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ABSTRACT 

A sequence of real numbers connected to a complex matrix is introduced. It is 
shown how these real perturbation values can be computed and that they have several 
properties similar to the singular values. The so-called real pseudospectra and real 
stability radii can be computed using the real perturbation values. The main result 
concerns the signature of real quadratic forms in complex vector spaces. © 1998 
Elsevier Science Inc. 

1. I N T R O D U C T I O N  

F o r  a l inear  t ransformat ion be tween  the complexifications of  two finite 
d imensional  Euc l idean  spaces we in t roduce  in Section 3 two sequences  of  
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numbers, which we call real perturbation values, by modifying the usual 
definition of singular values in a way that takes the real structure into 
account. These definitions were motivated by the so-called real stability 
radius problem in control theory (see [3] and [11]) and in the computation of 
real pseudospectra in numerical analysis (see [13]). The main point turns out 
to be a result, proved in Section 4, on the signature of a quadratic form in a 
complex vector space, which may be of interest in other contexts as well. In 
an earlier version [2] of this paper the proof was based on the fairly 
complicated normal forms for pairs of Hermitian and complex symmetric 
matrices proved in [4] (see also [1, 6-9]). Following a suggestion by Lars 
HSrmander, we now use only normal forms for generic pairs. To make the 
presentation self-contained we give a short complete derivation of them, 
obtained together with him. 

A flaw of the real perturbation values is that they are not continuous 
functions everywhere. The continuity properties are discussed in Section 5. 
Proposition 5.2 is joint work with Lars HSrmander. 

2. SINGULAR VALUES 

As a preliminary and to introduce notation we present the basic facts on 
singular values that lie behind the definition of real perturbation values and 
are needed for their study. This section can be ignored by readers familiar 
with the singular value decomposition and the rank approximation properties 
of singular values such as presented in e.g. [10]. 

Let H 1 and H z be two finite dimensional Hilbert spaces, and let 
T : H 1 ~ H 2 be a linear map, In this section it does not matter if the scalars 
are real or complex. The operator T * T  : H 1 -o H 1 is then nonnegative and 
self-adjoint with rank equal to the rank r of T. Let o-1 >/ o'2 >/ "'" >~ o', > 0 
be the positive eigenvalues of ( T ' T )  1/2, and let ~01 . . . . .  ~0 r be orthonormal 
eigenvectors with T*T~oj = o)2q~j. Then ~j = T~oj/~ are also orthonormal, 
and 

r 

re  = E (v, n,, 
1 

1 

(2.1) 
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Thus the singular values o)(T) of T are the same as those of T*. We define 
o) = 0 when j > r. The maximum minimum principle for T*T gives 

o ) (T)  = inf sup - - ,  (2.2) 
codimW<j O*~o~W II~llm 

o ) ( T )  = sup inf IIT~llu~ 
dimWNj O~tp~W I1~11~, (2.3) 

From either (2.2) or (2.3) it follows at once that for every j 

I o ) ( r 0  - 09(re)  [ ~ lira - T211 = o-~(r~ - r e ) ,  ra, r 2 E. .~(  HI, / - /2) -  

(2.4) 

More generally, it follows from (2.2) that 

o ) ( r l )  ~ %(T2)  + o~,(T 1 - T2) , 

We can rewrite (2.2) in the form 

if k + l = j  + 1. (2 .5)  

= inf liT- all, (2.2') o)(r) ra.kS<j 

for if W = KerS then codimW < j  and liT - SII is at least equal to the 
norm of the restriction to W, hence liT - Sll >/o)(T). There is equality when 
S = PT, where P is the orthogonal projection in H 2 on the space spanned by 
~1 . . . . .  ~j- l; for T - S is then obtained by dropping the first j - 1 terms in 
(2.1). Equivalently, 

o) (T)  = inf{llAll; A e 2 ( U , ,  Uz) ,  rank(T - A) < j} .  (2.2") 

This follows by just writing A = T - S in (2.2'). A similar formula follows 
from (2.3), 

o~(T) = (inf{l[A[I; A ~.~(H2, H,) ,dimKer(Idn~- AT) ~j})-l. (2.3') 
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If  o)(T) = 0, i.e., rank T < j ,  then rank(AT) < j ,  so dim Ker(Idn~ - AT) < j .  
The infimum in (2.3') should then be interpreted as + o:, and the reciprocal 
as 0. To prove (2.3') we observe that if the kernel W of S = Id,t ~ - AT has 
dimension >~j, then 

so o)(T) >/ I/[IA 11 by (2.3). On the other hand, if we define A ~b k = ~k/gk(T) ,  
k = 1 . . . . .  j ,  and A~ = 0 in the orthogonal space, then ~k - AT~ak = O, 
k = 1 . . . . .  j ,  and I1~,11 = 1/o)(T) ,  so rank(Idn~ - AT) ~< dim H 1 - j  and 
II~ll = 1/o)(T) ;  thus infllAII --- 1 /o ) (T)  as claimed in (2.3'). 

