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Abstract 
Blind channel identification and equalization have at- 

tracted much attention recently. Their potential application 
in wireless communication systems’ has been explored. For 
multiple user systems, several algorithms known to date re- 
quire the assumption that the linear system has a full rank 
convolution matrix. In  fact, this assumption requires that 
system be irreducible and column reduced. In this paper, 
we show that some of these algorithms can remain eflec- 
tive even when the rank condition i s  relaxed. Several algo- 
rithms, including the outer-product decomposition, can still 
be applied with care for irreducible (but not column reduced) 
multiple-input-multiple-output ( M I M O )  linear systems. 

1. LINEAR MULTI-USER SYSTEM MODELS 
1.1. Multi-User.:Data Communication Systems 
A synchronous multi-user data communication system can 
be described using a baseband representation. Assume that 
the Nu user channels are all linear and causal with impulse 
response {hu( t ) ,  U = 1,2,.. . . Nu }, the received output 
signal can be written-as 

u=l  k=--oo 

where T is the symbol baud period and A, is the input 
signal set of user U. The channel input sequences { s k , u }  
are typically independent for different users and are also 
i.i.d. The noise w(t) is stationary, white, and independent of 
channel input se uences S k , u ,  but not necessarily Gaussian. 

Note that h,?t) is a “composite” channel impulse re- 
sponse that includes transmitter and receiver filters as well 
as the physical channel response. In a typical multi-user 
system, multiple channels of observations will be available 
from multiple sensors. If K,  sub-channels sensors or anten- 

1.2. Channel Diversity from Oversampling 
It has been shown by Tong, et al. [l] that blind chan- 
nel identification benefits from oversampling the channel 
outputs. This essentially arises from the spectral diver- 
sity available when the channel has bandwidth higher than 
1/2T. 

Let the sampling interval be A = T / p  where p is an 
integer. The oversampled discrete signals and responses 
are 

xi 2 z(iA),  h,[i] 2 h,( iA)  and wi w(iA). (1.2) 

nas) exist, then x ( t ) ,  h,(t), and w(t) are a \ 1 K,  x 1 vectors. 

The channel output samples are hence 

u=l k = - m  
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Suppose {h,(t)} has joint finite support [O,Th), which 
spans L + 1 integer baud periods. Define the following no- 
tations 

h,[ip + 11 
hu[i] = 

1 hu[iP+P- 11 1 
Hi [h~[i] h2[i] . . . hN, [ i ] ] .  

It is then evident that 

Now form an MpK,. x (L + M ) N u  block Toeplitz matrix 

r Ho Hi ... HL 0 ... 0 1 

1 0  ... 0 HO Hi ... HL 1 
Clearly, L is the order of the Nu dynamic FIR channels. 
With these notations, a sampled channel output signal vec- 
tor of length M p  can be written as 

x [ k ]  = A 1 1 = X s [ k ]  + w [ k ] .  (1.4) 

1.3. Fractional Oversampling 
Ordinarily, the oversampling factors are assumed to be an 
integer. Here, we show that a fractional sampling generates 
an equivalent multi-user system. 

If the oversampling interval is a fraction of T, i.e., if 
A = qT/p (p,q coprime), then the noiseless received sig- 
nal becomes 

’ 

u=l  k = - m  
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N a - 1  m 

= sLq+,,uhu(nA - LqT - iT) 

= 7 skq+i,uhu(nA - kqT - iT) 

By defining equivalent signal sequences 

G , i + i + ( u - i ) q  = skq+i,u, i = 0, 1, - .  .q  - 1, 

and equivalent sub-channel responses 

& + l + ( u - l ) q [ k ]  = h , ( k A - i T ) ,  

the received signal can be viewed as an output of Nuq user 
channels, 

A 

U = 1, ... NI i = 0, . . . q-1, 

u=l k=-m 

It is therefore clear that an Nu user system sampled at in- 
terval of A = q T / p  is equivalent to an Nuq user system. 
Hence, the blind identification problem of fractionally sam- 
pled multi-user system can also be described by equation 
(1.4) where % is an M p K ,  x (A4 + L)Nuq block Toeplitz 
matrix. This is equivalent to an Nup input and K,p  output 
discrete MIMO system. 

2. MIMO CHANNEL IDENTIFIABILITY AND 

2.1. Column-Reduced versus non-Column Re- 

In blind channel identification, the objective is to identify 
the unknown channel responses hu(t)  based on the channel 
output z ( t )  only. The problem of blind identification for 
such a MIMO dynamic system has been studied in [3, 4, 7, 
5, 6, 81 and various algorithms have been proposed. 

