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ABSTRACT

A sequence of real numbers connected to a complex matrix is introduced. It is
shown how these real perturbation values can be computed and that they have several
properties similar to the singular values. The so-called real pseudospectra and real
stability radii can be computed using the real perturbation values. The main result
concerns the signature of real quadratic forms in complex vector spaces. © 1998
Elsevier Science Inc.

1. INTRODUCTION

For a linear transformation between the complexifications of two finite
dimensional Euclidean spaces we introduce in Section 3 two sequences of
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numbers, which we call real perturbation values, by modifying the usual
definition of singular values in a way that takes the real structure into
account. These definitions were motivated by the so-called real stability
radius problem in control theory (see [3] and [11]) and in the computation of
real pseudospectra in numerical analysis (see [13]). The main point turns out
to be a result, proved in Section 4, on the signature of a quadratic form in a
complex vector space, which may be of interest in other contexts as well. In
an earlier version [2] of this paper the proof was based on the fairly
complicated normal forms for pairs of Hermitian and complex symmetric
matrices proved in [4] (see also [1, 6-9]). Following a suggestion by Lars
Hoérmander, we now use only normal forms for generic pairs. To make the
presentation self-contained we give a short complete derivation of them,
obtained together with him.

A flaw of the real perturbation values is that they are not continuous
functions everywhere. The continuity properties are discussed in Section 5.
Proposition 5.2 is joint work with Lars Hormander.

2. SINGULAR VALUES

As a preliminary and to introduce notation we present the basic facts on
singular values that lie behind the definition of real perturbation values and
are needed for their study. This section can be ignored by readers familiar
with the singular value decomposition and the rank approximation properties
of singular values such as presented in e.g. [10].

Let H, and H, be two finite dimensional Hilbert spaces, and let
T: H, - H, be a linear map. In this section it does not matter if the scalars
are real or complex. The operator T*T : H| — H, is then nonnegative and
self-adjoint with rank equal to the rank r of T. Let oy > 0, > - 2 0, >0
be the positive eigenvalues of (T*T)?, and let ¢, ..., ¢, be orthonormal
eigenvectors with T*Te, = (Tj2¢j. Then ¢, = Te;/0; are also orthonormal,
and

.
Te=Yo(e.¢)yt¥, ¢<€H,
1

(2.1)
Ty =Y o(¥.¥)y, ¢, VYEH,.
1
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Thus the singular values o,(T) of T are the same as those of T*. We define

o; = 0 when j > r. The maximum minimum principle for T*T gives

ITell
o(T) = inf  sup T—H—z (2.2)
codimW<j g% gew |l

ITell
o(T)= sup inf — (2.3)
dmws; 0*esW llolly,

From either (2.2) or (2.3) it follows at once that for every j

|0}(T1) - %(Tz)l <|IT) = Toll = o(T, — Ty), T,,T, €e¥(H,, H,).
(2.4)

More generally, it follows from (2.2) that
o(T,) < oy (T,) + o(T, — Ty), if k+1=j+1. (2.5)
We can rewrite (2.2) in the form

(T) = inf |IT—S 2.2
a(T) ranll?S<jH I, (2:2%)

for if W = Ker S then codimW <j and ||T — S|l is at least equal to the
norm of the restriction to W, hence [T — §|| > 03(T). There is equality when
S = PT, where P is the orthogonal projection in H, on the space spanned by
Y Py for T — S is then obtained by dropping the first j — 1 terms in
(2.1). Equivalently,

a(T) = inf{JlAll; A e2(H,, H,), rank(T — A) <j}. (2.2")

J

This follows by just writing A = T — S in (2.2'). A similar formula follows
from (2.3),

o(T) = (inf{lAl; A € £(H,, H,), dim Ker(Id,, — AT) >j})_l. (2.3)
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If 0(T) = 0,1e. rank T < j, then rank(AT) < j, so dim Ker(Id;;, — AT) <.
The infimum in (2.3") should then be interpreted as +, and the reciprocal
as 0. To prove (2.3') we observe that if the kernel W of § = Id;, ~ AT has
dimension > j, then

lelln, = 1ATellk, < ATl @€ W,

S0 03(T) 1/1lAll by (2.3). On the other hand, if we define Ay, = ¢, /0,(T),
k=1,...,j, and Ay =0 in the orthogonal space, then ¢, — ATg, = 0,
k=1,. ..,J, and [|All = 1/0(T), so rank(ldy; — AT) < dim H, —j and
HAll = 1/0(T); thus infl|All = 1/0(T) as clalmed in (2.3").

In (2.3 ) we may replace Id; — AT by Idy,, — TA, for

dim Ker(Id,, — ST) = dim Ker(1d,,, — TS),

(2.6)
Te¥(H,, H,), S€Z(H, H).

