Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems

Feng Dinga,*, Li Qiub, Tongwen Chenc

a Control Science and Engineering Research Center, Jiangnan University, Wuxi, 214122, China
b Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
c Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada T6G 2V4

\textbf{A B S T R A C T}

A continuous-time system cannot be recovered solely from its uniformly sampled discrete-time model through the zero-order hold discretization or step-invariant transformation, but our studies indicate that it can be recovered uniquely from its non-uniformly sampled discrete-time model. In this paper, we discuss some related issues of non-uniformly sampled systems, including model derivation, controllability and observability, computation of single-rate models with different sampling periods, reconstruction of continuous-time systems, and parameter identification of non-uniformly sampled discrete-time systems. A numerical example is also given for illustration.

* This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Ben M. Chen under the direction of Editor Ian R. Petersen.

** Corresponding author. Tel. +86 510 88637783; fax: +86 510 85910633
E-mail addresses: fding@jiangnan.edu.cn, dingf@tsinghua.edu.cn (F. Ding), eequ@ust.hk (L. Qiu), tchen@ece.ualberta.ca (T. Chen).

1. Introduction

Consider a continuous-time system with the following state space representation

\begin{align}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t),
\end{align}

where \(x(t) \in \mathbb{R}^n \), \(u(t) \in \mathbb{R}^r \) and \(y(t) \in \mathbb{R}^m \) are the state, input and output vectors, respectively; \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times r}, C \in \mathbb{R}^{m \times n} \) and \(D \in \mathbb{R}^{m \times r} \) are constant matrices. Suppose that the sampling interval is \(\tau \). By using the step-invariant transformation or the zero-order hold (ZOH) discretization, i.e., taking \(u(t) = u(k\tau), k\tau \leq t < (k+1)\tau \) and sampling the system in (1) give a discrete-time model (Chen & Francis, 1995):

\begin{align}
P_1 : \begin{cases}
\dot{x}(k\tau + \tau) &= G_x x(k\tau) + F_x u(k\tau), \\
y(k\tau) &= C_x x(k\tau) + D_x u(k\tau),
\end{cases} \quad k = 0, 1, 2, \ldots
\end{align}

where \(x(k\tau) = x(t) \mid_{t=k\tau} \), \(y(k\tau) = y(t) \mid_{t=k\tau} \), and

\begin{align}
G_x := \exp(A\tau), \quad F_x := \int_0^{\tau} \exp(A\tau) dt B.
\end{align}

The discrete-time system \(P_1 \) is shown in Fig. 1, where \(H \) and \(S \) denote the ZOH and sampler with the period \(\tau \), respectively. We call \(P_1 \) a single-rate sampled-data system since there exists only one sampling rate \(1/\tau \) in the system. (Conventional sampled-data systems are single-rate ones.)

On the reconstruction/identification of continuous-time systems based on discrete-time data, conventional sampled-data methods use only one equidistant sampling interval, and hence the continuous-time models obtained are non-unique, e.g., one is the equivalent ramp invariant continuous-time model corresponding to a given discrete-time one (Bingulac & Cooper, 1990). In order to obtain a unique continuous-time model from a given discrete-time model, one generally requires some further information of the continuous-time system, e.g., pole locations (Sinha & Lastman, 1982).

It is well known that for a given continuous-time model \(P \) and sampling period \(\tau \), the corresponding discrete-time model \(P_1 \) is unique, but for given \(\tau \) and \(P_1 \), there exist infinite many continuous-time models giving rise to the same discrete-time model \(P_1 \). Thus, one cannot recover or reconstruct the continuous-time system from its discretized model \(P_1 \) and \(\tau \) without further...
information. Recent studies indicated that for given $n + 1$ sampling periods $\tau_1, \tau_2, \ldots, \tau_{n+1}$, the continuous-time model P_0, with possibly complex matrix parameters, may be reconstructed uniquely from the $n + 1$ discrete-time models $P_i, i = 1, 2, \ldots, n + 1$ (Chen & Miller, 2000); this case is illustrated in Fig. 2.

Using discrete-time system identification techniques (Ding & Chen, 2005a,b; Goodwin & Sin, 1984; Ljung, 1999), it is easy to identify the $n + 1$ models P_i from given (discrete-time) input–output data; however, the difficulty lies in that we have to conduct experiments for $n + 1$ sampled-data configurations with different sampling periods. To simplify this process, we present a sampling pattern shown in Fig. 3 in which the sampling instants are spaced apart non-uniformly by $\tau_1, \tau_2, \ldots, \tau_{n+1}$, and the whole sampling process is repeated over the so-called frame period $T = \tau_1 + \tau_2 + \cdots + \tau_{n+1} = T_0$. It will be shown later that under this sampling scheme, we can reconstruct the continuous-time model from a single discretized model, thus combining $n + 1$ different identification experiments into one.

The non-uniformly sampling scheme proposed relates closely to multirate sampling. Multirate systems have had wide applications in chemical and petroleum processes (Gudi, Shah, & Gray, 1994, 1995; Tatiraju, Sorouch, & Mutharasan, 1999) and a series of results have been achieved in theory, including controllability and observability (Knapp & Georghiou, 1988; Kreisilmeier, 1999), robust control (Chen & Qiu, 1994), optimal control (Qiu & Chen, 1999), adaptive control (Ding & Chen, 2004a; Zhang, Middleton, & Evans, 1989), predictive control (Scattolini & Schiavoni, 1995; Sheng, Chen, & Shah, 2002), modeling and identification (Ding & Chen, 2004b,c; 2005c,d; Ding, Chen, & Iwai, 2007; Ding & Ding, 2008), and so on.

