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Abrfmf-In this paper, we present a systematic optimal and robust 
control theory (lor SISO systems) in a language suitable far undergrad- 
uate leaching The tmls used am mostly simple polynomial arithmetics 
and elementary linear algebra. The theory covers almost all topics that 
post-modern eontml mncerns: the compntalion of the RMS Talne (2- 
norm) or a signal or a system, the computation of the resonance peak 
(m-norm) of a system, and the romputalion of the Hankel singular 
values and vettors, optimal transient stabilization (LQG control), 
optimal robust stabilization with respect to the Vinnicombe metric (?fm 
control), and synem approximation. A systematic synthesis theory is 
presented based on lhe pole placement technique, which Li equivalent 
to solving a polynomial Diophantine equation. 

I. INTRODUCTION 
Recently we have been witnessing a great amount of attention 

paid to the innovation of undergraduate level control education. 
Several new textbooks have been published ([SI, [141, [ I  I], [71, 
141). The main effon seems to be in incorporating modem and 
post-modem control theory into the syllabus of a beginners' control 
course which has been dominated by classical materials for several 
decades. This effort is not easy and is potentially controversial 
because of the myth that the modem and post-modem control theory 
necessitates the use of advanced mathematical knowledge which a 
typical engineering undergraduate student does not have. 

In this paper, we will examine a systematic control theory tailored 
for today's undergraduate level education. The theory is based on 
the post-modem philosophy, emphasizing analyticity, optimality, 
robustness, CAD suitability, and rigor, but uses pre-classical tools 
not much beyond the well-hown Routh stabXny criterion. 

Making available such a theory enables the advanced optimal and 
robust control of SISO systems, described by transfer functions. to 
be taught and applied using mostly polynomial arithmetics under- 
standable by students and engineers with minimum mathematical 
sophistication. It changes the common perception that classical 
theory is associated with trial-and-emor designs and approximate 
reasoning. It also demystifies the post-modem control theory and 
the advanced mathematics associated with it. It i s  our belief that 
materials for undergraduate teaching should be better connected 
with the most recent development in control theory and that one 
of the main reasons of the widening gap between control theory 
and control practice is the widening gap between theoretical devel- 
opment and the education. 

Although by large the materials in  this paper are not new. 
the treatment of almost all analysis and synthesis problems using 
certain orthonormal functions generated from the Routh table does 

11. ROUTH STABILITY TEST AND ORTHONORMAL FUNCTIONS 

Consider polynomial 

a(.) = aosn + olsn-l + .  . . +a,, a0 > 0. 

Construct the Routh table 

roo = a0 1'0, = a2 roz = a4 ... 
r1o = a l  rll = a3 r12 = a5 . . .  

~ ( ~ - 2 ) ~  ~ ( ~ - 2 ) ~  

S' 

Each row starting from the third one is computed from its two 
preceding rows as 

1 r(i-2)O r(i-Z)(j+l) 

r(i--l)o I r(i-l)o r(i-l)(,tq 
ri j  = -- 

Here i goes from 2 to n and j goes from 0 to [%$1. When 
computing the last element of certain row of the Routh table, one 
may find that the preceding row is one element shon of what we 
need. For example, when we compute rno. we need r(n-lp but 
r(n-,)l is not an element of the Routh table. In this case, we can 
simply augment the preceding row by a 0 in the end and keep 
the computation going. Keep in mind that this augmented 0 is 
not considered as pan of the Routh table. Equivalently. whenever 
T ( , - ~ ) ( ~ + ~ )  is missing, simply let rij = r(;-2)(j+l). For example, 
rno is can be computed as 

Theorem 1 (Routh Stability Criterion) The followittg sfufemenfs 
are equivalenf: 

I )  a(s) is sfuble. 
2) All elerrtenis of fhe Routh fable ore oositive. i.e.. rii > 0. 

i = 0,1, ..., fl, j = 0,1 (...,Ly'J. 
3 )  All elemenrs in fhefrsf column of the Rourh fable ore posilive, 

i.e ., r , o > O , i = O , l ,  ..., n. - 
have cenain tcchnical novelly. Our main purpose is to demonstrate 
the availability of simple systematic solutions to some of the 
standard analysis and synthesis problems in control, The motivation, 
interpretation, and the connections of these problems to practical 
concoi problems are not to be emphasized in [his paper, though 
they serve as important pans of a comprehensive control coucse. 