In fact, both sides are equal to the dimension of the kernel of
HleH25(‘P>"ll) - (‘P+S¢’¢,+T‘P) eHl@Hz’

which projects injectively to H, and H, with the kemnels in (2.6) as range.
Another proof of (2.3") follows from the following elementary lemma,
which will be useful for later reference.

LEmMA 2.1.  Given linear transformations T;: H, = H,, j = 1,2, there
exists a contraction A: H, — H, such that AT, = T, if and only if Ty T, <
THT,.

Proof. The necessity is obvious, for

IT, ollu, = AT, @i, < IT,@llx,, ¢ € Hy,

if such a A exists. Conversely, if |IT, ¢llu, < IT,¢lln,, ¢ € Hy, then T, ¢ —
T, ¢ is a contraction defined on the range of T). It remains a contraction if it
is extended to vanish on the orthogonal complement. =

Let us now see how the lemma gives (2.3"). That a positive number o is
no greater than the number defined in (2.3’) means that dim Ker(Id,; — AT)
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> j for some A € X(H,, H,) with ||All < 1 /0, that is, for some such A and
some S with rank > j we have S — ATS = 0, that is, cATS = ¢S. By the
lemma this is equivalent to ?S*S < S*T*TS, or equivalently |Tolly, >
ollelly, for all ¢ in the range of S, that is, a space of dimension > j. By
(2.3) this is equivalent to 0}(T) > o, which proves (2.3").

For a historical survey of singular values and rank approximation theo-
rems see [12].

3. THE REAL PERTURBATION VALUES

We assume now that H, and H, are given as complexifications of real
Hilbert spaces h, and hy; thus H; = h; ® C. Then the set #(H,, H,) of
linear transformations from H, to H, has a real linear subspace Z"(H,, H,)
consisting of extensions of maps in .#(h,, h,), and every T € ¥(H,, H,) has
a unique decomposition T =ReT +iImT with ReT and ImT €
Z"(H,, H,). The same holds for #(H,, H,) and .#"(H,, H,). By analogy
with (2.3’) and (2.2") we introduce

7(T) = [imf{llAl; A €27 (H,. H)), dim Ker(1d,, — AT) > k)],
(3.0)
7.(T) = inf{/|Al; A € #7(H,, H,), rank(T — A) < k}. (3.2)

In case there is no A with the required property we interpret the infimum as
+ 9, which makes 7,(T) = 0 and 7(T) = +. By (2.6) the condition on A
in (3.1) may be replaced by dimKer(Idy,; — TA) > k, which shows that
7.(T*) = 7,(T); it is obvious that 7, (T* ) = #(T). 1t is also obvious that
7(T) < o (T) < 7(T).

The following theorem gives an approach to computing the real perturba-
tion values defined by (3.1) and (3.2). ,

THEOREM 3.1. With the preceding definitions we have

n(T) = 1?0f1]0'2k(T— ) (3.3)

7,(T) = sup oy 1(7:) (34)
v€(0,1]
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where

- ReT —yImT
T, = v ImT Re T thy®h, — h, ® h,.

The first step in the proof is a variant of Lemma 2.1:

LEMMA 32.  Let Hj, j = 0, 1,2, be complexifications of real finite dimen-
sional Hilbert spaces h.. Given linear transformations T, : Hy > H, j = 1,2,
there exists a contraction A € & (H,, H,) such that AT, = T, if and only if,
with block matrix notation,

(ReT, ImT,)*(ReT, ImT,)<(ReT, ImT,)*(ReT, ImT,),
(3.5)

or equivalently
(. &) (7. T)<(r T)Y(n T) (35")

Proof. Write the equation AT, = TyasA(Re T; Im T,) = (Re T, Im T,);
here (Re T, Im T)) is a map from ho ® hg to hj. By Lemma 2.1 (for spaces
over the reals) we conclude that (3. 5) is a necessary and sufficient condition
for the existence of a contraction A. Since

= Id, Idy
- T.)=(ReT, ImT, o
(% T)=(ReT tm )(zId —iIdHD)’
the extension of (3.5) to the complexification is equivalent to (3.5'). [

Proof of Theorem 3.1.  This proof relies on Theorem 4.1, which is stated
and proved in Section 4. We shall first prove (3.3) and indicate afterwards the
modifications required to prove (3.4). Let 0 < 7 < 7(T). By (3.1) this means
that one can find S € Z(H,, H,) of rank >k and A € #"(H,, H,) with
ANl < 77" such that (Id,; —AT)S = 0, that is, TATS = 75. By Lemma 3.2
this means precisely that

(s §)(s §5)<(rs TS)(1s Ts). (3.6)
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The product on the right-hand side is the operator