In the area of multirate/non-uniformly sampled systems, Francis and Georghiou (1988) presented the conditions of preserving controllability/observability for sampled-data systems; Kreisilmeier (1999) explored a multirate sampling scheme to achieve observability/controllability in discrete-time systems, and Sheng et al. (2002) further discussed the results in non-uniformly sampled systems. Other studies of non-uniformly sampled systems include the real-time control by Albertos and Crespo (1999), generalized predictive control by Sheng et al. (2002), and subspace identification based fault detection and isolation by Li, Han, and Shah (2006).

To the best of our knowledge, few contributions have addressed modeling, estimation and reconstruction issues for non-uniformly sampled systems, which are the focus of this work. For the non-uniformly sampling pattern depicted in Fig. 3, our objective is two-fold:

- First, establish a mathematical model of the non-uniformly sampled system from input $u(kT + t_i)$ to output $y(kT + t_i)$, and study the related controllability and observability issues.

- Second, by means of a shift invariance property, derive each single-rate model P_i from the non-uniformly sampled system, and from here reconstruct the continuous-time system. Finally, develop identification algorithms for estimating the parameters of the non-uniformly sampled system, based on the given input–output data $\{u(kT + t_i), y(kT + t_i) : i = 1, 2, \ldots, n + 1, k = 0, 1, 2, \ldots\}$.

The rest of the paper is organized as follows. Section 2 derives mathematical models for non-uniformly sampled systems from continuous-time systems. Section 3 discusses the controllability and observability of the non-uniformly sampled systems; Section 4 computes single-rate models from the non-uniformly sampled models. Section 5 reconstructs the original continuous-time systems based on the single-rate discrete-time models obtained. Section 6 discusses the identification issues for non-uniformly sampled systems. Section 7 presents an illustrative example validating the methods proposed. Finally, Section 8 offers some concluding remarks.

2. Model derivations

This paper focuses on a class of non-uniformly (multirate) sampled systems depicted in Fig. 4, the input updating and output sampling pattern being shown in Fig. 3, where P is a continuous-time process with the representation in (1), H and 4 denote the non-uniform ZOH and sampler with the following characteristics:

\[
\begin{align*}
\{u(kT), & \quad kT \leq t < kT + \tau_1, \\
\{u(kT + t_i), & \quad kT + \tau_i \leq t < kT + \tau_{i+1}, \}
\end{align*}
\]

with $y(kT + t_i) = y(t_i) \mid_{t=kT+t_i}, i = 0, 1, \ldots, n$, and $k = 0, 1, 2, \ldots, \{\tau_1, \tau_2, \ldots, \tau_{n+1}\}$ are the updating and sampling intervals, $t = kT + t_i$ are the updating and sampling instants and $T = \tau_1 + \tau_2 + \cdots + \tau_{n+1} = T_0$ is the frame period, where $t_0 = 0, t_i = t_{i-1} + \tau_i = t_{i+1} + \tau_{i+1} + \cdots + t_0$ is the control input u is updated $n + 1$ times at the instants $t = kT + t_i$ ($i = 0, 1, \ldots, n$) over the kth period $[kT, (k + 1)T]$ and the output y is sampled $n + 1$ times at the instants $t = kT + t_i$ ($i = 0, 1, \ldots, n$) over the kth period $[kT, (k + 1)T]$. This is the non-uniform updating and sampling scheme.

Next, we derive a mathematical model of the non-uniformly sampled system in Fig. 4. Integrating (1) from $t = kT$ to $t = kT + \tau_i$ gives

\[
x(kT + t_i) = \exp[A_t]x(kT) + \int_{kT}^{kT+t_i} \exp[A_t(kT + t_i - s)]Bu(s)\,ds = \exp[A_t]x(kT) + \sum_{l=1}^{l=k} \int_{kT}^{kT+t_i} \exp[A_t(kT + t_i - s)]Bu(s)\,ds \times \exp[A_t]x(kT).
\]

Fig. 3. A non-uniformly sampling scheme yielding the continuous-time system P.

Fig. 2. $n + 1$ equivalent sampling schemes yielding the continuous-time system P.

Fig. 1. The discrete-time sampled-data system.
A change of variable \(t = kT + t_j - s \) yields
\[
\mathbf{x}(kT + t_j) = \exp(A(t_1 - t_j)) \mathbf{x}(kT) + \sum_{j=1}^{n} \exp[A(t_1 - t_j)] F_j \mathbf{u}(kT + t_j).
\]
where
\[
\mathbf{G}_j := \exp(A(t_j)) \in \mathbb{R}^{n \times n}, \quad j = 1, 2, \ldots, n + 1,
\]
\[
\mathbf{G} := \mathbf{G}_n^{-1} \exp(A) \in \mathbb{R}^{n \times n},
\]
\[
F_j := \int_0^{T_j} \exp(A) dt \mathbf{B} \in \mathbb{R}^{n \times r}.
\]
Define
\[
F := \begin{bmatrix} F_1 & F_2 & \ldots & F_{n+1} \end{bmatrix} \in \mathbb{R}^{n \times (n+1)r}, \quad \mathbf{F}(kT) := \begin{bmatrix} \mathbf{F}(kT) \\ \mathbf{F}(kT + T_1) \\ \vdots \\ \mathbf{F}(kT + t_{n+1}) \end{bmatrix} \in \mathbb{R}^{(n+1)r}.
\]
The outputs at the sampling instants can be expressed as
\[
\mathbf{y}(kT + t_j) = G \mathbf{x}(kT + t_j) + H \mathbf{u}(kT + t_j)
\]
where
\[
D := \mathbf{G}^{-1} \mathbf{F}_1 \in \mathbb{R}^{m \times r}, \quad j = 1, 2, \ldots, i.
\]
\[
H := \begin{bmatrix} D_1 & D_2 & \ldots & D_n & 0 & \ldots & 0 \end{bmatrix} \in \mathbb{R}^{m \times (n+1)r}.
\]
Hence, we get a mathematical model of the non-uniformly sampled system as follows:
\[
\mathbf{P}_n : \begin{bmatrix} \mathbf{x}(kT + T) \\ \mathbf{y}(kT) \end{bmatrix} = \begin{bmatrix} \mathbf{G} & \mathbf{F} \\ \mathbf{T} & \mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{x}(kT) \\ \mathbf{u}(kT) \end{bmatrix}.
\]
where
\[
\mathbf{G} := \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{G}_2 \\ \vdots \\ \mathbf{G}_n \end{bmatrix} \in \mathbb{R}^{(n+1)m \times n},
\]
\[
\mathbf{H} := \begin{bmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{bmatrix} \in \mathbb{R}^{(n+1)m \times (n+1)r},
\]
\[
\mathbf{F} := \begin{bmatrix} F_1 & F_2 & \ldots & F_{n+1} \end{bmatrix} \in \mathbb{R}^{n \times (n+1)r}.
\]
\[
\mathbf{T} := \begin{bmatrix} \mathbf{I} & F \end{bmatrix} \in \mathbb{R}^{(n+1) \times (n+1)r}.
\]
\[
\mathbf{y} := \begin{bmatrix} \mathbf{y}(kT) \\ \mathbf{y}(kT + T_1) \\ \vdots \\ \mathbf{y}(kT + t_{n+1}) \end{bmatrix} \in \mathbb{R}^{(n+1)m}.
\]