The proof given by Routh is quite involved and is usually omitted 
in feedback control textbooks. There have been continuous effons in 
finding simpler Proofs. It appears that the prwf given in [2] uses the 
most elementary arguments and is the most easily understandable. 

Let d t ) ,  y ( t ) ,  t Z 0, bc a two signal. Their inner product is 
defined ac 
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The RMS value or 2-nom of x ( t )  is then defined as 

Let X ( s )  and Y ( s )  be the Laplace transforms of x ( t )  and y ( t ) .  
Their inner product is defined as 

1 -  
2a _ _  ( X ( s ) , Y ( s ) )  = -/ X(- jw)Y( jw)dW.  

The RMS value or Z-nom of X ( s )  is defined as 

Assume x ( t ) , v ( t )  have finite RMS values. The Parseval's iden- 
tity tells us that 

( x ( t ) , v ( t ) )  = ( X ( S ) , Y ( S ) )  

/ / ~ ( t ) 1 / 2  = I lX (S) l lZ .  

and 

The RMS value or 2-norm of a strictly proper stable system is 

Let us now fix a stable polynomial 
defined to be that of its impulse response or transfer function. 

a(s)  = uosn + a1sn-] + .  . . + an--ls + a,, a0 > 0. 
Consider the set of signals or systems 

This set is clearly an n-dimensional vector space with an inner 
product inherited from that of arbitrary signals. An orthonormal 
basis of this space will be instrumental in the development later. 

Let us construct the Routh table of a(s) .  Since a(s)  is stable, the 
Routh table can always be constructed to the end and all T , o , ~  = 
0,1,. . . , n, are positive. For each row (except the Brrt one) of the 
Routh table, define a polynomial 

T i ( S )  = TIOSn-' + + '. . 
rz(S) = r20Sn-' + T21Sn-4 +. . . 

Tn-I(S) = q n - 1 ) O S  

m ( s )  = rno. 

Also define 
T(i - - l )O 

ai = - , i = 1 , 2  ,_ . . ,  n. 
Ti0 

Theorem 2 The funcrions 

form an onhonormal basis of Sa(a). 

This basis {Bi(s) : i = 1 , 2 , ,  , . ,n} will be called the Routh 
basis of Sa(s). It appears that this basis was first discovered by [8] 
based on the technique in [2] for the computation of the RMS value, 
which is to be covered in the next section. It can also be shown 
that this orthonormal basis is exactly the one obtained by carrying 
out the Gram-Schmidt orthonomalization of the standard basis 

111. COMPUTATION OF THE RMS VALUE 

Given a strictly proper stable signal or system 

Clearly C ( s )  E Sa(,). 
If we expand b ( s )  as 

then 

G(s) = A B I ( s )  + "Bz(s) + . . . + -B,(s) 0. 
Jz;L; G \/z;L;; 

Consequently 

It seems that finding all fl; requires solving a set of linear 
equations obtained by comparing the coefficients in (1). Actually, 
these equations have special structure which leads to a tabular 
solution. Construct the augmented Routh table: ~' ... ... ... 

