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a b s t r a c t

A continuous-time system cannot be recovered solely from its uniformly sampled discrete-time model
through the zero-order hold discretization or step-invariant transformation, but our studies indicate
that it can be recovered uniquely from its non-uniformly sampled discrete-time model. In this
paper, we discuss some related issues of non-uniformly sampled systems, including model derivation,
controllability and observability, computation of single-rate models with different sampling periods,
reconstruction of continuous-time systems, and parameter identification of non-uniformly sampled
discrete-time systems. A numerical example is also given for illustration.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a continuous-time system with the following state
space representation

P :
{
ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t)+ Du(t), (1)

where x(t) ∈ Rn, u(t) ∈ Rr and y(t) ∈ Rm are the state,
input and output vectors, respectively; A ∈ Rn×n, B ∈ Rn×r ,
C ∈ Rm×n and D ∈ Rm×r are constant matrices. Suppose that the
sampling interval is τ . By using the step-invariant transformation
or the zero-order hold (ZOH) discretization, i.e., taking u(t) =
u(kτ), kτ ≤ t < (k + 1)τ and sampling the system in (1) give
a discrete-time model (Chen & Francis, 1995):

Pτ :
{
x(kτ + τ) = Gτx(kτ)+ Fτu(kτ),
y(kτ) = Cx(kτ)+ Du(kτ), k = 0, 1, 2, . . . (2)

I This paper was not presented at any IFAC meeting. This paper was
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under the direction of Editor Ian R. Petersen.
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where x(kτ) = x(t) |t=kτ , y(kτ) = y(t) |t=kτ , and

Gτ := exp(Aτ), Fτ :=
∫ τ

0
exp(At)dtB. (3)

The discrete-time system Pτ is shown in Fig. 1, where H and S
denote the ZOH and sampler with the period τ , respectively. We
call Pτ a single-rate sampled-data system since there exists only
one sampling rate 1/τ in the system. (Conventional sampled-data
systems are single-rate ones.)
On the reconstruction/identification of continuous-time sys-

tems based on discrete-time data, conventional sampled-data
methods use only one equidistant sampling interval, and hence the
continuous-time models obtained are non-unique, e.g., one is the
equivalent ramp invariant continuous-time model corresponding
to a given discrete-time one (Bingulac & Cooper, 1990). In order
to obtain a unique continuous-time model from a given discrete-
time model, one generally requires some further information of
the continuous-time system, e.g., pole locations (Sinha & Lastman,
1982).
It is well known that for a given continuous-time model P

and sampling period τ , the corresponding discrete-time model
Pτ is unique, but for given τ and Pτ , there exist infinite many
continuous-time models giving rise to the same discrete-time
model Pτ . Thus, one cannot recover or reconstruct the continuous-
time system from its discretized model Pτ and τ without further

0005-1098/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2008.08.007



Author's personal copy

F. Ding et al. / Automatica 45 (2009) 324–332 325

Fig. 1. The discrete-time sampled-data system.

Fig. 2. n+1 equidistant sampling schemes yielding the continuous-time system P .

information. Recent studies indicated that for given n + 1
sampling periods τ1, τ2, . . . , τn+1, the continuous-time model P ,
with possibly complex matrix parameters, may be reconstructed
uniquely from the n+1 discrete-timemodels Pτi , i = 1, 2, . . . , n+
1 (Chen & Miller, 2000); this case is illustrated in Fig. 2.
Using discrete-time system identification techniques (Ding &

