [16]. 

(i) The gap metric and pointwise gap metrics are different and are 
not uniformly equivalent, but they are topologically equivalent. 
A natural consequence of this fact is that they have many similar 
qualitative properties; surprisingly, they also have many similar 
quantitative properties in spite of the fact that they differ in 
value. Theorem 3 can be restated for the gap metric; a result 
which is slightly weaker than Theorem 4 for the gap metric is 
proved in [SI. 

(ii) The gap metric can be computed by using a formula given in [7]. 
A good computational method for pointwise gap metrics is not 
yet available. 

(iii) The gap metric relies on infinite dimensional functional analysis, 
whereas the pointwise gap metrics are built from finite dimen- 
sional linear algebra. This implies that pointwise gap metrics are 
conceptually simpler than the gap metric. The study of point- 
wise gap metrics seems more straightforward in some cases due 
to  their conceptual simplicity. 

. 

(iv) Pointwise gap metrics are transpose invariant, i.e. b(F1,FZ) = 
6(F:, F;), whereas the gap metric does not have this property. 

(v) A pointwise gap metric can be interpreted as being the supremum 
over s E C+ of the distance between the values of real rational 
matrices, where the values are regarded to  be in a compactifica- 
tion of the set of complex matrices, and the distance is given by 
a metric in this compactification. This interpretation is poten- 
tially useful in applications since it may provide an access to the 
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relationship between the metric and tlie physical paramrtcrs of 
the systems described by the real iational matrices. However, it 
appears that what the gap metric measures is so intrinsic that 
very little intuitive sense is provided. 

The graph metric is another metric which can be used in the stabil- 
ity robustness study of real rational matrices. It can be shown that the 
graph metric and pointwise gap metrics are different, arc not uniformly 
equivalent, but are topologically equivalent. However, it appears that 
the graph metric is not so convenient to use because it lacks the good 
quantitative properties which the gap metric and pointwise gap metrics 
have. 

9 Conclusion 

A new family of metrics, called pointwise gap metrics, has been devel- 
oped in this paper and the open and closed loop stability robustness 
of lumped linear time invariant finite dimensional continuous time sys- 
tems has been successfully analyzed using these metrics. If we define 
the notion of stability of real rational matrices to be based on the 
stability of discrete time systems, then virtually all the results of this 
paper apply with only trivial changes. 

A problem which is not solved satisfactorily in this paper is in the 
computation of pointwise gap metrics. A partial list of other interesting 
related problems is given in the following. 

(i) Model reduction in terms of the pointwise gap metrics. Formally, 
this problem is equivalent t o  minimization problem: 

inf 6(P, P,) 
P” 

where P, runs over the set of all real rational matrices with order 
bounded by n. Cf. model reduction using Hankel norm [lo]. 

(ii) Weighted pointwise gap met,rics. This problem arises if we defiiie 
a metric by 

6w,,w2(4,Fz) = 6 ( w l F l ~ z , w l F z w z )  
where W1 and Wz are unimodular real rational matrices. The 
introduction of the weighting matrices enables us to exploit some 
structural information on the system uncertainty. Cf. weighted 
norm [21] and weighted gap metric [9]. 

(iii) Structured pointwise zap metrics. When additional structure of 
I _  

the uncertainty is available, one might consider a complete struc- 
tured pointwise gap metric analysis. Let M be the space of all 
P with the following form 

P =diag(Pl,P2, ..., Pl) 

where Pi, i = 1,2, .  . . , I ,  are matrices over P with various sizes. 
Define a metric in M as 

4 P , & )  = max{6(4,&1),6(Pz,&z),. . . ,6 (p1 ,4?dl .  
Let CO be a controller which stabilizes Po in such a space. Find 

inf{d(P,Po) : P E M and H(P,Co) is stable}. 

This is an analogue to the p-problem. 
diagonal structure of P is justified. 

Pointwise gap metrics for distributed or time-varying systems, 
etc. In light of Section 7, pointwise gap metrics can be defined 
for unbounded linear operators from a function space to another 
function space with the same variable. Thus in principle, many 
of the results of this paper are extendible to distributed systems, 
time-varying systems, etc; however such an extension is not triv- 
ial because two major properties of real rational functions, i.e. 
the existence of coprime factorizations and the existence of sta- 
bilizing controllers, need not necessarily hold. Cf. the gap metric 
for distributed systems [22], [8]. 

See [3], in which the 
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