In order to identify the parameters of this model from the input-output data, the system in (6) needs to be controllable and observable. The next section is devoted to the study of controllability and observability of the model in (6).

3. Controllability and observability

For conventional single-rate sampled-data systems, it is well known that the process of discretization may result in loss of controllability and observability, and cannot gain controllability and observability (Chen & Francis, 1995). For non-uniformly sampled systems, assume controllability and observability of the continuous-time model in (1); under what conditions the controllability and observability are preserved for the model in (6)?

The sampling frequency \(\omega_s := \frac{2 \pi}{T} \) is pathological (relative to \(\lambda \)) if \(\lambda \) has two eigenvalues with equal real parts and imaginary parts that differ by an integer multiple of \(\omega_s \). Otherwise, the sampling frequency is non-pathological, i.e., \(\lambda_i - \lambda_j \neq \pm \frac{2 \pi k}{T} \) \((k = 1, 2, \ldots) \) for any two eigenvalues, \(\lambda_i \) and \(\lambda_j \) of \(\lambda \) (Chen & Francis, 1995).

Lemma 1 (Chen & Francis, 1995). Suppose that the continuous-time system \(P \) in (1) is controllable and observable. The discrete-time model \(P_t \) in (2) is also controllable and observable if the sampling period \(T \) is non-pathological.

The proof can be found in Chen and Francis (1995). The conclusion of Lemma 1 can be extended to non-uniformly sampled systems.

Lemma 2. For the non-uniformly sampled discrete-time model \(P_t \), in (6), if no two eigenvalues of \(\lambda \), say, \(\lambda_i \) and \(\lambda_j \), satisfy the equality,
\[
\lambda_i - \lambda_j = \frac{2 \pi k}{T}, \quad k = 1, 2, 3, \ldots
\]
then observability of \(\mathbf{C} \) implies that of \(\mathbf{G} \) and controllability of \(\mathbf{A} \) implies that of \(\mathbf{F} \).

Proof. This proof is similar to that of the single-rate case (Chen & Francis, 1995).

The observability of \(\mathbf{C} \) implies that for any eigenvalue \(\lambda \) of \(\mathbf{A} \),
\[
\text{rank} \begin{bmatrix} \lambda - \mathbf{A} \\ \mathbf{C} \end{bmatrix} = n.
\]
Define the function,
\[
f(s) := \frac{\exp(Ts) - \exp(T\lambda)}{s - \lambda}
\]
which is analytic since the pole at \(s = \lambda \) is cancelled by a zero there. According to (7), we can draw that the zeros of \(f(s) \) is not the eigenvalues of \(\mathbf{A} \). Since the eigenvalues of the matrix \(f(A) \) are
Suppose that the continuous-time system P in [Sheng] and assume that τ is irrational. Thus, τ is non-uniformly sampled ones.

Since

$$\text{rank} \begin{bmatrix} f(A) & 0 \\ 0 & I_{(n+1)m} \end{bmatrix} = (n+1)m + n,$$

using (8), we have

$$\text{rank} \left[\exp(T\lambda)I_n - G \right] = n.$$

This implies observability of (Γ, G). The proof of controllability is similar and is omitted here.

The proof of controllability and observability can be found in [Francis and Georgiou 1988] and [Ding and Chen 2005d] for uniformly sampled dual-rate systems and in [Sheng et al. 2002] for non-uniformly sampled ones.

Lemma 2 shows that the choice of the frame sampling period T is apparently important for non-uniformly sampled systems to preserve controllability and observability of continuous-time systems. However, even if the condition in Lemma 2 is not satisfied (then T is called pathological), by proper choice of the sampling instants τ_i, controllability and observability of P_τ can still be preserved. Let us illustrate this by an example.

Consider a second-order system ($n = 2$) with

$$A = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix}, \quad C = [1, 0], \quad \omega > 0.$$

The pair (A, C) is in the observable canonical form and thus is observable. A has two eigenvalues $\pm \omega \sqrt{-1}$, so $\tau = \frac{2\pi}{\omega}$ is a pathological sampling period.

It is easily seen that (C, G_1) is not observable for the uniformly sampling pattern with the sampling period $\tau = \frac{2\pi}{\omega}$. For the non-uniformly sampling case, let $\tau_1 < \frac{2\pi}{\omega}$, $\tau_2 = \frac{2\pi}{\omega} - \tau_1$, $\tau_3 = \frac{2\pi}{\omega}$. Hence,

$$\tau_1 = \tau_2 < \tau_3 < \tau_4 = \frac{2\pi}{\omega}.$$

Not that τ_3 is pathological. One can check that

$$\text{rank} \begin{bmatrix} \Gamma \\ \Gamma G \end{bmatrix} = 2 = n.$$

Thus, (Γ, G) is observable.