S*T*TS  S*T*TS
‘H,@H - H & H,,

S*T*TS S*T*TS

and replacing T by 7 gives the operator in the left-hand side. If we set
A, =T*T—r7>1dy, B,=T*T~-721dy, (3.7

then (3.6) can be written

S*A_ S S*B.§
_ _ | =0, (36"
5*B,S S*A.S
or
S A, B,
0} 15 9 so. (3.6")
o §){B iflo 3

Thus 0 < 7 < 7,(T) is equivalent to the existence of S € 2(H,, H,) of rank
> k such that (3.6") is valid. By the equivalence of conditions (i) and (iv) in
Theorem 4.1, to be proved later, we therefore conclude that

0<7<s7(T) =

A, BB,

BB, i has at least 2k nonnegative eigenvalues if | B| < 1. (3.8)

T

Here it is not really important to allow complex values for 8, for multiplica-
tion of B by a complex number of absolute value 1 gives a unitarily
equivalent operator. It is therefore enough to take B € [—1,0].

Next we prove that the condition in (3.8) is equivalent to

a'zk(fy) >r, O0<y<l. (3.9)
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First we observe that

F =D T 9 £ D - iyIdy, iyvIdy, ,
Y b4 0 T b4 ¥ IdHZ _IdH2

5 - 1{dy /iy 1dg
v o\Id, /iy - |

Equation (3.9) states that '1:7* fy — 172 Idy o, has at least 2k positive eigen-
values. After right and left multiplication by the inverse of E, and its adjoint
this means that

T O T O -1
(o ooy §)-reE)

has at least 2k nonnegative eigenvalues. Here

DD (Y2 +1)1dy, (v®—1)Idy,
vy (y? - 1)Idy, (v*+1) Idy, ’

(& E*)“ _ (v*+1)d,,  (v® - 1)1dy,
Y (v* - 1)1dy, (y*+1)1dy, '

If we divide by ¥>+ 1 and put B = (y? —1)/(y* + 1), the operator
becomes

T 0 Ide B Ide T 0 ) IdHl B IdH1
( 0 T*) B1d,, 1, |\o T/ T |Bldy Idy
B.
_| A BB (3.10)
BB, A,

which proves the equivalence of (3.8) and (3.9) and completes the proof of
(3.3), apart from the proof of Theorem 4.1.
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To prove (3.4) we first recall that by the definition of 7, we have
7> 7,(T) if and only if rank(T — A) < k for some A € ¥"(H,, H,) with
IAll < 7. The rank condition means that there is some S € Z(H,, H,) with

rank S > dim H, — (k — 1) such that (T — A)S =0, that is, (A/7)S =
TS/7. By Lemma 3.2 this is equivalent to

(s 5)'(s §)>(rs TS)(rs TS). (311

The calculations that proved the equivalence of (3.6) and (3.6") show that
(3.11) is equivalent to

(b3

Using Theorem 4.1 as before, we conclude that

A, B,
B, A,

(g g) <o0. (3.12)

T2 T(T) <
A. BB

— "] has at least 2[dim H, — (k — 1
8B, Ar) at le [ 1= ( )]

nonpositive eigenvalues if | 8] < 1. (3.13)

The proof of the equwalence of (3.8) and (3.9) shows that (3.13) means
precisely that T*T — 72 Idy oy, has at least 2dim H, — [2k — 1) — 1]
nonpositive elgenvalues which by (2 2) means that o, _ 1(T ) < 1. The proof
of (3.4) and Theorem 3.1 is now complete apart from the proof of
Theorem 4.1. [ ]

The proof of (3.3) also gives another characterization of 7,(T'), for we saw
that 7 < 7,(T) was equivalent to (3.6"), which, by Theorem 4.1 (iii), is
equivalent to

(A, ¢, @)y, + Re{B. @, @)y, 20, @EW,

where W is a complex subspace of H, of dimension > k. Explicitly this
means that

(Te,Te)n, + Re (T, Tedy, — 72(@, ¢)n, — 7° Re e, ¢on, > 0,
e EW,
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Since (¢, (p)H + Re{ o, ¢)u, = 2(Re (,0||H1 and since there is an analogous
identity in Hz, this means that ||Re(T(p)I|H2 > 7%|Re ¢’HH1 Hence

|Re (T
7(T) = sup inf |—(—& (3.1
dim W >k eeW, Re ¢+0 ||Re (,L"”H1

where W is a complex subspace of H|. This is a close analogue of (2.3).
We get a similar conclusion from the proof of (3 4), for it shows that
> 7 (T) is equivalent to IIRe(qu)HH2 < 7%||Re (pHH for every ¢ in a
complex subspace W of H with codim W < k. Hence we obtain an analogue
of (2.2),

Re(T
= o IR (7

, 3.2’
codimW <k ,ew Rep%0 IIRe (PHHI ( )

where W is a complex subspace of H,.