Define K = K , p  and N = Nuq. Then we have a K x N 
MIMO transfer function 

EQUALIZABILITY 

duced Systems 

i = O  i = O  i=O 

Naturally the maximum channel order is L = max L; .  
It has been established in [4] that one sufficient identifi- 

cation condition for % to be identifiable from second order 
statistics is that % should have full column rank. Equiva- 
lently, this blind identifiability condition requires that 

~ ~ = o H ; z - '  is irreducible, i.e., H ( t )  has full H(z) 

0 H(z) is column-reduced [9, 31. 

For single input multiple output systems, the second con- 
dition is implicit from the first condition. Thus for SIMO 
systems, H(z) can be identified using second order statistics 
directly if it is irreducible. However, for MIMO systems, the 
additional column-reduced condition does not seem to have 
any practical physical meaning. Indeed, examples of wire- 
less systems can be provided in which column reduced con- 
dition is violated while the system remains irreducible. In 
this paper, we study whether this condition can be dropped 
for some of the well established blind identification algo- 
rithms. 

column rank for all z # 0. 

Our study has its physical significance. First, Tugnait (51 
and Meriam [2] have both noted that so long as H(z) is r- 
reducible, then there exists an FIR equalizer F(z) for which 
F(z)H(z) = I. In other words, the channel is equalizable 
by FIR equalizers so long as it is irreducible. 

The FIR equalizability allows YuleWalker equations be 
used to  blindly solve for the parameters in F(z),  which can 
then be used to indirectly identify the equalizer. This is 
indeed a viable ap roach and it basically shows that FIR 
equalizability of H&) is equivalent to its blind identifiability 
by second order statistics. Hence, the requirement that % 
be full column rank is not necessary for blind identification 
using second order statistics. Thus, many algorithms should 
be modified to accommodate this relaxed non-full rank % 
be identified. 

Clearly, the necessary dimensional condition for H(z ) to 
be full rank requires that K 2 N .  This implication is sim- 
ple: the number of equivalent multi-channels ( K r p )  must 
be no less than the number of equivalent users (NU?). 

The critical question that must be answered first is when 
it is identifiable. Here we study how to do this and 
the mathematical insight behind the blind identification of 
rank-deficient matrix %. 

2.2. Necessary and Sufficient Blind Identification 
Condition 

The identification condition hinges on the following theo- 
rem. 

Theorem 1 Let 

% = [  %l %z 1. (2.2) v v  
(L+l)N ( M - l ) N  

Assume that H(z) i s  irreducible and M 2 c,"=, L, + 
max ti + 1. Then we have 

rank(%) = rank(R1)  + r a n k ( R 2 ) .  

Moreover, %I has full rank ( L  + l )N .  

Proof: Clearly, this theorem is true when 3-1 has full col- 
umn rank, i.e., when H(z) is also column reduced. It can 
be shown that this is still true when H(z) is not column- 
reduced. Details of the proof is given in the appendix. 

0 

Theorem 2 Let T I  = rank(X1) and r2 = rank(?&). If 
H(z) i s  irreducible ana' M 2 2NL, 

where T I  = ( L  + l ) N  and {.}# denotes the pseudo-inverse. 

Proof: Define the singular value decompositions of %I and 
%2 as 

% = [%l % , ] = [ U l C l v :  U,C,V,H] 
where U1 : MK x r1, C1 : T I  x rl ,  VI : r1 x T I ,  

U2 : M K  x rz ,  CZ : rz x rz. 

Both C1 and C2 are full rank diagonal matrices of singular 
values. 
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in which U = U1 Uz] has independent columns according 

that 
to Theorem 1, b has a unique pseudo-inverse matrix Q such 

Q H U  = I .  
Thus 

(3c3cH)# = Q [ g2 ] Q H l  

and 

where B = V2Vp is identity only if 3c has full column rank. 
0 

3. OUTER PRODUCT DECOMPOSITION 
ALGORITHM (OPDA) FOR 

NON-COLUMN-REDUCED SYSTEMS 
The outer-product decomposition algorithm only requires 
minor modification in the selection of the vector length M. 
We will form an outer-product of the channel parameter 
matrix 

r H~ 1 
H +  Hi I 

t H L  J 
based on the second order channel output statistics of an 
MIMO system which is not column-reduced. 