A general result is stated below.

Lemma 3. Suppose that the continuous-time system P in (1) is controllable and observable. For the non-uniformly sampling pattern in Fig. 3 and any frame period T, let $\tau_1 = \tau_2 = \cdot \cdots = \tau_n = \tau_0$ and assume that $\frac{\pi n + 1}{\omega} = \sqrt{-1}$ is irrational, then the non-uniformly sampled system P_τ in (6) is always controllable and observable even if both the frame period T and sampling interval τ_0 are pathological.

The proof can be done in a similar way as in [Kreisselmeier 1999].

4. Computation of single-rate models

Assume that using some identification method, we have identified the parameter matrices (G, F, Γ, H) of the non-uniformly sampled system P_τ in (6), a natural question is from here to find the $n+1$ single-rate system models P_i with sampling periods τ_i. To get P_i from P_τ, in state-space data, we need to compute (G_1, F_1, C, D) from (G, F, Γ, H) according to (3). This is accomplished in a few steps.

4.1. Computation of C and D

According to the structures of Γ and H, C and D can be read directly from the first block row (first m rows of Γ, and D from the (1, 1) block (first m rows and first r columns) of H. Hence, we note that D appears in H in $(n+1)$ sub-blocks. In order to reduce numerical computation errors, we may take their average as D, i.e.,

$$D = 1 \frac{1}{n+1} \sum_{i=1}^{n+1} H(im - m + 1 : im, ir - r + 1 : ir),$$

where the notation $H(i : j ; p : q)$ denotes the sub-matrix consisting of rows i to j and columns p to q of H.

4.2. Computation of G_i

By formulating the extended observability matrix using Γ and C, or the extended controllability matrix using G and F, the matrices G_i can be computed by the shift invariance structure. The following is to give an approach to compute G_i. More specifically, define the extended observability matrix

$$Q_i = \begin{bmatrix} \Gamma \\ \Gamma G \\ \Gamma G^2 \\ \vdots \\ \Gamma G^N \\ CG^N \exp(A\tau_{n+1}) \end{bmatrix}$$

which is formed by Γ and G obtained by identification and assumed to be known. Likewise, use the entries of Q_i to form the matrices

$$\Gamma_i = \begin{bmatrix} C \exp(A\tau_i) \\ CG \exp(A\tau_i) \\ CG^2 \exp(A\tau_i) \\ \vdots \\ CG^N \exp(A\tau_i) \end{bmatrix}, \quad 0 \leq i \leq n + 1,$$
\[\Gamma_i = \Gamma_0 \exp(A t_i), \quad 1 \leq i \leq n + 1, \]

and

\[\Gamma_i = \Gamma_{i-1} \exp(A t_i), \quad 1 \leq i \leq n + 1. \]

Using the assumptions of observability and that the sampling intervals \(t_i \) are non-pathological, the matrices \(\Gamma_i \) have full column-rank for \(N \geq n - 1 \). Thus, matrices \(\exp(A t_i) \) and \(\exp(A t) \) are given by

\[\exp(A t_i) = (\Gamma_0^{'})^{-1} \Gamma_0^{'} \Gamma_i, \quad i = 1, 2, \ldots, n, \]

and

\[G_i = \exp(A t_i) = (\Gamma_i^{'})^{-1} \Gamma_i^{'}, \quad i = 1, 2, \ldots, n + 1, \]

where the superscript \(T \) is the transpose. Of course, \(G_i \) may be also obtained by post-multiplying (9) by \(\exp(-A t_{i-1}) \).

4.3. Computation of \(F_{t_i} \)

From the definition of \(F_t \) in (4), we have

\[F_{t_i} = \exp(-A t) G F_t = G^{-1} \exp(A t_i) F_i, \quad i = 1, 2, \ldots, n, \]

\[F_{t_{i+1}} = G^{-1} \exp(A t_{i+1}) F_{i+1} = F_{i+1}. \]

since \(G \) and \(F = [F_1, F_2, \ldots, F_{n+1}] \) are obtained by identification and \(\exp(A t_i) \) are available by (9).

We comment that when the single-rate models \(P_{t_i} \) are computed from \(P_n \), the assumptions of observability (\(\Gamma_i \) having full column-rank) or non-pathological conditions of \(t_i \) and \(T \) are required because one desires the single-rate models \(P_{t_i} = (G_i, F_i, C, D) \) to be observable, although this is not needed to preserve the observability of \(P_n \).

5. Reconstruction of continuous-time systems

Recovery of the continuous-time \(P \) from \(P_i \) is to determine the matrices \((A, B, C, D) \). The matrices \(C \) and \(D \) were obtained in the preceding section; in this section, we discuss how to find \(A \) and \(B \). From (2) and (3), the key of reconstructing the continuous-time system \(P = (A, B, C, D) \) is to compute the matrix \(A \) from \(P_i = (G_i, F_i, C, D) \). Once \(A \) is available, \(B \) is easily computed from (3) by

\[B = \left[\int_0^T \exp(A t) d t \right]^{-1} F_t, \]

since this integral matrix is invertible under the non-pathological condition.