4. REAL QUADRATIC FORMS IN A COMPLEX VECTOR SPACE

Let H be a finite dimensional complex vector space, and let Q be a real
quadratic form in the underlying real vector space. There is a unique
decomposition Q = Q, + Q, where Q; are quadratic forms with Q,(iz) =
(- l)JQj(z) it is given by

0,(z) =3[0(2) + (-1YQ(ir)]. ze€H, j=0,1.

The form Q, can be polarized to a Hermitian symmetric sesquilinear form
(z,w) = Qy(z, w) which is linear in z and antilinear in w, Qo(z, 2) = Q(2),
and Q,(z) = Re q(z) where g is a quadratic form with respect to the
complex structure in H,

g(z) = Q(z) —iQ,(ez) = ZO: (3z) = /4,

ro| -

We can polarize g to a symmetric bilinear form (z,w) = ¢(z, w) such that

q(z, z) = q(2).
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If we identify H with the complexification of a real Hilbert space h, for

example by introducing complex coordinates Zpsenns z, identifying H with
C", then

Qo(z,w) = (Az,w), Req(z,w)=Re(Bz,w) = Re(Bz,w),
where A* = A and BT = B. This notation is essential in conditions (i), (ii),
(iv), (v) of the following theorem, while the others are expressed only in

terms of Q(-,-) and g(-,-). The following theorem is a generalization of
Theorem 2.1 in [5].

THEOREM 4.1.  The following conditions are equivalent:

(i) There exists a map S € Z(H, H) of rank > k such that

* _
S 014 B_(S o1 > o. (4.1)
0 S B AJ\0 S
(ii) There exists a complex linear subspace W of H of dimension >k
such that

(Ag, @) + (BY, @) + (Be,¥) + (Ag,¥) 20, oW, (42)
or equivalently

(A@, @) + (AY,¢) +2Re(Bo, ¥) >0, @, yEW. (4.3)

(iii) There exists a complex linear subspace W of H of dimension k such
that

(Ag,9) + Re(Bp,¢) 20, ¢€EW, (4.4)
or equivalently
[(Be, pd| < (Ag,9), o¢EW. (4.5)
(iv) The Hermitian operator
A BB
BB A
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in H® H has at least 2k nonnegative eigenvalues for every B & C with
| Bl < 1, that is, the Hermitian form

(Ag,¢) + B(By, @) + B(Be, &) + (Ag.¢), ¢,y €H, (46)

has at least 2k nonnegative eigenvalues when | B| < 1.

(v) The form (4.6) has at least 2k nonnegative eigenvalues when B €
[0, 11.

(vi) The quadratic form

(Ae. o) + (Ay.¢) + 2B Re(Bop, ), @, yEH, (4.7

in H @ H considered as a real vector space has at least 4k nonnegative
eigenvalues when B € [0, 1].
(vii) The quadratic form

(A¢, ) + BRe{Bep, ¢), ¢EH, (4.8)

in H considered as a real vector space has at least 2k nonnegative eigenvalues

if Be[0,1]
Proof. Let us first note a number of fairly trivial implications:
(i) « (i) e (iii) = (iv) = (v) = (vi), (iii) = (vii).

Condition (ii) is just condition (i) with W equal to the range of S, and (4.3)
implies (4.4) when we take ¢ = . If we replace ¢ by ¢'% in (4.4), 8 € R,
then (4.5) follows. From (4.5) we obtain [{B(¢ + ), ¢ + ¢ )| < (Ale +
#), ¢ £ ¥), @, ¥ € W, which implies 4K Be, ¢! < 2[ Ao, @) + A(Y, ¥)]
if @, ¥ € W, and proves (4.3) and (ii). From (i) it follows that the form (4.6)
with 8 = 1 is nonnegative when ¢ € W and ¢ € W. Replacing by B¢,
we conclude that the form (4.6) is also nonnegative for such ¢, ¢y when
| 8] = 1, and hence by convexity when | B| < 1, which proves (iv). That (iv)
implies (v) is obvious, and the converse follows if ¢ is replaced by e'oy,
8 € R. As a quadratic form in H & H as a real vector space, the form (4.6)
then has > 4k nonnegative eigenvalues, which proves (vi). In the same way
it is obvious that (iii) implies (vii).
The essential contents of the theorem are therefore the implications

(vi) = (i) and (vii) = (ii). (4.9)
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When proving them we may strengthen the hypotheses in (vi) and (vii) to
assuming that there are 4k and 2k strictly positive eigenvalues, respectively;
for this can be achieved by adding a small multiple of the identity to A. Then
the hypotheses remain valid after a small perturbation of A and B, so it will
be sufficient to study the generic case (see Lemma 4.2); for the set of all
A, B for which (ii) holds is closed by the compactness of the set of subspaces
of fixed dimension. We shall postpone the end of the proof of Theorem 4.1
until we have derived normal forms in the generic situation. [ |

In terms of complex coordinates (z,, ..., z,) in H we can write

Qo(z) = Z 2%y, G = Gy

j. k=1

n
Q(z) = Re ' kZlbjkzjzk, by =by,.
k=

Passing to new coordinates z” with z; = L} T, z;, we get for the correspond-
ing matrices

A’ = T*AT, B' = T'BT,
where T* is the transpose of T and T* = T*. If B is invertible it follows that
C'=T7'CT, where C=B'A, C'=B'""'A". (4.10)
This implies that
C'C' =T CCT, (4.11)

which means that CC is the matrix of a complex linear transformation in H
which is independent of the choice of coordinates.

