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Abstract—In this paper, we present a systematic optimal and robust
control theory (for SISO systems) in a langoage snitable for undergrad-
uate (eaching. The tools used are mostly simple polynomial arithmetics
and elementary linear algebra. The theory covers almost all topics that
post-modern conirol concerns: the compuiation of the RMS valoe (2-
norm) of a signal or a system, the computation of the resonance peak
(co-norm) of a system, and the compulation of the Hankel singular
values and vectors, optimal tramsient stabilization (LQG controf),
optimal robust stabilization with respect to the Vinnicombe metric (H o
control), and system approximation. A systematic synthesis theory is
presented based on the pole placement technique, which is equivalent
to solving a polynomial Diophantine equation.

1. INTRODUCTION

Recently we have been witnessing a great amount of attention
paid to the innovation of undergraduate level control education.
Several new textbooks have been published ([51, [14], [11], [7],
[4]). The main effort seems to be in incorporating modem and
post-modern control theory into the syllabus of a beginners’ control
course which has been dominated by classical materials for several
decades. This effort is not easy and is potentially controversial
because of the myth that the modern and post-modern control theory
necessitates the vse of advanced mathematical knowledge which a
typical engineering undergraduate student does not have.

In this paper, we will examine a systematic control theory tailored
for teday’s undergraduate level education. The theory is based on
the post-modern philosophy, emphasizing analyticity, optimality,
robustness, CAD suitability, and rigor, but uses pre-classical tools
not much beyond the well-known Routh stability criterion,

Making available such a theory enables the advanced optimal and
robust control of SISO systems, described by transfer functions, to
be tanght and applied using mostly polynomial arithmetics under-
standable by students and engineers with minimum mathematical
sophistication. It changes the common percepiion that classical
theory is associated with trial-and-error designs and approximate
reasoning. It also demystifies the post-modern control theory and
the advanced mathematics associated with it. It is our belief that
materials for undergradvate teaching should be better connected
with the most recent development in control theery and that one
of the main reasons of the widening gap between control theory
and control practice is the widening gap between theoretical devel-
opment and the education.

Although by large the materials in this paper are not new,
the treatment of almost all analysis and synthesis probfems using
certain orthonormal functions generated from the Routh table does
have certain technical novelty. Our main purpose is to demonstrate
the availability of simple systematic solutions to some of the
standard analysis and synthesis problems in control. The motivation,
interpretation, and the connections of these problems to practical
control problems are not to be emphasized in this paper, though
they serve as important parts of a comprehensive control course.
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IE. ROUTH STABILITY TEST AND ORTHONORMAL FUNCTIONS

Consider polynomial

a(s) = aos® +a1s™ '+t an, ag>0.
Construct the Routh table
5™ Too =@Go To1=q2 Toz =4
-1
s" rio=a1 Ti1=4as Ti2=4a;5
-2
s" rao r21 22
-3
" T30 T31 a2
2
5 Fn~2)0 Tin-2)1
1
8 Tn-1)0
SO Tnod

Each row starting from the third one is computed from its two
preceding rows as

1 -0
T(i=1)0 FF(i-1)0

TE-2G+1) |

Tij —
! TE-1)(+1)

Here ¢ goes from 2 to n and 7 goes from 0 to [ﬂ;—’_! When
computing the last element of certain row of the Routh table, one
may find that the preceding row is one element short of what we
need. For example, when we compute rno, we need ry,_1y; but
Tin—1)1 is not an element of the Routh table. In this case, we can
simply augment the preceding row by a 0 in the end and keep
the computation going. Keep in mind that this augmented 0 is
not considered as part of the Routh table. Equivalently, whenever
T(ic1)(j+1) is missing, simply let ri; = rg;_oy¢;41)- For example,
rno is can be computed as

1 Tn-2)0 T(n-21

Tng = —
" Tin—-1)o |{F(n—-1)0 0

=T(n—-2)1-

Theorem 1 (Routh Stability Criterion) The following statements
are eguivalent:

1} a(s) is stable.

2) All elements of the Routh able are positive, ie. T4; > 0,
i=0,1,,..,n.,j=0,1,...,|_'—'5_—i .