In (2.3') we may replace Idn, - AT by Idn~ - TA, for 

dim K e r ( I d n ~ -  S T ) =  dim K e r ( I d n ~ -  TS),  (2.6) 
T ~ . ~ ( H  t, H2), S ~.5¢(n 2, H1). 

In fact, both sides are equal to the dimension of the kernel of 

which projects injectively to H 1 and H 2 with the kernels in (2.6) as range. 
Another proof of (2.3') follows from the following elementary lemma, 

which will be useful for later reference. 

LEMMA 2.1. Given linear transformations T~:j H 0 ~ Hi, j = 1, 2, there 
exists a contraction A : H 1 ~ H~ such that AT 1 = T 2 i f  and only if  T~ T z <~ 
Z~Z 1. 

Proof. The necessity is obvious, for 

if such a A exists. Conversely, if IIT2~011~2 • IITl~0ll~x, ~ ~ H0, then T,q~ 
T~ ¢ is a contraction defined on the range of T r It remains a contraction if it 
is extended to vanish on the orthogonal complement. • 

I_~t us now see how the lemma gives (2.3'). That a positive number tr is 
no greater than the number defined in (2.3') means that dim Ker(IdHl - AT) 
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>~j for some A ~.Z~(H2, H1) with [[A[[ ~< 1 / t r ,  that is, for some such A and 
some S with rank >~j we have S -  ATS =O, thatis, trATS = gS. By the 
lemma this is equivalent to treS*S <~ S*T*TS, or equivalently IITCI.~ >I 
~rll~011Hl for all ~o in the range of S, that is, a space of dimension ~>j. By 
(2.3) this is equivalent to o3(T) >/o',  which proves (2.3'). 

For a historical survey of singular values and rank approximation theo- 
rems see [12]. 

3. THE REAL PERTURBATION VALUES 

We assume now that H 1 and H e are given as complexifications of real 
Hilbert spaces h t and he; thus Hj = hj ®R C. Then the set ..~Z'(H1, H e) of 
linear transformations from H a to H~ has a real linear subspace Sat(Ha, H e) 
consisting of extensions of maps in .L~(h a, he), and every T E.2~(H1, H e) has 
a unique decomposition T =  R e T + i l m T  with ReT  and I m T  

.(~'r(Ha, H2). The same holds for _~(H e, H a) and .~Q~r(H2, H1). By analogy 
with (2.3') and (2.2") we introduce 

~'k(T) = [inf{llAll; A ~..9~( H e, H1), dim Ker(Ids, - AT) >~ k}] -1, 

(3.1) 

~k(T) = inf(llA[[; A ~-9~r(H l, He), rank(T - A) < k}. (3.2) 

In case there is no A with the required property we interpret the infimum as 
+ ~, which makes ~'k(T) = 0 and ?k(T) = + ~. By (2.6) the condition on A 
in (3.1) may be replaced by dim Ker(IdH2- TA)>>, k, which shows that 
7k(T*) = rk(T); it is obvious that ?k(T*) = ?k(T). It is also obvious that 
7k(T) ~< ok(T) ~< ?k(T). 

The following theorem gives an approach to computing the real perturba- 
tion values defined by (3.1) and (3.2) . . . .  

THEOREM 3.1. With the preceding definitions we have 

inf o'2k (Ty), (3.3) T k ( T )  = 
y~(o, 1] 

= sup o- k_ I(L,), (3.4) 
y~ (o, 1] 
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where 

R e T  - T  I m T )  
7~-~ = ~/-l Im T Re T : hi ~ hi --* h2 ~ h2" 

The first step in the proof is a variant of Lemma 2.1: 

LEMMA 3.2. Let Hi, j = 0, 1, 2, be complexifications of real finite dimen- 
sional Hilbert spaces hj Given linear transformations T. • H o --) H j = 1 2 

• 3 "  3 '  ' ' 

there exists a contraction A ~.~fr(H l, H z) such that AT 1 = T~ if  and only if, 
with block matrix notation, 

(ReT2 ImT2)*(ReT2  I m T e ) < ( R e T 1  ImT1)*(ReT~ ImT1) ,  

(3.5) 

or equivalently 

Proof. Write the equation ATj = T2asA(Re T l hn T l) = (Re T 2 hn T2); 
here (Re Tj Im T,) is a map from h 0 • h 0 to hi. By Lemma 2.1 (for spaces 
over the reals) we conclude that (3.5) is a necessary and sufficient condition 
for the existence of a contraction A. Since 

Id.0 IdH0 ) 
(Tj T j ) = ( R e T j  I m T j ) i l d n 0  - i l d n 0  ' 

the extension of (3.5) to the complexification is equivalent to (3.5'). • 

Proof of Theorem 3.1. This proof relies on Theorem 4.1, which is stated 
and proved in Section 4. We shall first prove (3.3) and indicate afterwards the 
modifications required to prove (3.4)• l_~t 0 < r ~< rk(T). By (3.1) this means 
that one can find S ~-W(H 1, H 1) of rank >~ k and A E.~r(H2, H l) with 
IIAII -< r - 1  such that (Idn~ - A T ) S  = 0, that is, rATS = rS. By Lemma 3.2 
this means precisely that 
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The product on the right-hand side is the operator 