LEMMA 4.2.  For a dense set of real quadratic forms Q in H, the matrices
A and B are invertible and all eigenvalues of CC are simple.

Proof. The matrices A and B are invertible if det A det B # 0, which is
true on a dense set. The entnes of CC are polynomials in the entries of the
real and complex parts of B~ and A, so the coefficients of p(A) = det(A1d
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—CC) =det{Ald — C'C") are polynomials in them, and so is the discrimi-
nant of p(A). The eigenvalues are simple if the discriminant is nonzero. Now
either the discriminant can be made nonzero by small perturbations in A and
B, keeping A* = A and B’ = B, or else it is identically zero for all such A
and B. However, it does not vanish 1dentlcally, for if A and B are diagonal
then det(A Id — CC) = TI(A — la,;/b;; 1%), so the discriminant is nonzero if
la;;/by;l # lay /byl when j * k. |

The following lemma shows a normal form for a generic real quadratic
form. The generic case is sufficient for our presentation, and a proof of
Lemma 4.3 is included to make the presentation self-contained. For a
complete treatment of the more difficult general case see [4, 6-9]. See also
Chapter 4.6 in [10].

LEMMA 4.3. If A and B are invertible and the eigenvalues of CC are
simple, then the real eigenvalues are positive, the others occur in complex
conjugate pairs, and the coordinates can be chosen so that

r

Q(z) = ?()‘jlzﬂz + Re 27

r+s

+ Z 1[)\jz2j—r—lz2j—r + Ajzzj—rzzj-r—l
j=r+

+Re(z§j_,_1 + z'zzj_r)]. (4.12)

Here A}, j = 1,...,r, are the positive eigenvalues of CC, and A j=r+
L. r + s, are the eigenvalues of CC with positive imaginary part The first
(second) sum is to be omitted if r = 0 (if s = 0).

Proof. Let z + 0 be an eigenvector of CC with eigenvalue ; thus
CCz = pz. Then CC(Cz) = uCz; hence CCCz= TCz, so Cz is an eigenvec-
tor with eigenvalue 7.

(i) If w is real, then Cz must be a multlple of z; thus Cz = Az for some
A€ C, and ACz= uz, which implies p = IAl> > 0. Since Az = ABz, we
have

Qo(z) = (Az,2) =A(Bz,2) . (4.13)
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(i) If Im p # 0, then Cz is an eigenvector belonging to the eigenvalue
Ti. Let A2 = u, and set Ao = Cz. Then also Cw= Az; thus

Az =ABw and Aw = ABz. (4.14)

(iii) Let ECZJ. = m;z; and CCz, = py ;. Then
p{Bz;, z) = <A_B_1AZJ., 2 =z, AB7'Az,)
= ll-k(Z;’ Bz;) = /J“k<sz’ 27,
which proves that (Bz;, z,» = 0 when p; # g,. Similarly,
mi( Az, z,) = (AB‘IA_B—IAzj, zk) = (zj, AB—IE_IAzk) = e ( Az, zi),

which proves that (Az;, z;) = 0 when u; # T;. Thus the eigenvectors corre-
sponding to real eigenvalues and the two dimensional spaces spanned by
eigenvectors corresponding to complex conjugate eigenvalues of CC are
mutually orthogonal with respect to the sesquilinear scalar product (Az, w)
= (z, Aw) and with respect to the bilinear scalar product {Bz,w) =
{z, Bw). It is therefore sufficient to examine the structure of these two kinds
of spaces.

In case (i) above it follows now from the nondegeneracy of B that
(Bz, z) # 0. Replacing z by a multiple of z, we can then attain {Bz,z) =1,
which by (4.13) implies that (Az, z) = A. Hence A is real with A=

In case (ii) above we have {z, Bw) = 0; hence (z, Az) = 0 and (Aw, w)
= (. Moreover,

X Bz, z) = (z, Aw) = (Az,w) = A{Bw,w) .
Since B is nondegenerate, we conclude that {Bz,zy # 0, and we can

normalize so that { Bz, z) = 1, whence { Bw,w) = 1, which implies (Az, w)
= A. In the basis w, z the matrices of the A and B therefore take the form

o) (Y

which completes the proof of the lemma. [ ]
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LEMMA 4.4. If Im A > 0, then the quadratic form
Az Z, + Az, %) + Re[ B(z2 +22)], zeC?=RY,

is positive definite in the subspace where z, = iz, and negative definite in the
subspace where z, = —iz,. Thus the signature is 2,2 for arbitrary B € C.