3) All elements in the first column of the Routh table are positive,
e, rip>0i=0,1,...,n ’

The proof given by Routh is quite involved and is usvally omitted
in feedback control textbooks. There have been continucus efforts in
finding simpler proofs. It appears that the proof given in [2] uses the
most elementary arguments and is the most easily understandable.

Let =(t),y(t). t = 0, be a two signal. Their inner product is
defined as

{x(8), w(t)) = j:n z(By(t)de.
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The RMS value or 2-norm of z(t] is then defined as

’ £ 1/2 .
etz = ((t), 2(£)) % = [ [ zzmdt] _

Let X (s) and Y (s) be the Laplace transforms of x(t) and y(t).
Their inner product is defined as

XY 6D = o= [ (g (o)

The RMS value or 2-norm of X{(s) is defined as

0 i/2
X6l = X X = [ [ i)

Assume z(t), y(t) have finite RMS values. The Parseval’s iden-
tity tells us that

(z(t), y(t)) = (X{s), Y (s
and
=@z = | X (s)]l2-

The RMS value or 2-norm of a strictly proper stable sysiem is
defined to be that of its impulse response or transfer function.

Let us now fix a stable polynomial
a(s) = aos™ + 218" + -+ an_15 + an, a0 > 0.

Consider the set of signals or systems

15" 4+ Fa15+ Zn
Sags) =
a{s)
This set is clearly an rn-dimensional vector space with an inner
product inherited from that of arbitrary signals. An orthonormal
basis of this space will be instrumental in the development later.
Let us construct the Routh table of a{s). Since a(s) is stable, the
Routh table can always be constructed to the end and all ry,t =

:ziER,i=1,...,n}.

0,1, ..., n, arc positive. For each row {except the first one) of the
Routh table, define a polynomial
r1(s) 108"+ ras™ T 4
ra(s) = 728" T4 raas™ T 4o
Tﬂ—l(s) T(n-1)08
ro{8) = rno-
Also define r
i~1)0
a,—=(—°—)—, =12,...,n
Tio

Theorem 2 The functions

Bi(s) = \/ﬁ"-ri (S)

“a(s)”

Jorm an orthonormal basis of Sa(s).

i=1,2,...,n,

This basis {B;(s) : ¢ = 1,2,...,n} will be called the Routh
basis of ;). It appears that this basis was first discovered by [8]
based on the technique in [2] for the computation of the RMS value,
which is to be covered in the next section. It can also be shown
that this orthonormal basis is exactly the one obtained by carrying
out the Gram-Schmidt orthonormalization of the standard basis

III. COMPUTATION OF THE RMS VALUE

Given a strictly proper stable signal or system

O A e
Gls) = a{8) ~ ags" +aistl4 - 4ay,’ ag > 0.
Clearly G(8) € Sg5)-
If we expand 5(s) as
b(s) = Pir1(s) + Barz(s) + - + Barnls), 1}
then
Jiil Ba Bn
G{s) = =B —==B. <o+ —=2= B(s).
{3) m 1(3) + \/2—0“; 2(3) + + \/%-: (‘9)
Consequently
»_ B 8 B
MGz = 5= + 5o+ g

It seems that finding all 3; requires solving a set of linear
equations obtained by comparing the coefficients in (1). Actually,
these equations have special structure which leads to a tabular
solution. Construct the augmented Routh table:

Too Tor -t | goo 4

Tie . T2 - rip  Tit s qi0 g1
T2o T21 -+ g0 4 - | Tz T21
Tsp T3r -+ | Pa3o0 Ts1 - | Q30 gn
Tno

The augmented Routh table is formed by adding two blocks to
the right of the usual Routh table. The first added block (the middle
biock of the augmented Routh table) is constructed in the following
way: the first row is directly from the coefficients b1, ba, bs, ..., of
6(s), ie.,

Qoo =bl,Qm :53,qozﬂb5,...;

the second, forth, sixth, .. ., rows are copied from the corresponding
rows of the Routh table; the third, fifth, seventh, ..., rows are
obtained from their preceding two rows in exactly the same way as
the rows of the Routh table:

1 q(i~2)0

q(-2)(F+1) ] )
T@~150 [TiE~1)0

TlE—1}G+1)

The second added block (the right block of the augmented Routh
table) is constructed ir the following way: the first row is irrelevant;
the second row is directly from the coefficients by, bs, bg,..., of

b(s), ie.,

qijg = —

quo = b2, q1a = by, a2 = bs, .. .3

the third, fifth, seventh, .. ., rows are copied from the corresponding
rows of the Routh table, the forth, sixth, eighth, ..., rows are
obtained from their preceding two rows in exactly the same way as
the rows of the Routh table using formula (2).