S*T*TS S*T*i?? 

i. 
-- 
S*T*TS 

.H1@H1-,H1@H1, 

and replacing T by r gives the operator in the left-hand side. If we set 

A, = T*T - r2 Id+ B, = T*T - 7’ Id,,, (3.7) 

then (3.6) can be written 

or 

(3.6’) 

(3.6”) 

Thus 0 < T < TV is equivalent to the existence of S ELZ(H,, H,) of rank 
> k such that (3.6”) is valid. By the equivalence of conditions (i) and (iv) in 

Theorem 4.1, to be proved later, we therefore conclude that 

O<r,<rk(T) * 

has at least 2k nonnegative eigenvalues if 1 p 1 < 1. (3.8) 

Here it is not really important to allow complex values for P, for multiplica- 
tion of p by a complex number of absolute value I gives a unitarily 
equivalent operator. It is therefore enough to take /3 E [ - IO]. 

Next we prove that the condition in (3.8) is equivalent to 

a24 >r, ( 1 O<y<l. (3.9) 
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First we observe that 

i7 Idn~ i7 Ida,/ 
O~= [ Ida: -Ida2 }' 

1 (Ida,liT Ida I ) 
E~ '= ~ Idn,/i7 -Idtti • 

Equation (3.9) states that f*fv - r2 Idn,®,~ has at least 2k positive eigen- 
values. After right and left multiplication by the inverse of E, and its adjoint 
this means that 

(0 l ,  -, 

has at least 2k nonnegative eigenvalues. Here 

( (7  ~+ 1) Ida~ (7 2 - 1 )  Id.~] 
D'D,= 

(T 2 -  1) Ida, (7 2+ 1) Ida, ) '  

(E'E'~:)-~ = ( (T 2 + 1)Idn~ 

(7 ~ - 1) Id., 
(T 2 - 1) Ida, / 

(7 z+  1) Ida, J" 

If we divide by 7 z+  1 and put /3=(7  2 -  1)/(7 z+  1), the operator 
becomes 

( o) (Id  
0 T* ] (/3 Idn~ Idn~ ] l 0 ~ Ida I Ida, 

(3.10) 

which proves the equivalence of (3.8) and (3.9) and completes the proof of 
(3.3), apart from the proof of Theorem 4.1. 
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To prove (3.4) we first recall that by the definition of rr k we have 
r/> ~k(T) if and only if rank(T - A) < k for some A ~SVr(Hx, Hz) with 
I1~11 ~< 7. The rank condition means that there is some S ~Sa(HI,  H 1) with 
r anks  > / d i m H  1 - ( k -  1) such that ( T -  A)S = 0 ,  that is, (A/~')S = 
TS/a'. By Lemma 3.2 this is equivalent to 

r2(S S)*(S S) >1 (TS T---S)*(TS TS ). (3.11) 

The calculations that proved the equivalence of (3.6) and (3.6") show that 
(3.11) is equivalent to 

0 S] 1B, A, 
(3.12) 

Using Theorem 4.1 as before, we conclude that 

has at least 2[dim H 1 - (k - 1)1 

nonpositive eigenvalues if I/31 ~< 1. (3.13) 

The proof of the equivalence of (3.8) and (3.9) shows that (3.13) means 
precisely that 7~*T~ - ~.2 idn1,~n, has at least 2dim H L -  [(2k - 1) - 1] 
nonpositive eigenvalues, which by (2.2) means that o'2k _ l(Tr) ~< ~'. The proof 
of (3.4) and Theorem 3.1 is now complete apart from the proof of 
Theorem 4.1. • 

The proof of (3.3) also gives another characterization of rk(T), for we saw 
that • ~< "rk(T) was equivalent to (3.6"), which, by Theorem 4.1 (iii), is 
equivalent to 

(A,~q~,~o)n +Re(B,~,q~)nl>~O, ~o~W, 

where W is a complex subspace of H 1, of dimension >/k. Explicitly this 
means that 

T 2 ( T ~ , T ~ ) H 2 - 4 - R e < T ~ , T ~ > H 2 - - ~ ' 2 ( ~ , ~ ) H 1  - Rc <~, ~>HI ~ 0, 

~0EW.  
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Since (~p, ~P)n, + Re(~p, ~P)n, = 2[IRe ~ll~ and since there is an analogous 
identity in H 2, this means that I[Re(T~p)][~ 2 >/ z2l[Re ~P]I~x- Hence 

IIRe(T,P) I1.  
zk(T) = sup inf (3.1') 

dimW>~k ~p~W, Re~p~0 IlRe ~llzl ' 

where W is a complex subspace of H 1. This is a close analogue of (2.3). 
We get a similar conclusion from the proof of (3.4), for it shows that 

r>~ ÷k(T) is equivalent to IlRe(T~p)][~ 2 ~< T2IIRe ~PI[~ for every ~p in a 
complex subspace W of H with codim W < k. Hence we obtain an analogue 
of (2.2), 

II Re (T¢) I[H~ 
~k(T) = inf sup , (3.2') 

codimW<k q~EW, Re~,~0 IlRe ~IIHI 

where W is a complex subspace of H 1. 