The proof is obvious.

End of proof of Theorem 4.1. What remains is to prove the implications
(4.9) when B is the unit matrix and with Im A>0forj=r+1..,r+s:

r+s

i
(Az,z) = }T“,)\j|zj|2 + X (NayooiZy, + Ny Eay ). (415)

j=r+1
In view of Lemma 4.4, hypothesis (vi) [or (vii)] remains valid if we restrict to
the complex linear subspace where z,,,; =iz, 5;_ for j=1,...,s, and

since the second sum in (4.15) is positive there, we need to prove the
theorem only when

(Az,z) = Z)tjlzjlz, (Bz,z) = ) zZ, (4.16)
1 1

where A, > Ay > -+ > A,. We shall now prove the theorem in this case.
Explicitly the quadratic form (4.7) in H ® H, as a real vector space, is

z {3](Re 2)" + (1m 2,)" + (Re w))" + (1mw))’]

+2B(Re z; Re w; — Im z, Im w, }

where each term has the eigenvalues A, + B taken twice. The quadratic form
(4.8) in H, as a real vector space, can be written

= {n[(Re 2)* + (1m 2,)"] + B[(Re 2,)" ~ (m )]},

j=1
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where each term has the eigenvalues A; + B. Both conditions (vi) and (vii)
therefore mean that at least 2k of the eigenvalues A; + B are nonnegative
for every B € [0, 1].

To make this condition explicit we let A, ..., A; be the eigenvalues of A
that are greater or equal to 1; for them we have A; + B > 0 when B € [0, 1],
which accounts for 2/ nonnegative eigenvalues. Eigenvalues A € [0, 1) will
always contribute an eigenvalue A + 8 > 0, but the eigenvalue A — B8 be-
comes negative when B > A. On the other hand, eigenvalues A € [~1,0)
can contribute a nonnegative eigenvalue only when 8> —A. When 8 =0
we must have A,..., A > 0. If k>, then disappearing eigenvalues
Ari1—» — B, v=1,...,k — I, must be compensated by eigenvalues A, , +
B that appear at least as early, that is,

A)ﬁ,l_v? _/\k+,,, V=1,...,k‘—l. (417)

(Thus 2k — [ < r.) Since

)t].(lzjl2 + ijlz) +2Re zjw; > 0 if Azl

we need to examine only the case of pairs of eigenvalues with nonnegative
sum as in (4.17). Simplifying notation, this means that we must examine

(Az, z) = Alz® + Alzel?, {Bz,w) = z;w; + 2,w,
where A; + A, > 0. The condition (4.3) becomes
A1(|z112 + |w1|2) + A2(|z212 + lwzlz) + 2Re(zw; + z,wy) = 0,
z,weW,

where W is a complex line in C2 This is true if W = {(z,, z,) € C%;
z, = iz,}, since A; + A, > 0. The proof of Theorem 4.1 is now complete.

5. CONTINUITY PROPERTIES

By (2.4) the singular values 0;(T) are Lipschitz continuous functions of
T, but the real perturbation values are not. That is caused by the fact that in
(3.3) and (3.4) the infimum and supremum are taken over a noncompact set
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of parameter values v, so it is only clear that 7, is upper semicontinuous and
that 7, is lower semicontinuous. Although it follows at once from (2.4) that

| (T) — 7(T + E)| <llEll if Ee€e¥(H,H,), (5.1)

|7:(T) — #%(T+ E)| <El if E€Z(H,H,), (52)

the continuity properties with respect to the imaginary part of T are quite

delicate. [When 7,(T) = +, then (5.2) is only supposed to mean that

7(T + E) = + too] We will discuss only the continuity properties of
7, (T).

We first study the limit when y — 0 of the singular values in (3.3) and

(3.4). The following proposition is a special case of Lemma 5 in [11]. To make
the presentation self-contained, we include a proof.

PROPOSITION 5.1. Let

-_( T, —vT,

Yy 7_1T T )Eg(hlehl’hzeahz)
2 1

as in Theorem 3.1. Then it follows when y — 0 that

{00 if j<rankT,,
)—>

(7 )
d Il i j=rankT, + 1.

Y

(5.3)

Here T = T,lxert, ® PT,, where P is the orthogonal projection h, — Ker TS,
so (PT,)* = T} P has the same singular values as the restriction T{ |xer 1.