First, assume that the channel order L is known. Let 

Ho Hi * . .  HL O . . .  0 

. . .  (3.2) . .  
* .  

HL 0 * - .  0 o . . .  0 

It can be verified that 
H,H: = (3.3) 

We define J as a matrix whose first sub-diagonal entries 
below the main diagonal are unity while all remaining en- 
tries are zero. For notational convenience, we define 

Jo = I, (3.4) 
J-' = J' .  (3.5) 

It can be seen that J-'A shifts all elements in matrix A up 
by one row while AJ shifts all elements in A to the left by 
one column. Thus, we can obtain the outer-product from 

A H , H , H - J - ~ H , H , H J ~  

Hence, matrix A forms the outer-product of the chan- 
nel parameter matrix H. The singular value decomposition 
of this outer-product matrix can be used to generate an 
estimate HQ where Q is an N x N unitary matrix. Re- 
call from 121 that this memoryless ambiguity is intrinsic 

be resolved unless additional information is available and is 
exploited. 

Assume that both the channel input signal and channel 
noise are white with zero mean. Let their respective covari- 
ance matrices be 

R, = E { ~ [ k ] s [ k ] ~ }  -- u:I 

R, = E{~[k]w[k]~} = g:I. 
Based on (1.4), the channel output covariance matrix be- 
comes 

RM = E { x [ k ] ~ [ k ] ~ }  = u : ' F ~ % ! ~  + & , I  (3.6) 

Thus, the key step in the algorithm is to find an esti- 
mate of the matrix product H , H z  from the statistics of 
the channel output signal x[k] .  Since we focus on the use 
of second order statistics, our task is to  find an estimate of 
the matrix product HaH2 given the second order statistics 
of 

to the mu I ti-user blind identification problem and cannot 

L 

x k  = HiSk-i. (3.7) 
i=O 

For notational convenience, define 
L 

R(n) e E{XkXf-n} = E { I S k I 2 )  C H i H E n .  (3.8) 
i=n 

First, it is easy to verify that 

R(O)-o:l R ( l )  R(L)  0 

... 
0 0 0 3.. * . .  0 

R(2) * * * 0 
. .  . .  . .  R, = [ R(l) : 

0 ... R(L)  
= a:Ha3CH. 

In order to estimate H,H:, recall from Theorem 2 that 
when H(z) is irreducible, 

H,P (%!'tlH)-9i~,H = Ha [ z(L+i)N;(L+i)N 

- - H,H: 

so long as M 2 2NL. 
In other words, we can estimate the channel parameters 

from 
R , ( R ~  - &I)-'R,H = u:H,H,H. (3.9) 

The channel impulse response matrix H can be estimated 
from the singular value decomposition of the estimate of 
outer-product matrix A. 

HQ = SVD(A). (3.10) 

This is the original "outer-product decomposition algo- 
rithm" (OPDA) [7] which as also later discovered as the 
multi-step linear prediction algorithm [SI. Here we show 
that as opposed to the SSM which requires that the MIMO 
system be irreducible and column-reduced, the OPDA can 
identify irreducible MIMO systems so long as M 2 2NL is 
chosen. 
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4. MMSE BLIND EQUALIZERS 
Assume that H(z) has full column rank for all z # 0, H ( z )  
is thus equalizable and is also identifiable from second order 
statistics. We now show how an MMSE equalizer can be 
estimated blindly. 

4.1. Wiener-Hopf Equation 
Assume that the channel input signal s[lc], and channel noise 
w[k] are white with zero mean, and the input signal s [k  

w[k] are 
has unit variance. The auto-covariance matrices of s [k]  an d 

%(i) = E{s[lc + i]s[kIH} = JiN, ( 4 4  
R , ( i )  = E{w[k + i]w[kIH} = o:J". (4.2) 

Denote the FIR equalizer parameter as g with output 
signal 

The minimum MSE filter to estimate Sk-; is the solution to 
the Wiener-Hopf equation, 

z k  = g H x [ k ] .  

E{XIIC]X[k]H}g = E{X[k]S]s;-i}. (4.3) 

For white noise and independent input signals, the auto- 
correlation matrix equals 

Rhf = O:%!%H +&I = xxH + 0:I (4.4) 

while the cross-correlation vector equals 

E{x[lc]s]s;-i} = o:H(i )  = H ( i ) ,  (4.5) 

where H(i) denotes the (i +l)-th block column of the chan- 
nel convolution matrix 3c. 