According to Chen and Miller (2000), the key of finding \(A \) is to obtain the eigenvalues of \(A \), or the poles of \(P \) [the poles of the transfer matrix \(C(sI - A)^{-1} B + D \), if it is controllable and observable]. The details are as follows. Since the function \(f(s) = e^s \) is an analytic function over the entire complex plane, by the Spectral Mapping Theorem, the eigenvalues of \(f(A) \) equal the values of \(f(s) \) at the eigenvalues of \(A \). Thus, from (3), the eigenvalues \(\lambda_j(A) \) of \(A \) and eigenvalues \(\lambda_j(G_i) \) of \(G_i \) have the mapping relation:

\[G_i = \exp(A t_i) \implies \lambda_j(G_i) = \exp(\lambda_j(A t_i)), \quad i = 1, 2, \ldots, n. \]

Since \(e^s \) is periodic with period \(2\pi \), i.e., \(\exp(s + j 2\pi) = e^s \) where \(j = \sqrt{-1} \), from the above equation, the possible eigenvalues of \(A \) are

\[\lambda_j(A) = \frac{1}{\tau} \ln(\lambda_j(G_i)) = \frac{1}{\tau} \ln(\lambda_j(G_i)) + \frac{j 2k\pi}{\tau}, \quad k \in \mathbb{Z}, \]

where \(\mathbb{Z} \) denotes the set of integers, \(\ln(\lambda_j(G_i)) \) is the principal logarithm of \(\ln(\lambda_j(G_i)) \) and \(-\pi < \arg(\lambda_j(G_i)) \leq \pi \).

Define the eigenvalue set of \(A \) as follows:

\[\text{Eig}_r = \left\{ \frac{1}{\tau} \ln(\lambda_i(G_i)) + \frac{j 2k\pi}{\tau} : i = 1, 2, \ldots, n, \quad k \in \mathbb{Z} \right\}. \]

From (3), if one knows that \(A \) has all real eigenvalues, then so has \(G_i \). This can help eliminate every element of \(\text{Eig}_r \), except the real element \(\frac{1}{\tau} \ln(\lambda_i(G_i)) \), \(i = 1, 2, \ldots, n \). In such a case, the eigenvalues of \(A \) can be determined uniquely from its corresponding single discrete-time \(P_i \) or \(G_i \). To allow complex eigenvalues in \(A \), suppose we know an upper bound, \(\omega_{\text{max}} \), for the imaginary parts of eigenvalues \(\lambda_j(A) \), i.e.,

\[\text{Im}(\lambda_j(A)) \leq \omega_{\text{max}}, \quad i = 1, 2, \ldots, n. \]

Then if we sample fast enough, reconstruction of eigenvalues of \(A \) is possible from its corresponding single discrete-time \(P_i \). In fact, \(P \) is reconstructible if the sampling period \(\tau < \pi / \omega_{\text{max}} \) because the upper bound can be used to show that \(\text{Eig}_r \) has exactly \(n \) elements. This is reminiscent of the well-known Shannon’s Sampling theorem. However, from here we also know that the poles of the continuous-time \(P \) cannot be uniquely determined from the poles of its single discrete-time \(P_i \), without other information such as the pole locations as above.

The purpose here is to recover \(P \) by introducing several discretized models \(P_{t_j} = (G_{t_j}, F_{t_j}, C, D) \) for different choices of \(t_j \), but, how to choose these sampling periods \(t_j \) so that from these models \(P_{t_j} \) we can reconstruct \(P \)? That is, can one determine the poles of the continuous-time system \(P \) or the eigenvalues of \(A \) uniquely from several \(G_{t_j} \) by appropriately choosing sampling periods \(\tau_j, j = 1, 2, \ldots, l \)? The answer is yes. The system \(G_{t_j} \) ’s give rise to the (possible) eigenvalue set of \(A \) as follows:

\[\text{Eig}_{t_j} = \left\{ \frac{1}{\tau_j} \ln(\lambda_i(G_{t_j})) + \frac{j 2k\pi}{\tau_j}, i = 1, 2, \ldots, n, \quad k \in \mathbb{Z} \right\}, \]

\[j = 1, 2, \ldots, l. \]

If their intersection set

\[\text{Eig}_{t_1} \bigcap \text{Eig}_{t_2} \bigcap \cdots \bigcap \text{Eig}_{t_l} \]

has exactly \(n \) elements by choosing the sampling periods \(t_j \) properly, then the eigenvalues of \(A \) are reconstructible. Clearly, the choice of sampling periods plays an important role in the reconstruction of \(P \). This can be summarized as the following lemma.

Lemma 4. For at most \(n + 1 \) sampling periods \(t_j, j = 1, 2, \ldots, n + 1 \), the eigenvalues \(\lambda_j(A) \) of the continuous-time system can be uniquely determined from the set in (10) if the ratios of any two of \(t_j \) are irrational.

Proof. If we can prove that the eigenvalue intersection set of \(A \),

\[\text{Eig}_{t_1} \bigcap \text{Eig}_{t_2} \bigcap \cdots \bigcap \text{Eig}_{t_{n+1}} \]

has exactly \(n \) elements \(\{\mu_1, \mu_2, \ldots, \mu_n\} \), then the conclusion of Lemma 4 is true. So suppose that it does not, i.e., that there exists a \(\mu \) in this set which is not in \(\{\mu_1, \mu_2, \ldots, \mu_n\} \). Then from the definition of \(\text{Eig}_{t_j} \), there must exist \(t_1, t_2, \ldots, t_{n+1} \in [1, 2, \ldots, n] \) and \(k_1, k_2, \ldots, k_{n+1} \in \mathbb{Z} \) satisfying

\[\mu = \mu_1 + \frac{2\pi k_1}{t_1}, \quad \mu = \mu_2 + \frac{2\pi k_2}{t_2}, \quad \ldots \quad \mu = \mu_{n+1} + \frac{2\pi k_{n+1}}{t_{n+1}}. \]

Thus,

\[\text{Re}(\mu_j) = \text{Re}(\mu_1) = \cdots = \text{Re}(\mu_{n+1}). \]

It follows that two of the \(\mu_j \) ’s must be equal; without loss of generality we assume that \(\mu_{i_1} = \mu_{i_2} \). Hence

\[\frac{2\pi k_1}{t_1} = \frac{2\pi k_2}{t_2}. \]
Due to the assumption that μ is not an eigenvalue of A, neither k_1 nor k_2 can be zero, which means that $\tau_1 = k_1$ and $\tau_2 = k_2$.

A rational number. This is a contradiction. Hence Lemma 4 is proven.