Chen, 2005a,b, 2007; Goodwin & Sin, 1984; Ljung, 1999), it is
easy to identify the n + 1 models Pτi from given (discrete-time)
input–output data; however, the difficulty lies in that we have to
conduct experiments for n + 1 sampled-data configurations with
different sampling periods. To simplify this process, we present a
sampling pattern shown in Fig. 3 in which the sampling instants
are spaced apart non-uniformly by τ1, τ2, . . . , τn+1, and the whole
sampling process is repeated over the so-called frame period T =
τ1 + τ2 + · · · + τn+1 = tn+1. It will be shown later that under this
sampling scheme, we can reconstruct the continuous-time model
from a single discretized model, thus combining n + 1 different
identification experiments into one.
The non-uniformly sampling scheme proposed relates closely

to multirate sampling. Multirate systems have had wide applica-
tions in chemical and petroleum processes (Gudi, Shah, & Gray,
1994, 1995; Tatiraju, Soroush, & Mutharasan, 1999) and a series
of results have been achieved in theory, including controllability
and observability (Francis & Georgiou, 1988; Kreisselmeier, 1999),
robust control (Chen & Qiu, 1994), optimal control (Qiu & Chen,
1999), adaptive control (Ding & Chen, 2004a; Zhang, Middleton,
& Evans, 1989), predictive control (Scattolinis & Schiavoni, 1995;
Sheng, Chen, & Shah, 2002), modeling and identification (Ding &
Chen, 2004b,c, 2005c,d; Ding, Chen, & Iwai, 2007; Ding & Ding,
2008), and so on.
In the area of multirate/non-uniformly sampled systems,

Francis and Georgiou (1988) presented the conditions of pre-
serving controllability/observability for sampled-data systems;
Kreisselmeier (1999) explored a multirate sampling scheme to
achieve observability/controllability in discrete-time systems, and
Sheng et al. (2002) further discussed the results in non-uniformly
sampled systems. Other studies of non-uniformly sampled systems
include the real-time control by Albertos and Crespo (1999), gener-
alized predictive control by Sheng et al. (2002), and subspace iden-
tification based fault detection and isolation by Li, Han, and Shah
(2006).
To the best of our knowledge, few contributions have addressed

modeling, estimation and reconstruction issues for non-uniformly

sampled systems, which are the focus of this work. For the non-
uniformly sampling pattern depicted in Fig. 3, our objective is two-
fold:
• First, establish a mathematical model of the non-uniformly
sampled system from input u(kT + ti) to output y(kT + ti), and
study the related controllability and observability issues.
• Second, by means of a shift invariance property, derive each
single-rate model Pτi from the non-uniformly sampled system,
and from here reconstruct the continuous-time system. Finally,
develop identification algorithms for estimating the parameters
of the non-uniformly sampled system, based on the given
input–output data {u(kT + ti), y(kT + ti) : i = 1, 2, . . . , n+ 1,
k = 0, 1, 2, . . .}.
The rest of the paper is organized as follows. Section 2 derives

mathematical models for non-uniformly sampled systems from
continuous-time systems. Section 3 discusses the controllability
and observability of the non-uniformly sampled systems; Section 4
computes single-rate models from the non-uniformly sampled
models. Section 5 reconstructs the original continuous-time
systems based on the single-rate discrete-time models obtained.
Section 6 discusses the identification issues for non-uniformly
sampled systems. Section 7 presents an illustrative example
validating the methods proposed. Finally, Section 8 offers some
concluding remarks.

2. Model derivations

This paper focuses on a class of non-uniformly (multirate)
sampled systems depicted in Fig. 4, the input updating and output
sampling pattern being shown in Fig. 3, where P is a continuous-
time process with the representation in (1), H and S denote the
non-uniform ZOH and sampler with the following characteristics:

u(t) =


u(kT ), kT ≤ t < kT + t1,
u(kT + t1), kT + t1 ≤ t < kT + t2,
...

u(kT + tn), kT + tn ≤ t < (k+ 1)T ,

with y(kT+ti) = y(t)
∣∣t=kT+ti , i = 0, 1, . . . , n, and k = 0, 1, 2, . . ..