Proof. When j < rank T, the result follows from the fact that o;('yfy)
— a;(T,) > 0 as y — 0. Assume therefore that rank T, = j — 1. Choose a
linear map G: h; — (Ker T,)* such that T,Go + T,¢ = PT ¢ for all ¢ €
h,. The subspaces W = Ker T, ® h, and {¢ = (¢, + vGeo,, @,); (¢}, @,) €
W} both have codimension j — 1. Hence we get from (2.2)
"f'y( @+ Gy, ¢3) ”
0+ pEW ”(‘Pl + vGo,, ‘Pz)”
”(Tl( @, + vGoy) — Ty 05, PT1‘P2)"
= su
oepow (e + ¥Gos, @) |
I(Ty¢.. PTe,) ||
- sup ———0———

0+ pEW ”‘P“

‘Tf(fv) <

=|ITlI when y— 0.
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If Ker T, # &, then we can find ¢, € Ker T, such that ||T, ¢,|| = T Ixer 7,

and |l@,l = 1. The subspace V ={¢, + ce;; ¢, € (Ker T,)*} of h, has
dimension j. Hence we get from (2.3)

{ [ = i f r >3 i -1
0}(_7) 2 ¢EV1;ITI¢>II=1TY( ¢,0) > ‘pevl;rﬁfw||=1”(T1(¢° +cey).y Tz‘Po)"

> inf  max(cllT @yl = IT,Higol, ™o (T5) gl
peV;liel=1

Since ¢ = (1 — ll@olI))2 = 1 — llp,ll, we have

a(f,) > it max(IT e | = 207300l 77155 i(Ta) o)
Poll<

“TllKerTZH
L+ 2|T,lly/0;_(T,)

= |IT)lxer 1, I when vy — 0.

>

This bound if obv10us if KerT, =, and by applying it to T* we get
hmy_,0 O'(T) ]I |

PROPOSITION 5.2.  1,(T) is continuous at T = T, + iT, when rank T, >
2k — 1.

Proof. Let S =T + E where rank T, > 2k — 1 and E € Z(H,, H,).
Since T — 7,(T) is upper semicontinuous, it is sufficient to find a good lower
estimate of O'Zk(S ) when E is small. We immediately get Uzk(S ) > o‘zk(T )
- ||E l. We have ||'yE | <HE|lfor0 < y< 1, forif @, g €hy and el +
Ht,(/”2 =1 then

1vE, (e, 0)|[" = 1vEse — ¥ Eqll® + 1y + vE, I

<| e = Ex(v) " + 1| Exe + Ex(v) |

<E (Nl + lvpl?) < IEI,
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We therefore have

IE|

azk(g ) 0'2,((1:7) - T (5.4)

If 0,,(T,) >0, then 0,(S,) > 0 if ||E|ll < 6,,(T,). Hence Uzk(§ ) >
when y — 0. The infimum 7,(T + E) is therefore attained for some vy, €
(0,1]. We have v5'o5,(S,) < (rzk(S ) = 7(T + E), since y,'S, is obtained
from S, by a restriction followed by a projection in the range. This gives
lElr,(T + E)

(T +E) = 0($,,) > 1) - — =

which after rearranging and using 0,;(S,) > 05, (T,) — [|Ell > 0 gives

I Ellm(T)

Tk(T + E) = Tk(T) - m

This proves continuity if rank T, > 2k.

Now assume that rank T, = 2k — 1. It is necessary to improve the lower
bound (5.4) for small y > 0. Put a = (Tzk(S ). From (2.2) there exists a
subspace W with codim W = 2k — 1 such that

IS0, — ¥S;@0al* + Iy 1S, 0, + S10,l1% < @®llell?,
e={(¢.¢)€W. (55)
This gives
IS0l < y(IISoll + a)llell, @EW,

and hence
IT,@,0l < [¥(ISell + @) + HEI]llell, pEW.

Now let @, = @, + ¢,,, where ¢,, is the component of ¢, orthogonal to
Ker T,. Since o, _(T,) is the smallest nonzero singular value of T,, we have

Ty ¢l

————— < 8llell, o@eWw, (5.6)
oo -1(T3)

lloy,ll <
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where & = [y(|[S,|l + @) + I|Elll/0y;_ (T,). When 8 < 1 the map
W3¢ (¢, ¢,) EKerT, ® b,

is invertible, since the dimensions of W and Ker T; ® h, are equal and since

loll <|( @10, @2) || + 8lloll,

which gives
I(@10, )
S ——. .
lell T (5.7)
If we take ¢, = 0 then (5.5) gives
IT @1 ll < (a + IEN @]l pEW,

and with (5.6) and (5.7) we therefore have

(a +1IEI + 8IT )@,
1~-8 ’

”T1(P10|| < P10 € Ker T2.