Once the eigenvalues $\lambda_i(A)$ of A are found, it is relatively routine to compute A from G_i. The following is to give a way to find A from G_i. When A has n distinct eigenvalues, so does G_i, because τ is non-pathological with respect to A, then G_i and A share same eigenvectors. Let T be the matrix consisting of the eigenvectors of G_i and A

$$\begin{pmatrix}
\lambda_1[G_i] \\
\vdots \\
\lambda_n[G_i]
\end{pmatrix}
\begin{pmatrix}
\lambda_1[A] \\
\vdots \\
\lambda_n[A]
\end{pmatrix}
\begin{pmatrix}
\lambda_1[G_i] \\
\vdots \\
\lambda_n[G_i]
\end{pmatrix}
\begin{pmatrix}
\lambda_1[A] \\
\vdots \\
\lambda_n[A]
\end{pmatrix}
= T
\begin{pmatrix}
\lambda_1[G_i] \\
\vdots \\
\lambda_n[G_i]
\end{pmatrix}
\begin{pmatrix}
\lambda_1[A] \\
\vdots \\
\lambda_n[A]
\end{pmatrix}
= T
.$$

Replacing $\lambda_i[G_i]$ by $\lambda_i[A]$ yields

$$\begin{pmatrix}
\lambda_1[A] \\
\vdots \\
\lambda_n[A]
\end{pmatrix}
\begin{pmatrix}
\lambda_1[A] \\
\vdots \\
\lambda_n[A]
\end{pmatrix}
= T
\begin{pmatrix}
\lambda_1[G_i] \\
\vdots \\
\lambda_n[G_i]
\end{pmatrix}
\begin{pmatrix}
\lambda_1[A] \\
\vdots \\
\lambda_n[A]
\end{pmatrix}
= T
.$$

Since G_i has been obtained in the preceding section, T can be computed according to G_i.

If A is not diagonalizable, but A and G_i have the same Jordan structure, by which we can find A from G_i.

6. Parameter identification algorithms

In the preceding two sections, assuming that the parameter matrices (G, F, Γ, H) of the non-uniformly sampled system in (6) are known, we have discussed computation of the single-rate models with different sampling intervals and recovery of the continuous-time system. Next, we develop the identification algorithms for non-uniformly sampled systems, including the two cases with either known or unknown states.

6.1. The case with known state

In practice, the system output and/or states are often contaminated by disturbances and after introducing uncorrelated noise vectors $[w(kT), v(kT)]$, the system in (6) becomes

$$P_n: \begin{bmatrix}
\dot{x}(kT + T) \\
\dot{y}(kT)
\end{bmatrix}
= \begin{bmatrix}
G & F \\
\Gamma & H
\end{bmatrix}
\begin{bmatrix}
x(kT) \\
v(kT)
\end{bmatrix}
+ \begin{bmatrix}
w(kT) \\
v(kT)
\end{bmatrix}
.$$

Define the parameter matrix θ, information vector $\varphi_0(kT)$, generalized output vector $Z_0(kT)$ and noise vector $E(kT)$ as

$$\begin{bmatrix}
G & F \\
\Gamma & H
\end{bmatrix}
\begin{bmatrix}
x(kT + T) \\
\dot{y}(kT)
\end{bmatrix}
= \begin{bmatrix}
\dot{x}(kT) \\
v(kT)
\end{bmatrix}
.$$

The system in (11) may be written as a linear regression model,

$$Z_0(kT) = \theta^T \varphi_0(kT) + E(kT).$$

Suppose the input and output data are available and persistently exciting. If the system states $x(kT)$ are measured [i.e., $Z(kT)$ and $\varphi_0(kT)$ are known], then the parameter matrix θ can be estimated by the least squares algorithm:

$$\hat{\theta}(kT + T) = \hat{\theta}(kT) + P_0(kT + T) \varphi_0(kT)
\begin{bmatrix}
Z_0^T(kT) - \varphi_0^T(kT) \hat{\theta}(kT)
\end{bmatrix},$$

$$P_0(kT + T) = P_0(kT) - \frac{P_0(kT) \varphi_0(kT) \varphi_0^T(kT) P_0(kT)}{1 + \varphi_0^T(kT) P_0(kT) \varphi_0(kT)}.$$

where $P_0(kT)$ denotes the covariance matrix and $\hat{\theta}(kT)$ represents the estimate of θ with

$$\begin{bmatrix}
\hat{G}(kT) \\
\hat{F}(kT) \\
\hat{\Gamma}(kT) \\
\hat{H}(kT)
\end{bmatrix}
= \hat{\theta}^T(kT).$$

6.2. The case with unknown states

If the states are not measured, it is clear that the identification expression in (12) contains both the unknown state vector $x(kT)$ in $\varphi_0(kT)$ and unknown parameter matrix θ and thus, the least squares algorithm in (13) and (14) cannot be applied to identify the models in (12). In order to determine the parameter matrix θ and state vector $x(kT)$, that is to say, to determine the unknown system matrices (G, F, Γ, H), we derive combined state and parameter estimation algorithms according to the hierarchical identification principle (Ding & Chen, 2005a,b,d). The basic idea is as follows: when recursive estimating the parameter matrix θ, the unknown state vector $x(kT)$ is replaced by its corresponding estimate $\hat{x}(kT)$, and $\varphi_0(kT)$ by $\varphi(kT)$; in the same way, when estimating the system vector $x(kT + T)$, the unknown parameter matrix θ is also replaced by the estimate $\hat{\theta}(kT)$. Based on this idea, we easily derive the following hierarchical identification algorithm consisting of both parameter and state estimation steps as follows.