Given the channel output signal, the auto-correlation ma- 
trix can be easily estimated. Thus, the design of MMSE 
Wiener equalizer depends on our ability to estimate the 
cross-correlation vector H(i). We shall now show how this 
vector can be estimated blindly without trainin data when 
H ( z )  is irreducible. In our previous work I O ,  111, we 
have shown that if H ( z )  is both irreducible and column- 
reduced, then 31 is full rank and equalizers can be blindly 
estimated. Here our main goal is to show that the removal of 
the column-reduced condition does not invalidate our blind 
MMSE equalizer. 

4.2. Estimation of Cross-Correlation Vector 
First, we define that 

and 

where I ~ N  is an identity matrix except for its f is t  iN zero 
diagonal entries and AI~N is all zero except for unit entries 
on its (ZN -t 1) to (i + l)N-th diagonal elements. It can 
be directly shown that I ~ N  = JiNJ-aN and AI;N = I ~ N  - 

We exploit second order statistics of the channel output 
I(i+l)N. 

signal contained in its auto-covariance matrices 

R M ( ~ )  E { x [ k  + i ] ~ [ k ] ~ }  = 31J"NH + &JiK (4.8) 

For simplicity, we first assume that the channel noise is 
absent such that 

Rnn(i) = RJ"3tH and RM(O) = ' f13CH. (4.9) 

Later, we will consider the noisy case when the noise pa- 
rameter 0; must be estimated and subtracted from the co- 
variance matrices. 

The critical identity that enables us to  estimate the blind 
MMSE equalizer follows Theorem 2 and (2.3). Denote 

IB 4 RH(RxH)#% 

B(M- l ) N  O I  x ( M -  l ) N  

I(L+l)N X ( L + l ) N  = [  0 

Recall that J'IBJ-~ will shift the elements in Ig downward 
by i rows and to the right by i-columns. As a result, if 
i 2 (M - I), then 

J * * I ~ J - ' ~  = I ~ ~ .  

This equality allows us to use the following method to esti- 
mate H ( i )  for the MMSE equalizer. 

Observe that from the expression of RM(Z) and (2.3), 

Similarly for i 3 (M - 2), 

Then we can form another Hermitian matrix from 

It is readily seen that matrix ADi has rank N. 4 n  eigen- 
decomposition will allow us to  identify 

H(i) = H ( i ) Q ,  ~ (4.11) 

in which Q is an N x N unitary matrix. As a result, the 
blind equalizer output in the absence of channel noise is 
simply 

zk = g H x [ k ]  = Q H I R ~ ( 0 ) - l H ( i ) ] H ~ [ k ]  = QHs;-i ,  

which is a memoryless mixture of N user signals that may 
need further separation. 

A simple generalization can be derived for i, j 1 (M - 1) 
as 
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5. SIMULATIONS 
Consider a two user system whose output signal is oversam- 
pled by a factor of 3. The two transfer functions are 

[2] K. Abed-Meriam et al., “Prediction Error Methods for 
Time-Domain Blind Identification of Multichannel FIR 
Filters,” Proc. 1995 IEEE ICASSP, Detroit, MI., May 
1995, pp.1968-1971. 

-0.18 
K ~ ( Z )  = [ :fl ] + [ -0.23 ] t-’ + [ ::; ] t-2 

0.07 0.25 -0.1 

The two input signals are both random binary f l  with 
equal probability. The two user signals are scaled so that 
their output powers are the same. Since L = 3 and N = 2, 
we select M = 2NL = 12. Both channel lengths are known. 
By varying the channel output SNR, the normalized MSE 
between the identified channel responses and the true chan- 
nel responses are shown in Figure 1. Clearly, the MIMO 

dI 

J 
I 

Figure 1. Mean square identification error. 

system is not column reduced. However, its identification 
is still feasible, as is shown in this figure and proven in this 
paper. 

6. CONCLUSIONS 
In this paper, we have shown that several direct blind chan- 
nel identification algorithms based on second order statis- 
tics can still be effective for multi-user systems even when 
7c is not full rank. We show that so long as H(z) is irre- 
ducible (left invertible), it is also identifiable from second 
order statistics. This means that the condition for perfect 
(non-blind) equalizability is equivalent to the identification 
condition based on second order statistics. This important 
result clarifies the seemingly different identifiability condi- 
tions for single user and multiple user systems. It estab- 
lishes the fact that no additional condition is necessary for 
the blind identification of unknown linear channels based 
on second order statistics. 
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APPENDIX 
Before proving Theorem 1, we first present two lemmae. 