4. REAL QUADRATIC FORMS IN A COMPLEX VECTOR SPACE 

Let H be a finite dimensional complex vector space, and let Q be a real 
quadratic form in the underlying real vector space. There is a unique 
decomposition Q = Q0 + Ql where Qj are quadratic forms with Qj(iz) = 
( -  1)JQj(z); it is given by 

l [Q(  - 1  Q(iz)], z E H ,  j = 0 , 1 .  )J 

The form Q0 can be polarized to a Hermitian symmetric sesquilinear form 
(z, w) ~ Q0(z, w) which is linear in z and antilinear in w, Q0(z, z) = Q0(z), 
and Ql(z)= Re q(z) where q is a quadratic form with respect to the 
complex structure in H, 

1 ~ Q(sJz) 
q( z) = Ql(Z) - iQl( ez ) = ~ o 82J = elr i /4"  

We can polarize q to a symmetric bilinear form (z, w) ~ q(z, w) such that 
q(z ,  z) = q(z).  
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If we identify H with the complexification of a real Hilbert space h, for 
example by introducing complex coordinates z 1 . . . . .  z ,  identifying H with 
C ", then 

Qo(z ,w)  = ( A z , w ) ,  Re q ( z , w )  = R e ( B z , ~ )  = Re<Bz,w>, 

where A* = A and B r = B. This notation is essential in conditions (i), (ii), 
(iv), (v) of the following theorem, while the others are expressed only in 
terms of Q0('," ) and q(.,. ). The following theorem is a generalization of 
Theorem 2.1 in [5]. 

THEOREM 4.1. The following conditions are equivalent: 

(i) There exists a map S ~ .~(  H, H) of rank >1 k such that 

(~  S]0/*(A~B ~_)(S0 ~)  >~0. (4.1) 

(ii) There exists a complex linear subspace W of H of dimension >1 k 
such that 

(4.2) 

or equivalently 

(A~, ~) + (A~,, ~,) + 2 R e < ~ ,  ¢> ,> 0, ~,~,EW. (4.3) 

(iii) There exists a complex linear subspace W of H of dimension k such 
that 

(A~o, q~) + Re<Bop, ~o) >~ 0, q~ 6 W, (4.4) 

or equivalently 

I<B~o, ~o>1 ~< (Aq~, ~o), 

(iv) The Hermitian operator 

133 

~p ~ W. (4.5) 
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in H • H has at least 2k nonnegative eigenvalues for every /3 ~ C with 
1/31 < 1, that is, the Hermitian form 

(aq~,q~) + ~ ( B ~ b , q ~ ) + / 3 ( B ~ , ~ )  + ( A O , ~ b ) ,  q ~ , O ~ H ,  (4.6) 

has at least 2k nonnegative eigenvalues when 1/31 ~< 1. 
(v) The form (4.6) has at least 2k nonnegative eigenvalues when /3 

[0,1]. 
(vi) The quadratic form 

(Aq~, ~o) + (AqJ,  ~b) + 2/3 Re(Bq~, q,),  q~, ~ H ,  (4.7) 

in H • H considered as a 
eigenvalues when /3 ~ [0, 1]. 

(vii) The quadratic form 

real vector space has at least 4k nonnegative 

(A~o, q~) + /3 Re(B~p, q~), q~ ~ H, (4.8) 

in H considered as a real vector space has at least 2k nonnegative eigenvalues 
/ f /3  ~ [0, 1]. 

Proof. Let us first note a number  of  fairly trivial implications: 

(i) ~ (ii) *~ (iii) =~ (iv) "~' (v) ~ (vi),  (iii) =~ (vii). 

Condition (ii) is just condition (i) with W equal to the range of S, and (4.3) 
implies (4.4) when we take q~ = ~h. If  we replace ~p by e~°q~ in (4.4), 0 ~ R, 
then (4.5) follows. From (4.5) we obtain I(B(q~ + q,), ~p + 0 ) l  ~< (A(~0 + 
~O), q~ _ 0) ,  q~, ~h ~ W, which implies 41(Bq~, qJ}[ ~< 2[ A(~p, q~) + A(~0, ~h)] 
if q~, ~b ~ W, and proves (4.3) and (ii). From (ii) it follows that the form (4.6) 
with /3 = 1 is nonnegative when ~p ~ W and d~ ~ W. Replacing qJ by /3qt, 
we conclude that the form (4.6) is also nonnegative for such q~, ~b when 
1/31 = 1, and hence by convexity when 1/31 < 1, which proves (iv). That (iv) 
implies (v) is obvious, and the converse follows if qJ is replaced by ei°~h, 
0 ~ R. As a quadratic form in H • H as a real vector space, the form (4.6) 
then has /> 4k nonnegative eigenvalues, which proves (vi). In the same way 
it is obvious that (iii) implies (vii). 