T ~ o  

The augmented Routh table is formed by adding two blocks to 
the right of the usual Routh table. The first added block (the middle 
block of the augmented Routh table) is constructed in the following 
way: the first row is directly from the coefficients b13 b3, b5, .  . . , of 
b(s) .  i.e., 

ma = b i ,  g m  = b3, qoz = bs, . . . : 
the second, forth, sixth, . . .,rows are copied from the corresponding 
rows of the Routh table; the third, fifth, seventh, . . ., rows are 
obtained from their preceding two rows in exactly the same way as 
the rows of the Routh table: 

(2) 

The second added block (the right block of the augmented Routh 
table) is constructed in the following way: the fin1 row is irrelevant: 
the second row is directly from the coefficients bz ,  b4, b e , .  . . , of 
b(s) .  i.e., 

pia = b2,qiI  = b4,qiz  = b e , .  . .; 
the third, fifth. seventh, . . ., rows are copied from the corresponding 
rows of the Routh table, the forth, sixth, eighth, . ... rows are 
obtained from their preceding two rows in exactly the same way as 
the rows of the Routh table using formula (2). 

In summary, the following algorithm gives the 2-norm of a stable 
strictly proper transfer function. 

Algorithm 1 

1 .  1 4(i-2)0 q(i-z)(j+l) 
T ( i - i ) o  I T(i-l)o T ( i - l ] ( j + l ]  

qij = -- 

Step 1 Compute the augmented Routh roble of G(s).  
a& - % - l N  step 2  er ai = rOa . .  

Ti0 rio 

Step 3 I lC(s)l l~ = (E + 
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The effwt to find a simple method to compute the RMS value of 
a transfer function started in the late 40's by a group in MI". The 
initial effort ended up with formulas for transfer functions up to 7th 
order, reported in 191. Another team effort was carried out in the 
So's by another group in MlT. This effort, documented in [121, led 
to an algorithm based on matrix equation for arbitrarily high order 
transfer functions and corrections to two formulas in [9]. Algorithm 
1 in this section is not new and fint appeared in [21. What is new 
here is the observation that this algorithm directly follows from the 
availability of an orthonormal basis of 

IV. COMPUTATION OF THE RESONANCE PEAK 

For a proper system 

Its resonance peak or m-norm is defined as 

Comparedtothecomputationof IlC(s)Ilz, thatof i\G(s)ll.. isreally 
a trivial matter. One can read it from the Bode diagram of G(s) of 
use the standard procedure for optimizing a univariate function that 
we learn from calculus. 

v. HANKEL SINGULAR VALUES AND VECTORS 
Given a proper stable transfer function: 

take a function % in Sacs). Then 

z ( - s )  b(s)z(-s) 
a(-.) a(s)a(-s) 

G(s)- = 

is a strictly proper rational function with poles at the roots of a(s) 
and their mirmr images respect to the imaginary axis. This rational 
function can be uniquely decomposed into 

where both terms on the ri ht hand side are strictly proper. Throw 
away the unstable term &.Then we are left with the stable term 
% which belongs to S+). This process defines a map from .Sa(..) 
to &I*): 

This map is clearly a linear vansformation on Sa(s). We call it the 
Hankel operator with symbol G(s), denoted by H c ( ~ ) .  

A proper G(s) = % can in general be decomposed as the sum 
of a constant term and a strictly proper term 

where d = G(m) and c(s )  = b ( s )  - G(ffi)a(s). It can be easily 
seen that 

H,,,,- 4 s )  = H+-. x ( s )  
a(s) " a(.) 

This shows that the Hankel opwator does not depend on d, the 
constant term in G(s). Hence in the computation related to a Hankel 
operator, one can disregard the constant part of the symbol. 

The Hankel operator can be represented by a matrix if a ba- 
sis in So(s) is chosen. Naturally we can use the Routh basis 

given in Theorem 2. The matrix representation under this basis 
is called the Routh-Hankel matrix of G(s) and is denoted by 
RG(.). The singular values of Routh-Hankel matrix Rc(.) are 
called the Hankel singular values of G(s) and are denoted by 
u,(G(s)),u2(G(s)), ..., u,(G(s)). Here we assume that the sin- 
gular values are ordered in a nonincreasing way, i.e., we assume 
that o~(G(s)) 2 m(G(s) )  2 . . . 2 u"(G(s)). In panicular, the 
largest Hankel singular value ul(G(s)) is called the Hankel norm 
of G(s) and is denoted by liG(s)ll~. Let ( u i , u i )  be a pair of left 
and right singular vectors of Rc(,) corresponding to singular value 
u;(G(s)) and let 

V;(s) = [ B l ( S )  B2(S) _ ' '  B"(S)] ui 

Vz(s) = [&(s) Bz(s) ... B,(s)]ui. 