In summary, the following algorithm gives the 2-norm of a stable
strictly proper transfer function.

Algorithm 1
Step 1 Compute the augmented Routh table of G(3).
TE-1)0 qGi—1)0
Step 2Set i = ——= and 3; = ——=.

7i0 Tip
T A
Step 3|G(s)]l2 = ('2—&—1+§a—2++5£> .
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The effort to find a simple method to compute the RMS value of
a transfer function started in the late 40’s by a group in MIT. The
initial effort ended up with formulas for transfer functions up to 7th
order, reparted in [9]. Another team effort was carried out in the
50's by another group in MIT. This effort, documented in [12], ted
to an algorithm based on matrix equation for arbitrarily high order
transfer functions and corrections to two formulas in [9]. Algorithm
1 in this section is not new and first appeared in [2]. What is new
here is the observation that this algorithm directly follows from the
availability of an orthonormal basis of &,(,3.

IV. COMPUTATION OF THE RESONANCE PEAK
For a proper system

b(s) _ bos™ + bis™ by
G(s) = = .
a(s)  aos™ +ars" 1 + -+ an
Its resonance peak or oo-norm is defined as
b(jw)
G(s = su
G6) o = sup | 251

Compared to the computation of |G (s}]]2, that of || G(5)]] o is really
a trivial matter. One can read it from the Bode diagram of G(s) or
use the standard procedure for optimizing a univariate function that
we learn from calculus.

V. HANKEL SINGULAR VALUES AND VECTORS
Given a proper stable transfer function:

b(s)

Gls) = a0y

take a function E—g—} in Sg(5). Then

G(s) z(—s) _ bs)x(—3)
a(—s) a(s)a[-s)
is a strictly proper rational function with poles at the roots. of a(s}
and their mirror images respect to the imaginary axis. This rational
function can be uniquely decomposed into

boye(~s) _ u(s) , =(s)
a{s)a(—s} a(s)  a{—s)

where both terms on lhe

away the unstable term E(h . Then we are left with the stable term

% which belongs to $,(,). This process defines a map from Sq¢s
to 5,( )"

z{s) . ¥(3)

as) " als)’
This map is clearly a linear transformation on S,(,). We call it the
Hankel operator with symbol G(s), denoted by Hey,).

A proper G(s) = -—&% can in general be decomposed as the sum

of a constant term and a strictly proper term

Gls)=d+ T:%—i—;
where d = G(c0) and ¢s) = b(s) — G(oc)a(s}). It can be easily
seen that 2(3) 5) 2(s)
Fowra =~ e oty

This shows that the Hankel operator does not depend on d, the
constant term in G(s). Hence in the computation related to a Hankel
operator, one can disregard the constant part of the symbol.

The Hankel operator can be represented by a matrix if a ba-
sis in Sy is chosen. Naturally we can use the Routh basis

ht hand side are strictly proper. Throw

given in Theorem 2. The matrix representation wnder this basis
is called the Routh-Hankel matrix of G(s} and is denoted by
Rg(qy- The singular values of Routh-Hankel matrix R, are
called the Hankel singular values of G(s) and are denoted by
a1(G{s)), a2(G{s}), ..., on(G(5)). Here we assume that the sin-
gular values are ordered in a nonincreasing way, 1.e., we assume
that 61(G(8)) > o2(G(8)) > -+ > on(G(s)). In particular, the
largest Hankel singular value o1{G(s)) is called the Hankel norm
of G(s) and is denoted by [{G(s)|lm. Let (s, ) be a pair of left
and right singular vectors of Jig(,) corresponding to singular value
ai(G(s)) and let

Ui{s) [Bi(s) Bas) Bals)] w
Vi{s) = [Bafs) Bals) Ba(s)] ui.

Then (U;{s}, Vi(s)) is called a Schmidt pair of Hg(s) cotrespond-
ing to 0:(G{s)).