• The first step: The state estimation algorithm

Let $\hat{x}(kT)$ be the estimates of $x(kT)$. Assume that at time kT, we have gotten the estimates $\hat{x}(kT)$ and input–output $u(kT)$ and $y(kT)$, and parameter estimation $\hat{\theta}(kT)$ obtained in the second step:

$$\hat{\theta}(kT + T) = \hat{\theta}(kT) + \frac{\hat{G}(kT) \hat{x}(kT) + \hat{F}(kT) u(kT) + L_1(kT) y(kT)}{-\hat{\Gamma}(kT) \hat{x}(kT) - \hat{H}(kT) u(kT)},$$

$$L_1(kT) = \hat{G}(kT) P_1(kT) \hat{H}(kT)^{-1},$$

$$P_1(kT + T) = \frac{\hat{G}(kT) - L_1(kT) \hat{H}(kT)}{L_1(kT)} \times \frac{P_1(kT) \hat{G}(kT) + R_w}{1 + \varphi_0^T(kT) P_1(kT) \varphi_0(kT)}.$$

where $L_1(kT)$ and $P_1(kT)$ are the algorithm gain and covariance matrices, respectively, the estimates $(\hat{G}(kT), \hat{F}(kT), \hat{\Gamma}(kT), \hat{H}(kT))$ of (G, F, Γ, H) are formed by using the entries of the obtained $\hat{\theta}(kT)$ by (15) in the second step, and the covariance matrices R_w and R_w of $w(kT)$ and $v(kT)$ are replaced by their estimates.
\(\hat{R}_w(kT) = \frac{1}{k} \sum_{i=1}^{k} \left[\hat{x}(iT + T) - \hat{G}(kT) \hat{x}(iT) - \hat{F}(kT) \mu(iT) \right] \times \left[\hat{x}(iT + T) - \hat{G}(kT) \hat{x}(iT) - \hat{F}(kT) \mu(iT) \right]^T \), \(\hat{R}_o(kT) = \frac{1}{k} \sum_{i=1}^{k} \left[\nu(iT) - \hat{F}(kT) \hat{x}(iT) - \hat{H}(kT) \mu(iT) \right] \times \left[\nu(iT) - \hat{F}(kT) \hat{x}(iT) - \hat{H}(kT) \mu(iT) \right]^T \). \(\hat{R}_w(kT) \) and \(\hat{R}_o(kT) \) are defined as the within- and between-epoch covariances, respectively, and \(\hat{R}_w(kT) \) is usually small compared to \(\hat{R}_o(kT) \) due to the slow changes in the parameter values.

The state estimator in (16)–(20) is derived by using the obtained parameter estimates based on the Kalman filtering principle. But this estimator involves heavy computational efforts; for computational efficiency, a stochastic approximation algorithm may be used for state estimation without computing the covariance matrices:

\[
\begin{align*}
\hat{x}(kT + T) &= \hat{G}(kT) \hat{x}(kT) + \hat{F}(kT) \mu(kT) + \rho(kT) \hat{\Gamma}^T(kT)[\nu(kT) - \hat{F}(kT) \hat{x}(kT) - \hat{H}(kT) \mu(kT)], \\
\hat{P}(kT + T) &= \rho(kT) \hat{\Gamma}(kT) + \hat{P}(kT) + \rho(kT) \hat{\Gamma}(kT) + \rho(kT) \hat{\Gamma}(kT) - \hat{R}(kT),
\end{align*}
\]

where \(\rho(kT) \) is the convergence factor satisfying \(\rho(kT) \geq 0, \sum_{k=1}^{\infty} \rho(kT) = \infty, \sum_{k=1}^{\infty} \rho^2(kT) < \infty. \)

7. Example

Consider the system depicted in Fig. 4 with the process model \(P \),

\[
P(s) = \frac{s + 0.8}{s^2 + 0.8s + 0.8}
\]

which has the following state space realization,

\[
\begin{align*}
\hat{x}(t) &= \begin{bmatrix} -0.8 & -0.8 \\ 1 & 0 \end{bmatrix} \hat{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \\
y(t) &= \begin{bmatrix} 1 & 0.8 \end{bmatrix} \hat{x}(t).
\end{align*}
\]

Let \(t_0 = \sqrt{2} - 1, t_2 = T, t_1 = t_1 s, t_2 = 2 - \sqrt{2} s. \) Discretizing this example system and introducing the noise vectors, we get

\[
\begin{align*}
x(kT + T) &= \begin{bmatrix} 0.22659 \\ -0.48086 \\ 0.60107 \\ 0.70745 \end{bmatrix} x(kT) + \begin{bmatrix} 0.15443 \\ 0.44665 \\ 0.22129 \\ 0.1444 \end{bmatrix} u(kT) + w(kT), \\
y(kT) &= \begin{bmatrix} 0.93905 \\ 0.47557 \end{bmatrix} x(kT) + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u(kT + t_1) + w(kT).
\end{align*}
\]

The identification procedure is summarized as follows: First, we use the \(\text{idinput} \) function in Matlab to generate a random signal sequence with zero mean and unit variance as the input signal and two uncorrelated noise sequences with zero mean and variances \(\sigma^2 = 0.1^2 \) as \(w(kT) \) and \(v(kT) \), and then compute the states and outputs. Second, based on the input–output and state data with corrupted noises, we apply the identification algorithm in the preceding section to estimate the parameters of the non-uniformly sampled system. The parameter estimation error \(\delta \) versus \(kT \) is shown in Fig. 5, where \(\delta := ||\hat{\theta}(kT) - \theta||/||\theta|| \). \(||X||^2 := \text{tr}(XX^T) \), \(\theta \) represents the true parameter matrix, \(\hat{\theta}(kT) \) the estimate of \(\theta \).