The essential contents of  the theorem are therefore the implications 

(vi) ~ (ii) and (vii) ~ (ii).  (4.9)  
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When proving them we may strengthen the hypotheses in (vi) and (vii) to 
assuming that there are 4k and 2k strictly positive eigenvalues, respectively; 
for this can be achieved by  adding a small multiple of the identity to A. Then 
the hypotheses remain valid after a small perturbation of A and B, so it will 
be sufficient" to study the generic case (see I_emma 4.2); for the set of all 
A, B for which (ii) holds is closed by' the compactness of the set of subspaces 
of fixed dimension. We shall postpone the end of the proof of Theorem 4.1 
until we have derived normal forms in the generic situation. • 

In terms of complex coordinates (z 1 . . . . .  z ,)  in H we can write 

n 

Q0(z)  = E ajkF~jZk, a jk=ak j ;  
j,k=l 

gl 

Ql(z )  = Re ~] bjkzjz k, b j k=bk j .  
j,k=l 

Passing to new coordinates z '  with zj Z~l jk zk, we get for the correspond- 
ing matrices 

A' = T ' A T ,  B' = TtBT,  

where T t is the transpose of T and T* = ~t. If  B is invertible it follows that 

C' = T - x C T ,  where C = B-1A, C'  = B ' - IA ' .  (4.10) 

This implies that 

C ' C '  =: T - I C C T ,  (4.11) 

which means that CC is the matrix of a complex linear transformation in H 
which is independent of the choice of coordinates. 

LEMMA 4.2. For a dense set of  real quadratic forms Q in H, the matrices 
A and B are invertible and all eigenvalues of  CC are simple. 

Proof. The matrices A and B are invertible if det A det B ~= 0, which is 
true on a dense set. The entries of CC are polynomials in the entries of the 
real and complex parts of B - l  and A, so the coefficients of p(A) = det(A Id 
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- C-C) = det()t  Id  - C- 'C ' )  are polynomials in them,  and so is the discrimi- 
nant of  p(A). The  eigenvalues are simple if the discriminant is nonzero.  Now 
either  the discriminant can be  made  nonzero by small per turbat ions in A and 
B, keeping A* = A and B t = B, or else it is identically zero for all such A 
and B. However ,  it does not vanish identically, for if A and B are diagonal 
then  det(A Id  - C--C) = I-I(A - lajj/bjjl2), so the diseriminant is nonzero if 
la#/bjj l  ~ [akk/bkk] when j ~ k. • 

The  following l e m m a  shows a normal  form for a generic real quadratic 
form. The  generic case is sufficient for our  presentation,  and a p roof  of  
L e m m a  4.3 is included to make the presentat ion self-contained. For  a 
complete  t rea tment  of  the more  difficult general  case see [4, 6-9] .  See also 
Chapte r  4.6 in [10]. 

LEMMA 4.3. I f  A and B are invertible and the eigenvalues o f  CC are 
simple, then the real eigenvalues are positive, the others occur in complex 
conjugate pairs, and the coordinates can be chosen so that 

= #) 
1 

r + s  

-~- E [t~jZ2j-r-lZ2j--r ~- ~jT~2j-r~2j--r--i 
j = r + l  

+ R e ( z 2 ~ _ r _  1 + Z~j_r) ] . (4.12) 

Here A~., j = 1 . . . .  , r, are the positive eigenvalues o f  CC, and )~, j = r + 
1 . . . . .  r + s, are the eigenvalues o f  CC with  positive imaginary part. The f i rs t  
(second)  sum is to be omit ted i f  r = 0 ( i f  s = 0). 

Proof. Let  z 4= 0 be an eigenvector  of  CC wi___~ eigenvalue /~; thus 
CCz = tzz.  Then  C C ( C z )  = txCz; hence CCCz  = ~Cz,  so Cz is an eigenvec- 
tor  with eigenvalue ~.  

(i) I f / z  is real, then Cz must  be  a multiple of  z; thus Cz = h z  for some 
)t ~ C, and h C z =  txz, which implies /x = [~12 > 0. Since Az = )tBz, we 
have 

Q o ( z )  = ( Az ,  z )  = h ( Bz,  z ) .  (4.13) 
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(ii) If Im/x  ¢ 0, then Cz is an eigenvector belonging to the eigenvalue 
~. l~ t  A 2 = /x ,  and set A~ = Cz. Then also Cw = Az; thus 

Az = A B w  and Aw = A B z .  (4.14) 

_ _  m 

(iii) Let CCzj = 1.17 zj and CCz k = I~ k z k. Then 

I~j( Bzj, z k) = ( A---B-1Azj, z k) = ( zj, A--B-1Azk ) 

= tzk(zj ,  Bzk)  = tzk( Bz~, zk >, 

which proves that ( Bzj, z k) = 0 when /xj 4:/~k. Similarly, 

I.~j( Azj,  zk) = ( AB-1A-B-1Azj,  Zk) = (z j ,  AB-1A-B-1Azk) = ~Zk( AZj, Zk), 

which proves that (Azj ,  z k) = 0 when/z j  # ~k. Thus the eigenvectors corre- 
sponding to real eigenvalues and the two dimensional spaces spanned by 
eigenvectors corresponding to complex conjugate eigenvalues of CC are 
mutually orthogonal with respect to the sesquilinear scalar product (Az, w) 
= (z,  Aw)  and with respect to the bilinear scalar product (Bz ,  w ) =  
( z, Bw ). It is therefore sufficient to examine the structure of these two kinds 
of spaces. 