If we are interested in computing the Hankel singuolar values and
Schmidt pairs of Hg(,y, then the key is to find the Routh-Hankel
matrix Regysy from Gls) = i-)— There are several ways to do
this. One of the ways is given i m lhe following algorithm (with the
assumption that G(s) is strictly proper).

Algorithm 2
Step 1 Construct the augmented Routh table of G(s) = ;E;))-
Step 2 Set c; = L‘a‘ﬂ and f; = X2 from the augmented
Routh table. Also set ap = 1.

Step 3 Ser
— _ 1 1 -
m NG
I S
V{23 7]
A=
0 1
1 VEr—10%n
_—— 0
L VOn—10n J
Step 4 Set
208 %‘;ﬂm
225 26
1 Qg oo
RO = 5 . 1 Ry = 2
2Ly %},!3“
B = )R+ JaimAR: =23,
-2
Step 5 Ser

Repsy=[R1 Rz Rn}.

An application of the Hankel operator is in the solution of the so-
called Nehari problem, which will be usefu! in the optimal robust
stabilization problem that we will study later. Actually the solution
to the Nehari problem is the key step leading to the solution to the
general H ,, optimization. The Nehari problem is stated as follows:

Given stable strictly proper system G(s) = -% find
Qi 11G(=5) = Qls)lee

and a minimizing Q(s) € Heo.
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Theorem 3

min
Q(s)eHo
and if (U1{s), V1(8)) is a Schmidt pair of the Hgyy corresponding
te the largest singular value o1 = [G(3)||n. then the unigue
optimal Q(8) is given by

1G(=8) = Qs)lloc = [ G(s)ll

U;(—s)

Q(s) = G(—s) — UJ—VI(—S:)—.

VI. POLE PLACEMENT

w u
1 Llp ()
™ Y2
C(s) - proe
Fig. 1. Feedback system for stabilization

In the rest of the paper, we address synthesis issues. The first
problem we will consider is the design of stabilizing controllers,
i.e., given a plant P(s), design a controller C(s) such that the
feedback system shown in Figure 1 is internally stable. We will
start with a revisit to the pole placement problem. Then in the next
few sections, we will look into a couple of optimal design problems.
It will be seen that the solution to the optimal design problems can
be obtained via pole placement. The material in this section is well-
known, see [10, Section 4.5].

Let a plant be given by

_ b(s)  bos™ +bis"Th 4ot by
T a(s)  ass® +ais™ 4 --+an

P(3)

where a(s) and b(s) are coprime and ap # 0. We first consider
proper controllers of the form

m m—1 Vs .
Os) = L&) _ Do + aus et gm
p(s)  posm 4+ pismlp - 4 pra

where p(s) and g(s) are coprisne and py # 0. Then the closed loop
characteristic polynomial is

d{s) = dos" T +das™™ T 4t daym
= a{s)p(s) + b(s)q(s).

The closed loop system is internally stable if and only if dg # 0
and d(s) is a stable polynomial. Therefore if we can arbitrarily
specify an (n+m)-th order stable polynomial d(s) and then choose
polynomials p(s) and ¢(s) so that (3} is satisfied, then we will be
able to stabilize the closed loop system and a stabilizing controller
. _a(s)
is given by C(8) = ;(—5.

It can be easily seen that for given coprime a(s) and b(s), as well
as an arbitrarily chosen d(s), the design of p(s) and g{s} amounts
o solving a linear polynomial equation:

a(s)p(s) + b(s)q{s) = d(s). 3

This equation is called a Diophantine equation, which can be solved
by comparing the coefficients of the both sides of (3). This linear
equation has solution for arbitrary d(s) if and only if m > n — 1.
The solution is unique if and only if m =n — 1.

Next we consider pole placement using strictly proper controllers.
Strictly proper controllers are more advantageous in some applica-
tions. In this case, a controller has a form

Q™ b g
pos™ +p13m_1 4 P

C{s) = ) _
p(s)

where p(s) and gq{s) are coprime and po # 0. The closed loop
characteristic polynomial is still (3). Again, it can be easily seen
that for given coprime a(s) and b(s), as well as an arbitrarily chosen
d(s), the design of p(s) and g(s) amounts to solving a Diophantine
equation of the form (3). This linear equation has solution for
arbitrary d(s) if and only if m > n. The solution is unique if
and only if m =n.