Then (Vi(s) ,  V;(s)) is called a Schmidt pair of correspond- 
ing to u;(G(s)). 

If we are interested in computing the Hankel singular values and 
Schmidt pairs of Hc(,), then the key is to find the Routh-Hankel 
matrix Rq.) from G(s). = %. There are several ways to do 
Ulis. One of the ways is given in the following algorithm (with the 
assumption that G(s) is strictly proper). 

Algorithm 2 
Step I Consrrucr rhe augnlenfed Rourh roble of G(s) = 3. 
Step 2 Sa a; = 

Step 3 Sei 

and 0; = e f" the augmented 
Rourh ra6le. Also set a,, = 1. 

1-z 1 1 

0 
1 I -7zz 

A =  I 
L 

Step 4 Set 

Step 5 Set 
R q , ,  = [RI Rz ... R"] . 

An application of the Hankel operator is in the solution of the SD 

called Nehari problem. which will be useful in the optimal robust 
stabilization problem that we will study later. Actually the solution 
to the Nehari problem is the key step leading to the solution to the 
general 31, optimization. The Nehari problem is stated as follows: 
Given stable strictly proper system G(s) = 3, find 

and a minimizing Q(s )  E 31,. 
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Theorem 3 

ona'if(U~(s),Vi(s)) is a Schmidtpairofrhe Hq.) corzsporiding 
to rhe largest singular value o1 = ~IG(S)IIH, then the unique 
optimal Q ( s )  is given by 

VI. POLE PLACEMENT 

Fig. I .  Feedback system for stabilization 

In the rest of the paper, we address synthesis issues. The first 
problem we will consider is the design of stabilizing controllers, 
i.e., given a plant P(s ) .  design a controller C(s )  such that the 
feedback system shown in Figure 1 is intemally stable. We will 
start with a revisit to the pole placement problem. Then in the next 
few sections, we will look into a couple of optimal design problems. 
It will be seen that the solution to the optimal design problems can 
be obtained via pole placement. The material in this section is well- 
known, see [IO, Section 4.51. 

Let a plant he given by 

where o(s) and b(s) are coprime and a0 # 0. We first consider 
proper controllers of the form 

where p ( s )  and q ( s )  are coprime and po # 0. Then the closed loop 
characteristic polynomial is 

d(s)  := dos"+" + dis"+"-' + . . . + d n + ,  

= a(s )p ( s )  + b ( s ) q ( s ) .  

The closed loop system is internally stable if and only if do # 0 
and d(s)  is a stable polynomial. Therefore if we can arbitrarily 
specify an (n+m)-th order stable polynomial d ( s )  and then choose 
polynomials p(s )  and q ( s )  so that (3) is satisfied, then we will be 
able to stabilize the closed loop system and a stabilizing controller 

is given by C(s )  = -_ 
It can be easily seen that for given coprime a(s) and b(s) ,  as well 

as an arbitrarily chosen d ( s ) ,  the design of p ( s )  and q ( s )  amounts 
to solving a hear polynomial equation: 

(3) 

This equation is called a Diophantine equation, which can he solved 
by comparing the coefficients of the both sides of (3). This linear 
equation has solution for arbitrary d(s)  if and only if m >_ n - 1. 
The solution is unique if and only if m = n - 1. 

d s )  
P(S) 

a(s)~(s) + b(s)q(s) = 4 s ) .  