In case (i) above it follows now from the nondegeneracy of B that 
( Bz, z )  # O. Replacing z by a mult ipleof z, we can then attain ( Bz, z )  = 1, 
which by (4.13) implies that (Az ,  z) = A. Hence A is real with A 2 = /x. 

In case (ii) above we have (z ,  Bw) = 0; hence (z ,  Az)  = 0 and ( A w ,  w)  
= 0. Moreover, 

A(Bz, z )  = ( z, A w )  = ( A z , w )  = A ( B w , w )  . 

Since B is nondegenerate, we conclude that (Bz,  z > # O, and we can 
normalize so that (Bz, z )  = 1, whence (Bw, w)  = 1, which implies (Az ,  w)  
= A. In the basis w, z the matrices of the A and B therefore take the form 

1 0) (o 
0 1 ' 

which completes the proof of the lemma. • 
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LEMMA 4.4. I f  Im A > 0, then the quadratic form 

a z , ~  + ~ z ~ l  + R e [ / 3 ( z ~  + ~ ) ] ,  z ~ C ~ -- R' ,  

is positive definite in the subspace where z2 = iz~ and negative definite in the 
subspace where z 2 = - i z  1. Thus the signature is 2, 2 for  arbitrary /3 ~ C. 

The proof is obvious. 

End of  proof of  Theorem 4.1. What remains is to prove the implications 
(4.9) when B is the unit matrix and with Im hj > 0 f o r j  = r + 1 . . . . .  r + s: 

r r + s  

( a z ,  z)  = Eaj l z j l  2 + E 
1 j = r + l  

(Ajz2j_r_152y_ r + -Ajz22_~52j_r_l). (4.15) 

In view of l_~mma 4.4, hypothesis (vi) [or (vii)] remains valid if we restrict to 
the complex linear subspace where zr+2j = iZr+2j_ 1 for j = 1 . . . . .  s, and 
since the second sum in (4.15) is positive there, we need to prove the 
theorem only when 

F r 

(Az,  z) = EX)zjl 2, <Bz, z> = ~]zj ~, (4.16) 
1 1 

where A 1 /> A 2 /> ".. >/ A~. We shall now prove the theorem in this case. 
Explicitly the quadratic form (4.7) in H • H, as a real vector space, is 

{Aj[(Re zj) 2 + (Im zj)2+ (Re wj)2 + (Im w/) 2] 
j = l  

+2 /3 (Re  zj Re wj - I m  zj Im wj)},  

where each term has the eigenvalues A~+/3  taken twice. The quadratic form 
(4.8) in H, as a real vector space, can be  written 

zj) 2 + (Im +  [(Re 
j = l  
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where each term has the eigenvalues 2,j + /3 .  Both conditions (vi) and (vii) 
therefore mean that at least 2 k of the eigenvalues 2,j _ / 3  are nonnegative 
for every/3 ~ [0, 1]. 

To make this condition explicit we let 2,1 . . . . .  A t be the eigenvalues of A 
that are greater or equal to 1; for them we have hj + /3 >t 0 when /3 ~ [0, 1], 
which accounts for 21 nonnegative eigenvalues. Eigenvalues 2, ~ [0, 1) will 
always contribute an eigenvalue 2, -4-/3 >~ 0, but the eigenvalue 2, - / 3  be- 
comes negative when /3 > 2,. On tlhe other hand, eigenvalues 2, ~ [ - 1 ,  0) 
can contribute a nonnegative eigenvalue only when /3 >~ -2, .  When /3 = 0 
we must have 2,1 . . . . .  At >/0. If  k > l, then disappearing eigenvalues 
ak+ 1- v - /3, t, = 1 . . . . .  k - l, must be compensated by eigenvalues 2,k+ v + 
/3 that appear at least as early, that is, 

2,k+l-~/> -2,k+~, u = 1 . . . . .  k - I. (4.17) 

(Thus 2k - l ~< r.) Since 

2,j(Izjl 2 + Iwjl 2) + 2Re  zjwj >1 0 if 2,j >/ 1, 

we need to examine only the case of pairs of eigenvalues with nonnegative 
sum as in (4.17). Simplifying notation, this means that we must examine 

(Az,  z) = 2,11zll 2 + 2,21z,~12, <Bz ,w> = ZlWl + z2w2 

where 2,1 + 2,2 >~ 0. The condition (4.3) becomes 

hl(Izl[ 2 + [wll 2) + 2,2(1z212 + [w2l 2) + 2Re(ZlW l + z 2 w z )  >i O, 

z , w E W ,  

where W is a complex line in C z. This is true if W = { ( Z l ,  Z 2 ) ~ C 2 ;  
z I = iz2}, since 2,1 + 2,2/> 0. The proof of Theorem 4.1 is now complete. • 