A critical issue in the pole placement problem is what constitute
good closed-loop poles. This issue cannot be addressed by the
pole placement problem itself. In what follows, we will sce that
the “best” closed-loop poles are determined by the performance
specifications.

VII. OPTIMAL TRANSIENT STABILIZATION

Consider Fig. 1. Now we measure the performance of the closed
loop system by

w = Q@B+ 1OBY | e
wa{t)=0

+ Qs @Iz + 2"l OID] o

wa {t)=8(t)

Here p is a positive number used to give a relative weight to 1 (¢}
and y2(t). Whereas o is a positive number used to give a relative
weight to i (¢) and wa2(t).

Now the problem is to design a stabilizing controller so that J, .

is minimized for a given strictly proper plant P(s) = b—‘l. This

is actually the SISO version of the LQG optimal control problem
stated in a deterministic way and a special Hz optimal control
problem. The design procedure is given by the following algorithin:

Algorithm 3

Step 1 (Spectral factorization) Find a stable polvnomial d,(s)
such that

a~s)a(s) + P2b(—5)b(s) = dpl(—5)d,(s)-

Step 2:(Spectral factorization) Find a stable polynomial d.(s)
such that

a(—s)a(s) + pb(—)b(3) = du(—3)du(s).

als)
) ) i p(s})
is the unique n-th order strictly proper pole placement
controller such that

a(s)pl(s) + b(s)g(s) = dy(s)du(s).

Step 4 (Hz norm computation} The optimal performance index is

Step 3 (Pole placement) The optimal controller C{s) =

given by
e e —a)|F 2 2| bls) |
Tow = K ) do(s) 2+p,u ds(s) 2
2 || du(s) =P ° || o) |I°
TG L el

4948

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 06:36:09 UTC from IEEE Xplore. Restrictions apply.



Fig. 2. Riemann sphere and stereographic projections

VIII. OPTIMAL ROBUST STABILIZATION

Let us put the complex plane horizontally and place a sphere with
unit diameter at the origin of the complex plane, as in Figure 2. This
sphere is called the Riemann sphere and is denoted by S. The origin
of the complex plane is its south pole S and the pole in the top is
its north pole N, For & point ¢ in the complex plane, connect it and
the north pole by a straight line. Then this straight Yine will intersect
the Riemann sphere at one and only one point. This point is called
the stereographic projection of ¢ on the Riemann sphere and is
denoted by ¢(c). Notice that the stereographic projection defines a
one-one correspondence between CU{oo} and the Riemann sphere
8. The chordal distance between ¢; and ¢z, denoted by 8(cy, c2),
is defined as the length of the chord connecting (c1) and ¢(c2).
Simple derivation gives

jer — el
VIFalE /1T F e

The frequency response of a system can be plotted as a Riemann
plot. The Riemann plot is simply the steroegraphic projection of its
Nyquist plot on the Riemann sphere. Cne advantage of the Riemann
plot over the Nyquist plot is that the difficulty associated with the
frequency response taking value at the infinity is completely gone.
This come of course with a price: a three dimensional plot is needed
instead of a 2-dimensional plot. Figure 3 gives a couple of Riemann
plots,

57(C1, (22) = (4)

05 s

Fig. 3. Riemann plots

For a polynomial p(s), define its inertia to be three numbers

vp(s)] = {v-[p(s]], volp(s)], v+ [p(s)]}

which are equal to the numbers of its roots with negative, zero, and
positive real parts respectively. Clearly, p(s) is stable if and only if
vp(s)] = {deg p(s),0,0}.

Let two transfer functions G;(s),i= 1,2, be given as
bi(s)
ei(s)
where ai(s),bi(s),i = 1,2, are polynomials. Assume that the
orders of (;(s) are n; respectively, i.e.. dega.(s) = n.

Gils) =

Definition 1 Two systems G1(s) and Ga{s) are said to be compa-
rable, denoted by G1(3) ~ Ga(s), if '

v[az{—s)a1(s) + ba(—s}b1(8)] = {n1,0,n2}.

" Definition 2 The Vinnicombe metric between two systems G1(s)

and G2(s) is defines as ,

8(G1(s), Ga(s)) = {?gécéIGdjw),Gz(jw)] ¥ Gals) ~ Cals)

otherwise.