Next we consider pole placement using strictly proper controllers. 
Strictly proper controllers are more advantageous in some applica- 
tions. In this case, a controller has a form 

where p ( s )  and q ( s )  are coprime and PO # 0. The closed loop 
characteristic polynomial is still (3). Again, it can be easily seen 
that for given coprime o(s)  and b(s),  as well as an arbitrarily chosen 
d ( s ) ,  the design of p ( s )  and q ( s )  amounts to solving a Diophantine 
equation of the form (3). This linear equation has solution for 
arbitrary d(s)  if and only if m 2 n. The solution is unique if 
and only if m = n. 

A critical issue in the pole placement problem is what constitute 
good closed-loop poles. This issue cannot be addressed by the 
pole placement problem itself. In what follows, we will see that 
the "best" closed-loop poles are determined by the performance 
specifications. 

VII. OPTIMAL TRANSIENT STABILIZATION 

Consider Fig. 1. Now we measure the performance of the closed 
loop system by 

J P > P  = (llm(~)Il; + P2liYZ(t)ll~)l w,(t)=rs(t) 

+ (Ilvl(t)ll; + P211uz(t)ll:)l 
wz(i)=0 

uz(t)=6(t) 

Here p is a positive number used to give a relative weight to y l  (t) 
and yz(t). Whereas p is a positive number used to give a relative 
weight to ~ ( t )  and wz(t). 

Now the problem is to design a stabilizing controller so that Jp,,. 
is minimized for a given strictly proper plant P ( s )  = -. This 

is actually the SISO version of the LQG optimal control problem 
stated in a deterministic way and a special 712 optimal control 
problem. The design procedure is given by the following algorithm: 

Algorithm 3 

b ( s )  
4.) 

Step 1 (Spechal factorization) Find U stable polynomial dp(s )  
such that 

a(-.).(.) + p2b( - s )b ( s )  = dp(-s)dp(s) .  

Step l:(SpectraJ factorization) Find a stable polynomial d, (s)  
such rkat 

a(-s)a(s) + p z b ( - s ) b ( s )  = d,(-s)d,(s) 

s(s) 
P ( S )  

Step 3(Pole placement) The optiml controller C( s )  = - 
is the unique n-rh onler stricrly proper pole placement 
controller such that 

a ( s )p ( s )  + b ( s ) d s )  = dp(s )dp(s ) .  

Step 4 ('HZ norm computation) The optimal performance index is 
given by 
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For a polynomial p(s), define its inertia to be three numbers 

~ S ) I  = I ~ - M S ) I ~  v 0 ~ ( ~ ) i 3  u+[P(s)I} 

which are equal to the numbers of its roots with negadve, zero, and 
positive real pam respectively. Clearly, p ( s )  is stable if and only if 
v[P(s)I = {degp(s),O,O). 

Let two transfer functions G,(s), i = 1 , 2 ,  be given as 

. .  . .. 

where ai(s), b,(s),i = 1,2,  are polynomials. Assume that the 
orders of G,(s)  are ni respectively, i.e.. dega,(s) = ni. 

Fig. 2. Riemann sphere and stereographic projections Definition 1 Two sysrems Gl(s) and Cz(s)  are said IO be compa- 
ruble, denored by GI($) - Gz(s). if 

VIII. OPTIMAL ROBUST STABILIZATION 

Let us put the complex plane horizontally and place a sphere with 
unit diameter at the origin of the complex plane, as in Figure 2. This 
sphere is called the Riemann sphere and is denoted by S. The origin 
of the complex plane is its south pole S and the pole in the top is 
its north pole N.  For a point c in the complex plane, connect it and 
the north pole by a straight line. Then this straight line will intersect 
the Riemann sphere at one and only one point. This point is called 
the stereographic projection of c on the Riemann sphere and is 
denoted by $(c). Notice that the stereographic projection defines a 
one-one correspondence between @U{m} and the Riemann sphere 
9. The chordal distance between c1 and cz. denoted by &cl, cz) .  
is defined as the length of the chord connecting @(GI) and ~ ( c z ) .  
Simple derivation gives 