{τ1, τ2, . . . , τn+1} are the updating and sampling intervals, t =
kT + ti are the updating and sampling instants and T = τ1 +
τ2 + · · · + τn+1 = tn+1 is the frame period, where t0 = 0,
ti = ti−1 + τi = τ1 + τ2 + · · · + τi. The control input u is updated
n + 1 times at the instants t = kT + ti (i = 0, 1, . . . , n) over the
kth period [kT , (k+ 1)T ) and the output y is sampled n+ 1 times
at the instants t = kT + ti (i = 0, 1, . . . , n) over the kth period
[kT , (k + 1)T ). This is the non-uniform updating and sampling
scheme.
Next, we derive a mathematical model of the non-uniformly

sampled system in Fig. 4. Integrating (1) from t = kT to t = kT + ti
gives
x(kT + ti) = exp(Ati)x(kT )

+

∫ kT+ti

kT
exp[A(kT + ti − s)]Bu(s)ds

= exp(Ati)x(kT )

+

i∑
j=1

∫ kT+tj

kT+tj−1
exp[A(kT + ti − s)]Bds

× u(kT + tj−1).

Fig. 3. A non-uniformly sampling scheme yielding the continuous-time system P .
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A change of variable t = kT + tj − s yields

x(kT + ti) = exp(Ati)x(kT )+
i∑
j=1

exp[A(ti − tj)]

×

∫ τj

0
exp(At)dtBu(kT + tj−1)

=: Gix(kT )+
i∑
j=1

exp[A(ti − tj)]Fτju(kT + tj−1).

where

Gi := exp(Ati) ∈ Rn×n, i = 1, 2, . . . , n+ 1,
G := Gn+1 = exp(AT ) = exp(Atn+1) ∈ Rn×n,

Fτi :=
∫ τi

0
exp(At)dtB ∈ Rn×r .

Define

Fi := exp(A(T − ti))Fτi = GG−1i Fτi ∈ Rn×r , (4)

F := [F1, F2, . . . , Fn+1] ∈ Rn×(n+1)r

u(kT ) :=


u(kT )

u(kT + t1)
u(kT + t2)

...
u(kT + tn)

 ∈ R(n+1)r

(The non-uniformly stacked input vector). (5)

When i = n+ 1, we have

x(kT + T ) = x(kT + tn+1)

= Gx(kT )+
n+1∑
j=1

exp[A(T − tj)]Fτju(kT + tj−1)

= Gx(kT )+ Fu(kT ).

The outputs at the sampling instants can be expressed as

y(kT + ti) = Cx(kT + ti)+ Du(kT + ti)
=: CGix(kT )+ Hiu(kT ),

where

Dij := CGiG−1j Fτ1 ∈ Rm×r , j = 1, 2, . . . , i,

Hi := [Di1,Di2, . . . ,Dii,D, 0, . . . , 0] ∈ Rm×(n+1)r .

Hence, we get a mathematical model of the non-uniformly
sampled system as follows:

Pn :

[
x(kT + T )
y(kT )

]
=

[
G F
0 H

] [ x(kT )
u(kT )

]
, (6)

where

0 :=


C

CG1
CG2
...

CGn

 =


C
C exp(At1)
C exp(At2)

...
C exp(Atn)

 ∈ R(n+1)m×n,

H :=


H0
H1
H2
...
Hn

 ∈ R(n+1)m×(n+1)r ,

Fig. 4. The non-uniformly sampling systems.

y(kT ) :=


y(kT )

y(kT + t1)
y(kT + t2)

...
y(kT + tn)

 ∈ R(n+1)m

(The non-uniformly stacked output vector).

In order to identify the parameters of this model from the
input–output data, the system in (6) needs to be controllable
and observable. The next section is devoted to the study of
controllability and observability of the model in (6).