5. CONTINUITY PROPERTIES 

By (2.4) the singular values ork(T) are Lipschitz continuous functions of 
T, but the real perturbation values are not. That is caused by the fact that in 
(3.3) and (3.4) the infimum and supremum are taken over a noncompact set 
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of parameter values T, so it is only clear that ~'k is upper semieontinuous and 
that ~k is lower semicontinuous. Although it follows at once from (2.4) that 

[~-k(Z) - ~-k(Z + E)[ ~< IIEII if E E.~cPr(H1, H2), (5.1) 

[~k(Z) - ~ k ( Z + E ) l  ~<IIEII if E ~S¢~(HI,  H.z), (5.2) 

the continuity properties with respect to the imaginary part of T are quite 
delicate. [When ~k(T)= +o~, then (5.2) is only supposed to mean that 
~ (T  + E ) =  + ~  too.] We will discuss only the continuity properties of 
r~(T). 

We first study the limit when y ~ 0 of the singular values in (3.3) and 
(3.4). The following proposition is a special case of Lemma 5 in [11]. To make 
the presentation self-contained, we include a proof. 

PROPOSITION 5.1. Let 

T1 - Y T 2 )  ~ .Z , e (h l~h l ,  h 2 ~ h 2  ) 
f~ = y -  aT. 2 T1 

as in Theorem 3.1. Then it follows when y --* 0 that 

{~  /f j ~ rank T 2, (5.3) 
o)( f , )  ~ Ilfll /f j = rankT 2 + 1. 

Here f = TllKorr, * erl,  where P is the orthogonal projection h e -* Ker T~, 
so ( PT1)* = T~ P has the same singular values as the restriction T* [Ker fT. 

Proof. When j ~< rank T 2 the result follows from the fact that o)(3'fr) 
o)(T 2) > 0 as , / ~  0. Assume therefore that rankT 2 = j  - 1. Choose a 

linear map G: h I ~ (Ker T2) ± such that T2G~ + Tl~0 = PTl~0 for all ~0 
h 1. The subspaces W = Ker T 2 • h I and {q~ = (q~l + "/Gq~2, q~2); (qh, q~2) ~ 
W} both have codimension j - 1. Hence we get from (2.2) 

. < s ° p  

+ - PT   )II 
sup 

II(Z  l, eZ  )II 
sup = 117~11 w h e n  y ~ 0. 
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If  Ker T, z 4: ~i, then we can find q~t ~ KerT~ such that ]]T~¢ll] = IlTtlKerT~[]  
and 11~01[[ = 1. The  subspace V = {q~0 + cq~; q~0 ~ (KerTz )  ±} of  h~ has 
dimension j .  Hence  we get from (2.3) 

o)(/~:,) >t inf T~,(qo,0) >~ inf  II(r~(~o + cq,1),~'-~r~q~o)ll 
• ~ o ~ v ;  i1~11 = 1 ~ v ;  Iholl = 1 

~> inf max(cllTt~o~ll - lIT, It I1~oo!1, T-~o)_ t(Tz)ll~ooll). 
~ v ;  II~ll= 1 

Since c = (1 - Ilq~0112) a/z >/1 - II~p011, we have 

inf  max(IIT~lK~rT.~ll - 211T~It IIq~oll, T-~O)_l(T2)llqOo]l) 

>~ ~ ]]TIIKe~T2[] when T ~ O. 
1 + 211Txll~//o)_~C/~2) 

This bound if obvious if Ker T 2 = ~ ,  and by applying it to T* we get 
lim~-~ 0 o)(T r )  >~ IITII. II 

PROPOSITION 5.2. z k ( T )  is c o n t i n u o u s  at  T = T 1 + iT, 2 w h e n  rank T 2 >/ 
2 k  - 1. 

Proo f .  Let  S = T + E  where  r a n k T  2 > / 2 k -  1 and E ~ - ~ ( H ~ , H e ) .  
Since T ~ rk (T) i s  upper  semicontinuous, it is sufficient to find a good lower 
estimate of  cr2k(S ~) when E is small. We  immediately get o'~k(S ~) >/o '2k(f  r )  
- II/~11. We have Ih,/~ll ~< IIEII for 0 < Y ~< 1, for if ~p, ~O ~ h 1 and II~pll 2 + 
II0]! z = 1 then 

~ ( ~ ,  q,)l  ~ = I 1 ~ o  - ~ , 2 ~ q ,  II 2 + 11~2~ + -/v,l~Oll 2 

II~i l~(t l¢l l  ~ + Ih,¢ll ~) ~ liar12. 
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We therefore have 

3' 

If  o'2k(T 2) > 0, then o'zk(S 2) > 0 if IIEII < o'zk(Z2). Hence  (r2k(S ~) ---) 
when 3' ~ 0. The infimum ~-~(T + E)  is therefore  attained for some 3'0 ~ 
(0, 1]. We have To~O'2~(Sz) ~< (rzt((S~0) = r~(T + E), since 3"olS~ is obtained 
from Sv0 by a restriction followed by a projection in the range. This gives 

• + E )  = - 
IIEtI~k(T + E) 