Roughly speaking, G1(s) and Gz(s) are considered to be close
if their Riemann plots are close on the Riemann sphere, as fong as
the comparability condition is satisfied.

With the distance function § between systems, we can describe
an uncertain system as 2 ball of systems:

BsiG(s),r} = {G{s) : 6[G(s), G(s)] < ).

The center G(s) is called the nominal system and the radius r is
called the radius of uncertainty.
For the feedback system in Figure 1, let

P(s) = g%, Cls) = g%.
Define
— laljw)p(jw) + bjw)a(Gw)]

SR TRGOIE + G U@ + [0

Consider the feedback systern shown in Figure 4, Here P(s) is a
perturbed version of P(s) and C(s) is a perturbed version of C(s).
If we know that the system shown in Figure 1 is stable, what can
we say about the stability of the system shown in Figure 4?

W uzr }5(3}
nl Yo
C(s)

Uz wa

Fig. 4. Feedback system for stabilization

Theorem 4

1) The feedback system in Figure 4 is stable for all P(s) ¢
Bs[P(s).7p] and C(s) € Bs[C{s),rc] if and only if

arcsinrp + arcsinrg < arcsinbpcr.
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2) If the inequality in 1) is satisfied, then
min bp &
- I f-Nei
PeBs(Prp)CEBs(Circ)
= sin{arcsin bp,c — arcsinrTp — arcsinre).

Theorem 4 show that bpc indeed gives a measure of the
robustness of the feedback system. The bigger bp,c is, the more
robust the feedback system. One natural design problem is then as
follows: Given P(s), design C(s) so that bp,c is maximized. This
problem is called optimal robust stabilization problem and it is a
special Ho, optimal control problem.

A procedure to solve the optimal robust stabilization problem is
given as follows:

Algorithm 4
Step 1 (Spectral factorization) Find stable d(s) such that
a{—s)a(s) + b(—s)b(s) = d{—s)d(s).
Step 2 (Diophantine equation) Find x(s) and y(s) such that
a(s)z(s) + b{s)y(s) = d*(s).
It can be shown that
z(s)b(—s) — p(s)a(—s) = z(s)d(s).

Jor some polynomial z(s). Ler

_z(—38)
T(s) = &)

Step 3 (Hankel SVD) Compuie the largest Hankel singular val-
ues o1 of T(s) and its corresponding Schmidt pair
(Ul(s),V1 (s)) Then

‘ 1

sup bpc = ——.
C(s) V1402

Let (s} be any nonzere multiple of the numerator of U(s),
or any nonzero multiple of the numerator of V (s), which
are the same.

Step 4 (Pole placement) The optimal controller is the unique (n—
1)-st order pole placement controller C(s) = %%3— such
that

a(s)p(s) + b(s)g(s) = d(s)e(s).

IX. SYSTEM APPROXIMATION
The problem of Hankel approximation is to find a lower order
system to approximate a high order system so that the Hankel norm
of the error is minimized. Precisely, if we are given a stable transfer
function

_b(s)  bas™+bis" Tt -+ ba

==t = 0
Gls) a{s) aps™+as"i 4.t ay’ %0 =%
we wish to find
min _ {IG(s) - G(s)lim
order(F(a)<r

and a minimizing G(s). Here we assume that r < n.

The solution to the Hankel approximation problem is well-known
{1], see also the excellent exposition [15]. The solution relies on the
computation of the Hankel singular values and the Schmidt pairs of
G(s). The method in Section V for the computation of the Hankel
singular values and Schmidt pairs immediately applies. Due to the
page limitation in this paper, we skip the details.

X. CONCLUSIONS

This paper gives a tutorial on our recent effort in developing a
complete and systemaiic optimal and robust control theory for SISO
systems using only pre-classical tools growing out of the Routh
stability test. The analysis problems addressed are the computations
of the RMS value (2-norm), the resonance peak (co-norm), and
the Hankel singular values and vectors. The synthesis problems
addressed are oplimal transient stabilizadon (LQG control), optimal
robust stabilization (M, control), and system approximation. Our
experience shows that these materials are well suited for undergrad-
nate teaching.

A parallel development for discrete time systems is given in [16].
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