The identification results are as follows. The estimated system matrices:

\[
\hat{G} = \begin{bmatrix} 0.23336 \\ 0.60267 \\ 0.71027 \end{bmatrix}, \quad \hat{F} = \begin{bmatrix} 0.15635 \\ 0.44578 \\ 0.22443 \\ 0.14320 \end{bmatrix},
\]

\[
\hat{H} = \begin{bmatrix} 1.00020 \\ 0.79904 \\ 0.93456 \\ 0.47766 \end{bmatrix}, \quad \hat{H} = \begin{bmatrix} 0.00466 \\ 0.00037 \\ 0.40294 \\ 0.00125 \end{bmatrix}.
\]

The eigenvalues of \(\hat{G} \):

\[
\lambda[\hat{G}] = \{0.79877 + j0.26836, 0.79877 - j0.26836\}.
\]
The transform matrix:
\[T = \begin{bmatrix} -0.29544 + j0.59596 & -0.29544 - j0.59596 \\ 0.74669 & 0.74669 \end{bmatrix}. \]

The eigenvalues of \(\hat{A} \):
\[\{\lambda_1[\hat{A}], \lambda_2[\hat{A}]\} = \{-0.39484 + j0.79505, -0.39484 - j0.79505\}. \]

The estimated parameter matrices of the continuous-time system:
\[\hat{A} = T \begin{bmatrix} \lambda_1[\hat{A}] & \lambda_2[\hat{A}] \end{bmatrix} T^{-1} = \begin{bmatrix} -0.78897 & -0.79050 \\ 0.99613 & -0.00071 \end{bmatrix}. \]
\[\hat{B} = \left(\int_0^\tau \exp(\hat{A}t)dt \right)^{-1} \begin{bmatrix} \hat{F}(\cdot, 1) + \hat{F}(\cdot, 2) \end{bmatrix} = \begin{bmatrix} 0.99652 \\ 0.00338 \end{bmatrix}. \]
\[\hat{C} = \hat{G}(1, :) = [1.00020, 0.79904]. \]
\[\hat{D} = [\hat{H}(1, 1) + \hat{H}(2, 2)]/2 = 0.00296. \]

The estimated transfer function:
\[\hat{P}(s) = \frac{\hat{C}[s - \hat{A}]^{-1}\hat{B} + \hat{D}}{s^2 + 0.00296s^2 + 1.002s + 0.7956}. \]

\[\hat{P}_0(s) = \frac{s + 0.7933}{s^2 + 0.7897s + 0.788}. \]

The step responses of \(P(s) \) and \(\hat{P}_0(s) \) in Fig. 7 are also very close.

8. Conclusions

This paper addresses some related issues of non-uniformly sampled systems, including computation of single-rate models with different sampling periods and recovery of the continuous-time systems from their non-uniformly sampled systems. It is shown that a continuous-time system can be reconstructed uniquely from its non-uniformly sampled discrete-time model. Finally, parameter identification algorithms for non-uniformly sampled discrete-time systems are developed.

Acknowledgements

This work was supported by the Hong Kong Research Grants Council 618906, the Natural Sciences and Engineering Research Council of Canada, the National Natural Science Foundation of China, the 111 Project (B08015) and the Natural Science Foundation of Jiangsu Province (China, BK2007017) and by Program for Innovative Research Team of Jiangnan University.

References

Feng Ding was born in Guangshui, Hubei Province. He received the B.Sc. degree from the Hubei University of Technology (Wuhan, China) in 1984, and the M.Sc. and Ph.D. degrees in automatic control both from the Department of Automation, Tsinghua University in 1991 and 1994, respectively.

From 1984 to 1988, he was an Electrical Engineer at the Hubei Pharmaceutical Factory, Xiangfan, China. From 1994 to 2002, he was with the Department of Automation at the Tsinghua University, Beijing, China and he was a Research Associate at the University of Alberta, Edmonton, Canada from 2002 to 2005.

He is now a Full Professor in the Control Science and Engineering Research Center at the Jiangnan University, Wuxi, China. His current research interests include model identification and adaptive control. He co-authored the book Adaptive Control Systems (Tsinghua University Press, Beijing, 2002), and published over 100 papers on modeling and identification as the first author.

Li Qiu received the B.Eng. degree from Hunan University, Changsha, Hunan, China, in 1981, and the M.A.Sc. and Ph.D. degrees from the University of Toronto, Toronto, Ont., Canada, in 1987 and 1990, respectively, all in electrical engineering. He joined Hong Kong University of Science and Technology, Hong Kong SAR, China, in 1993, where he is now a professor of Electronic and Computer Engineering.

Prof. Qiu's research interests include system, control, information theory, and mathematics for information technology. He served as an associate editor of the IEEE Transactions on Automatic Control and an associate editor of Automatica. He is now a Distinguished Lecturer of IEEE Control Systems Society and the general chair of the 7th Asian Control Conference, which is to be held in Hong Kong in 2009. He is a fellow of IEEE.

Tongwen Chen received the B.Eng. degree in Automation and Instrumentation from Tsinghua University (Beijing) in 1984, and the M.A.Sc. and Ph.D. degrees in Electrical Engineering from the University of Toronto in 1988 and 1991, respectively. From 1991 to 1997, he was an Assistant/Associate Professor in the Department of Electrical and Computer Engineering at the University of Calgary, Canada. Since 1997, he has been with the Department of Electrical and Computer Engineering at the University of Alberta, Edmonton, Canada, and is presently a Professor. He has held visiting positions at the Hong Kong University of Science and Technology, Kumamoto University, and Northeastern University.

His research interests include computer- and network-based control systems, process control, multirate digital signal processing, and their applications to industrial problems. He co-authored with B.A. Francis the book Optimal Sampled-Data Control Systems (Springer, 1995). Dr. Chen received a McCalla Professorship for 2000-2001 and a Killam Professorship for 2006–2007, both from the University of Alberta, and a Fellowship from the Japan Society for the Promotion of Science for 2004. He was elected an IEEE Fellow in 2005. He has served as an Associate Editor for several international journals, including IEEE Transactions on Automatic Control, Automatica, Systems and Control Letters, and Journal of Control Science and Engineering. He is a registered Professional Engineer in Alberta, Canada.