This gives a lower bound of a in terms of IT,|ker 1|l Similar calculations for

T* give the same estimate with ||T*|g., 73|l With T defined as in Proposition
5.1 we therefore get

(1 = 8)ITll < a+ IEI + 8IT,.
We conclude that
a> (1= 8)ITI-IEN - 8IT,l,
with & = [y(IS,ll + ITID + I EIll/ 0 _(T,). This bound is obvious when

6> 1or a > |T|l and has been proved in the other case. With the bound
(5.4) we obtain

veir(lof, 1] O-Zk(S;)

> inf oy,(T,) — supmin(|lEll/y. S(IT, I + IF1)) + I1EN).
ye(0,1] y
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The minimum can be bounded from above with

~ 1/2
2l EN(IT, + EIl + IT )T, 20T IHIE
ook (Ts) Tak-1(Tp)

o(T,E) = + lIEI,

which gives
Tk(T+E) > Tk(T) _C(T, E), (5.8)

where ¢(T, E) - 0 when E — 0. This proves lower semicontinuity and
hence continuity. [ ]

REMARK 1. Note that lower estimates of the form (5.8) can be trans-
formed into upper estimates of the form

It is easy to see that the proof gives Lipschitz continuity when rank 7, > 2k.

REMARK 2. It is easy to check that with

ildy;, o 0
0 1+ie

T:

we have 7,(T) = 1if £ = 0 and 7,(T) = 0if & # 0. This gives an example of
discontinuity with rank T, = 2k — 2.

6. CONCLUDING REMARKS

In numerical analysis it is of interest to compute so-called pseudospectra
(also called spectral value sets); see [13]. For a given & > 0 the &-pseudospec-
trum of a matrix A € R**" is a region of the complex plane defined as

sp.(A) = U o(A+E),
Ellif<s
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where o (A + E) denotes the spectrum of A + E. From (2.3) and (2.2") it
follows that if complex perturbations E are allowed, then

sp.(A) = {z; 01((z Id - A)_]) > 871} ={z;0,(z1d — A) < &}.

In some situations it might however be natural to consider only real perturba-
tions E. It follows now from the definitions that the real pseudospectrum

spr,(A) = U o(A+E)
E Ran
iEl<s

is given by
SPa..(A) = {Z; 7((z1d - A)“l) > 3‘1} ={z;7(z1d — A) < &}.
The real stability radius of a stable matrix A is given by
rr( A) = min{||Ell, E € R"*"; A + E unstable},

where “stable” means that all eigenvalues are in a prescribed open region C .
of the complex plane. The real stability radius is given by the largest ¢ such
that spp ,(A) is contained in C,. It can be computed as

rg(A) = inf 7(z1d - A)
z€dC

g

where 4C . denotes the boundary of the stability region.
REFERENCES

1 B. Bernhardsson, Simultaneous Block-Diagonalization of One Hermitian and
One Symmetric Form, Internal Report TFRT-7520, Dept. of Automatic Control,
Lund, Sweden, 1994.

2 B. Bernhardsson, A. Rantzer, and L. Qiu, On real perturbation values, presented
at 6th ILAS Conference, Chemnitz, 1996.

3 B. Bernhardsson, A. Rantzer, and L. Qiu, A summary on the real stability radius
and real perturbation values, in Hurwitz Centennial on Stability Theory,
Birkhauser, 1995.

4 . B. Ermolaev, The simultaneous reduction of symmetric and Hermitian forms,
Izv. Vyss. Zaved. Mat. 21:10-23 (1961).



154

5

6

7

10
11

12

13

BO BERNHARDSSON, ANDERS RANTZER, AND LI QIU

C. H. Fitzgerald and R. A. Horn, On the structure of Hermitian-symmetric
inequalities, J. London Math. Soc. (2) 15:419-430 (1977).

J. Haantjes, Klassifikation der antilinearen Transformationen, Math. Ann.
112:98—106 (1936).

Y. P. Hong and R. A. Horn, On the reduction of pairs of Hermitian or symmetric
matrices to diagonal form by congruence, Linear Algebra Appl. 72:213-226
(1986).

Y. P. Hong and R. A. Horn, A canonical form for matrices under consimilarity,
Linear Algebra Appl. 102:143-168 (1988).

Y. P. Hong and R. A. Horn, A characterization of unitary congruence, Linear and
Multilinear Algebra 25:105-119 (1989).

R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge U.P., 1985.

L. Qiu, B. Bernhardsson, A. Rantzer, E. Davison, P. Young, and ]. Doyle, A
formula for computation of the real stability radius, Automatica 31:879-890
(1995).

G. W. Stewart, On the early history of the singular value decomposition, SIAM
Rev. 35:551-566 (1993).

N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991, (D. F.
Griffiths and G. A. Watson, eds.), Longam, 1992,

Received 25 March 1996; final manuscript accepted 13 April 1997