(4) 

The frequency response of a system can be plotted as a Riemann 
plot. The Riemann plot is simply the steroegraphic projection of its 
Nyquist plot on the Riemann sphere. One advantage of the Riemann 
plot over the Nyquist plot is that the difficulty associated with the 
frequency response taking value at the infinity is completelv eone. 

v[az( -S)a i (s )  + b z ( - s ) b i ( ~ ) ]  = {ni,O,nz} 

Definition 2 The Knnicoinbe metric between rwo systems G,(s) 
and Gz(s) is defines as 

Roughly speaking, G i ( s )  and Gz(s) are considered to be close 
if their Riemann plots are close on the Riemann sphere, as long as 
the comparability condition is satisfied, 

Wlth the distance function 6 between systems, we can describe 
an uncenain system as a ball of systems: 

BsIG(S),r] = {&(s) : a[G(S),G(s)] 5 r) 

The center C(s) is called the nominal system and the radius P is 
called the radius of uncertainty. 

For the feedback system in Figure 1, let 

Define 

. -  
This come of course with a price: a three dimensional plot is needed 
instead of a 2-dimensional plot. Figure 3 gives a couple of Riemann Consider the feedback system shown in Figure 4. Here P ( s )  is a 

pertulhed version of P(s)  and 6 ( s )  is a perturbed version of C(s). 
If we know that the system shown in Figure 1 is stable, what can 

plots. 

we say about the stability of the system shown in Figure 4? 

. .  

Fig. 4. Feedback system for stabilization 

Theorem 4 
1) The feedback sysre? in Figure 4 is srable for all P(s) E 

Bs[P(s),rp] ond C(s )  E L?a[C(s),rcl i fandonly if 
Fig. 3. Riemann pl001 arcsinrp + arcsin rc c arcsin bp,C. 
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2 )  Ifthe inequality in I )  is satisfed, then 

Theorem 4 show that bp ,c  indeed gives a measure of the 
robustness of the feedback system. The bigger b p , c  is, the more 
robust the feedback system. One natural design problem is then as 
follows: Given P(s) ,  design C ( s )  so that b p c  is maximized. This 
problem is called optimal robust stabilization problem and it is a 
special H, optimal control problem. 

A procedure to solve the optimal robust stabilization problem is 
given as follows: 

Algorithm 4 
Step 1 (SpecrralfactorizationJ Find stable d ( s )  such thar 

a(-s)a(s)  + b( - s )b ( s )  = d ( - s ) d ( s ) .  

Step 2(Diophontine equation) Find z(s) and y ( s )  such that 

a(s)z(s) + b ( s ) y ( s )  = d * ( s ) .  

It  can be shown that 

z ( s ) b ( - s )  - y(s )a ( -s )  = z (s )d (s ) .  

for some polynomial z(s) .  Let 

Step 3 (Hankel SVD) Compute the largest Hankel singular val- 
ues ai of T ( s )  and its corresponding Schmidt pair 
(UI(S),~I(S)). men 

1 
SUP b p , c  = - 
C(S1 " 

Let e(s) be any nonzero multiple of the numerator o f O ( s ) ,  
or any nonzem multiple of the numerator of V ( s ) .  which 
are the same. 

Step 4 (Pole placement) The optimal contmller is the unique (n- 
1)-st order pole placement conrmller C( s )  = % such 
that 

a(s)p(s)  + b(s)n(s) = d(s )e (s ) .  