Lemma 1 191 For irreducible K x N polynomiul matrix 
H(z), there exists a K x N matriz polynomial F ( t )  = 

Fit - ’  such that F ( z ) ~ H ( z )  = I N ~ N  Furthermore, 
the minimum degree of F ( t )  is bounded by 

N 

772-12 E L ; .  
i=l 
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Since the first part of this lemma is simply the well-known 
Bezout Identity, its proof requires on the construction of 
F(z)  and its order. Length restriction forces us to omit the 
proof. 

Another important lemma can be found in [14] and [13] 

Lemma 2 Let H(z) be an irreducible K x N (K > N )  poly- 
nomial matrix. Let {&} be the minimal degrees of a min- 
imal polynomial basis for the subspace spanned by columns 
o ~ H ( z ) .  Then for M 2 ELl Li, 

N 

r a n ~ [ ~ e r ' ( ~ ~ ]  = M ( K  - N )  - L 
i=l 

N 
and 

rank(7-1) = M N  + zi. 

i=I 

Now we present the proof of Theorem 1. 
Proof: 

Let K = K,p and N = N,q. %! is an MK x (M + L)N 
block toeplitz matrix generated from the irreducible K x N 
polynomial transfer function H(z). 

We first investigate the rank of matrix 7-12. 

0 0 * . .  ... ' 1  0 

H L  0 ". ' .. 0 

HL--I HL 0 " .  0 

Notice that Iflz is an h f K  x (M - l ) N  matrix. To determine 
the rank of ?&, it is easier to first find the rank of its left 
kernel. 

We now invoke the important (Bezout Identity) 
Lemma 1. Since F ( z ) ~ H ( z )  = I, F ( z )  must have full 
column rank N .  If we define a N x 1 vector polynomial 
a(.) = ~~~o aiz-' (where ai are N x 1 vectors), then 

L 

[F(z)a(z)ITH(z) = = a(z)T. 
i = O  

Denote U(.) = F(z)a(z) = ~ , ~ ~ 1  z - ~ .  We can define its 
corresponding parameter vector 

UT = [U: UT ... UM-11. T 

Then 
L 

u ( z ) ~ H ( z )  = Z~TZ-~ if and only if 
i=O 

Based on the degrees of freedom in a(z), this means that, 
there exist a matrix U so that 

UT7-1 = [UT7-1~ UXz ] = [AT 01 (6.2) 

where A = I with full rank ( L  + l ) N .  

relationship of 7-1 and 7-12 implies that 
Let Ker'(A) represent the left kernel of a matrix A. The 

Ker'(R2) 2 Ker'(%!). 

Based on (6.2), we find that 

Ker'(iFI2) 3 (Ker'(7-1) U U} 

As U is clearly independent of Ker'(%!), we have 

rank(Ker'(7-12)) 2 rank(Ker'(7-1)) 

rank(Ker'(7-1)) + rank(U) = rank(Ker'(%!)) + (L + I).%'. 

Invoking Lemma 2, the left kernel of 7-12 has rank 

N 

rank(Ker'(X2)) 3 M(K - N )  - E ,  + ( L  + 1)N, 
1=1 

which means that 

rank(lflz) 5 MK-rank(Ker'(7-12)) = M N + C  z * - ( L + l ) N .  

But since 

N 

r = l  

N 

M N  + E, - ( L  + l ) N  = ranlc(7-1) - ( L  + 1 ) N ,  
r = 1  

rank(7-1flz) 5 rank(7-1) - ( L  + 1 ) N .  
On the other hand, because H ( z )  is irreducible, Ho has 

full rank and thus 7-11 also has full column rank (L + 1 ) N .  
Consequently, we have the inequality 

rank(7-11) + '7'Unk(&!z) 5 Tank(%!). 

Since 31 = [RI 7-12],  this means that 

~anL(lft1) + rank(7-12) = rank(%!) 

if deg{F(z)} = m - 1 2 c L , L 1  (Lemma 1 )  and if 
(Lemma 2) 

N N 

i=l  i=l . 

However, 

M-1  = d e g ( u ( z ) )  = d e g { F ( z ) } + d e g { a ( z ) }  = ( m - l ) + L .  

Thus, the sufficient condition on M is that 

N N N 

U 

4307 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 06:57:09 UTC from IEEE Xplore.  Restrictions apply. 