,~2~(s~) 

which after rearranging and using o'2k(S z) >~ (rzk(T 2) - IIEII > 0 gives 

IIEII~(T) 

This proves continuity if rank T 2 >~ 2 k. 
Now assume that rank T 2 = 2k - 1. It is necessary to improve the lower 

bound (5.4) for small Y > 0. Put a = o'2k(Sr). From (2.2) there  exists a 
subspace W with codim W = 2k - 1 such that 

IlSlq~ 1 - ~/$2~2112 + IlT-1a2q~l -4- S1~2112 ~< a211~ll ~, 

= ( ~ , ~ 2 )  ~ w .  (5.5) 

This gives 

IIS2~xll ~< ~(118211 + a)ll~tl, ~ ~ W, 

and hence 

IIT2~,II ~< [~(11S211 + a) + tlEII]ll~ll, ~ ~ W. 

Now let ~1 = ~ 0  + ~P11, where  q~ll is the component  of ~1 orthogonal to 
Ker T 2. Since (r2k_ l(T2) is the smallest nonzero singular value of  T 2, we have 

I1~,11 ~< ~< ~11~11, ~ ~ w ,  (5.6) 
~2k-,(T2) 
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where 8 = [~/(llS211 + a) + [[Ell]/cr2k_l(T2). When t~ < 1 the map 

W ~ p ~  ( ¢ 1 0 , ~ z )  ~ K e r T  2 ~ h  1 

is invertible, since the dimensions of W and Ker T~ • h I are equal and since 

which gives 

I1(  0,  2)11 
II~ll-<< 1 - 8 ( 5 . 7 )  

I f  we take q2 = 0 then (5.5) gives 

[[Zl~lt[ < ( a  + IIEII)ll~ll, ~ ~ W, 

and with (5.6) and (5.7) we therefi~re have 

(a  + [IEll + ~llT~ll)ll~x011 
IITI~Pl°II < 1 - 8 , ~Pl0 ~ Ker T 2. 

This gives a lower bound of a in terms of IITIlKerT~II- Similar calculations for 

T* give the same estimate with [[T~' [KerT~ II. With f defined as in Proposition 
5.1 we therefore get 

(1 - ~ ) l l f l l  < a + IIEII + ~[[TII[. 

We conclude that 

a >~ (1 - ~)IITII- IIEII- ~llZ~tl, 

with ~ = [~(llsztl + IITII) + ]]Ell]/o'2k_l(T2). This bound is obvious when 
/> 1 or a >/IITII and has been proved in the other case. With the bound 

(5.4) we obtain 

~> inf o ' 2 k ( f v ) -  supmin(llEll/Y, ~([]T,]] + Ill[l) + HEll). 
y ~  (0, 1] 7 
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The minimum can be bounded from above with 

c( r, E )  = 

which gives 

211Eli(lIT2 + Eli + IlZll)llZlll l ~/2 "211Till IIEII 
~r2k-,(T2) ] + ~r2k_,(T2) 

+ IIEIJ, 

zk(T + E) >~ rk(T ) -- c(T, E),  (5.s) 

where c(T, E)---, 0 when E---) 0. This proves lower semicontinuity and 
hence continuity. • 

REMARK 1. Note that lower estimates of the form (5.8) can be trans- 
formed into upper estimates of the form 

rk(T + E) <~ "rk(T ) + c(T + E, - E ) .  

It is easy to see that the proof gives Lipschitz continuity when rank T 2 ~> 2k. 

REMARK 2. It is easy to check that with 

T =  ( ildzk-20 l + i e 0  ) 

we have ~'k(T) = 1 if e = 0 and rk(T) = 0 if e # 0. This gives an example of 
discontinuity with rank T z = 2k - 2. 

6. CONCLUDING REMARKS 

In numerical analysis it is of interest to compute so-called pseudospectra 
(also called spectral value sets); see [13]. For a given e > 0 the e-pseudospec- 
trum of a matrix A ~ R n × n is a region of the complex plane defined as 

s p , ( A ) =  O 
E E C  n×n 

IIEII<~ 
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where ~r(A + E) denotes the spectrum of A + E. From (2.3') and (2.2") it 
follows that if complex perturbations E are allowed, then 

sp . (A)  = {z; o ' ~ ( ( z I d - A ) - ' )  > e 1} = {z; g , ( z I d - A )  < e}. 

In some situations it might however be natural to consider only real perturba- 
tions E. It follows now from the definitions that the real pseudospectrum 

s p m , ( A  ) = [,.J o-(A + E) 
E~R-X~, 
IIEIl<~ 

is given by 

spn., (A)  = {z; %((z  Id - A) -1) > ,~-1} = {z; Tn(Z [d - A)  < e}. 

The real stability radius of a stable matrix A is given by 

rR(A) = min{llEII, g c R"×"; A + E unstable}, 

where "stable" means that all eigenvalues are in a prescribed open region Cg 
of the complex plane. The real stability radius is given by the largest e such 
that spR ' . (A)  is contained in Cg. It can be computed as 

rR(A) = inf Z r n ( z l d - A )  
z~! aCg 

where dCg denotes the boundary of the stability region. 
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