IX. SYSTEM APPROXIMATION 
The problem of Hankel approximation is to find a lower order 

system to approximate a high order system so that the Hankel nom 
of the error is minimized. Precisely. if we are given a stable transfer 
function 

b(s) 
a(s) 

bas" + his"-' + . . , + b, 
aos" + als"-1 + . . . + a,' 

C(S) = - = a0 > 0, 

we wish to find 

and a minimizing 6'(s). Here we assume that r < n. 
The solution to the Hankel approximation problem is well-known 

[I], see also the excellent exposition [151. The solution relies on the 
computation of the Hankel singular values and the Schmidt pairs of 
G(s). The method in Section V for the computation of the Hankel 
singular values and Schmidt pairs immediately applies. Due to the 
page limitation in this paper. we skip the details. 
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X. CONCLUSIONS 
This paper gives a tutorial on our recent effon in developing a 

complete and systematic optimal and robust control theory for SISO 
systems using only pre-classical tools growing out of the Routh 
stability test. The analysis problems addressed are the computations 
of the RMS value (2-norm). the resonance peak (m-norm), and 
the Hankel singular values and vectors. The synthesis pmhlems 
addressed are optimal transient stabilization (LQC control), optimal 
robust stabilization (71- control), and system approximation. Our 
experience shows that these malerials are well suited for undergrad- 
uate teaching. 

A parallel development for discrete time systems is given in [16]. 

XI. REFERENCES 

[ I ]  V. M. Adamjan, D. 2. Arov, and M. G. Krein, "Analytical 
properties of Schmidt pairs for a Hankel operator and the 
generalized Schur-Tagagi problem", Math. USSR Sbomik, vol. 
15, pp. 31-73, 1971. 

[2] K. I. Astrom, Introduction to Stochnstic Control Theory, 
Academic Press, New York, 1970. 

[31 S. Bamett, Polynomials and Linear Conrml Systems, M. 
Dekker, New York, 1983. 

141 P. Dorato, Analytical Feedback System Design, BrooksICole, 
Pacific Grove, California, 1999. 

[SI I. C. Doyle, B. A. Francis and A. R. Tannenbaum, Feedback 
Control Theory, Macmillan Publishing Company, New York, 
1992. 

[6] P. A. Fuhrmann, A Polynomial Approach to Linear Algebra, 
Springer, New York, 1996. 

[7] C. C. Gwdwin, S. E Graebe and M. E. Salgado, Control 
SQstem Design, Prentice-Hall, Upper Saddle River, 2001. 

[SI T.-Y. Guo, C. Hwang, L.6. Shieh, and C.-H. Chen, "Reduced- 
order models of 2-D linear discrete separable-denominator 
system using bilinear Routh approximations", IEE Proc.-G, 
vol. 139, pp. 45-56, 1992. 

[9] H. M. lames, N. B. Nichols, and R. S. Philips, Theory of 
Servomechanisms, McGraw-Hill, New York, 1947. 

[IO] T. Kailath, Linear Systenu, Prentice-Hall, Englewood Cliffs, 
1980. 

[ l l ]  H. Ozbay, Intmducrion ro Feedback Control Theory, CRC 
Press, Boca Raton, 1999. 

[I21 G. C. Newton, L. A. Could, and J. E Kaiser, Analytical Design 
of Linear Feedback Control, John Wiley & Sons, Inc:, New 
York, 1957. 

[13] G. Wnnicombe, Uncertainty and Feedback: 71, h o p -  
Shaping and the u-Gap Metric, Imperial Collage Press, 2001. 

[I41 W. A. Wolovich, Automntic Control System: Basic Analysis 
and Design, Holt Rinehart and Winston. Inc., 1994. 

[I51 N. Young, An Introduction to Hilbert Space, Cambridge UN- 
versity Press, 1988. 

[I61 X. Zhao and L. Qiu, "Orthonormal rational functions via the 
July table and their applications", Pmc. 42nd IEEE Conference 
on Decision and Conrml. 2003. 

[17] K. Zhou, I. C. Doyle, and K. Glover, Robust and Optimnl 
Control, Prentice-Hall, Upper Saddle River, New Jersey, 1996. 

50 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 06:36:09 UTC from IEEE Xplore.  Restrictions apply. 