3. Controllability and observability

For conventional single-rate sampled-data systems, it is well
known that the process of discretization may result in loss of
controllability and observability, and cannot gain controllability
and observability (Chen & Francis, 1995). For non-uniformly
sampled systems, assume controllability and observability of
the continuous-time model in (1); under what conditions the
controllability and observability are preserved for themodel in (6)?
The sampling frequency ωs := 2π

τ
is pathological (relative to A)

if A has two eigenvalues with equal real parts and imaginary parts
that differ by an integer multiple of ωs. Otherwise, the sampling
frequency is non-pathological, i.e., λi − λj 6= ±

2kπ
√
−1

τ
(k =

1, 2, . . .) for any two eigenvalues, λi and λj, of A (Chen & Francis,
1995).

Lemma 1 (Chen & Francis, 1995). Suppose that the continuous-time
system P in (1) is controllable and observable. The discrete-timemodel
Pτ in (2) is also controllable and observable if the sampling period τ is
non-pathological.

The proof can be found in Chen and Francis (1995). The
conclusion of Lemma 1 can be extended to non-uniformly sampled
systems.

Lemma 2. For the non-uniformly sampled discrete-time model Pn in
(6), if no two eigenvalues of A, say, λi and λj, satisfy the equality,

λi − λj = ±
2kπ
√
−1

T
, k = 1, 2, 3, . . . (7)

then observability of (C,A) implies that of (0,G) and controllability
of (A, B) implies that of (G, F).

Proof. This proof is similar to that of the single-rate case (Chen &
Francis, 1995).
The observability of (C,A) implies that for any eigenvalue λ

of A,

rank
[
λIn − A

C

]
= n. (8)

Define the function,

f (s) :=
exp(Ts)− exp(Tλ)

s− λ

which is analytic since the pole at s = λ is cancelled by a zero
there. According to (7), we can draw that the zeros of f (s) is not
the eigenvalues of A. Since the eigenvalues of the matrix f (A) are
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precisely the values of f (s) at the eigenvalues of A, so s = 0 is not
an eigenvalue of f (A), then f (A) is invertible. From the equality,

exp(Ts)− exp(Tλ) = f (s)(s− λ),

we have

G − exp(Tλ)In = f (A)(A− λIn),

note that the eigenvalue of G is exp(Tλ). Thus,

[
exp(Tλ)In − G

0

]
=

[
f (A) 0
0 I(n+1)m

]
λIn − A

C
CG1
...

CGn

 .
Since

rank
[
f (A) 0
0 I(n+1)m

]
= (n+ 1)m+ n,

using (8), we have

rank
[
exp(Tλ)In − G

0

]
= n.

This implies observability of (0,G). The proof of controllability is
similar and is omitted here. �

The proof of controllability and observability can be found
in Francis and Georgiou (1988) and Ding and Chen (2005d) for
uniformly sampled dual-rate systems and in Sheng et al. (2002) for
non-uniformly sampled ones.
Lemma 2 shows that the choice of the frame sampling period

T is apparently important for non-uniformly sampled systems
to preserve controllability and observability of continuous-time
systems. However, even if the condition in Lemma 2 is not satisfied
(then T is called pathological), by proper choice of the sampling
instants ti, controllability and observability of Pn can still be
preserved. Let us illustrate this by an example.
Consider a second-order system (n = 2)with

A =
[
0 1
−ω2 0

]
, C = [1, 0], ω > 0.

The pair (A, C) is in the observable canonical form and thus is
observable. A has two eigenvalues ±ω

√
−1, so τ = 2π

ω
is a

pathological sampling period.
It is easily seen that (C,Gτ ) is not observable for the uniformly

sampling pattern with the sampling period τ = 2π
ω
. For the non-

uniformly sampling case, let τ1 < π
ω
, τ2 = π

ω
− τ1, τ3 = π

ω
. Hence,

t1 = τ1, t2 = τ1 + τ2 = π
ω
, t3 = τ1 + τ2 + τ3 = 2π

ω
= T . Note that

T is pathological. One can check that

rank
[
0

0G

]
=


C

C exp(At1)
C exp(At2)
C exp(AT )

C exp(At1) exp(AT )
C exp(At2) exp(AT )

 = 2 = n.
Thus, (0,G) is observable.
A general result is stated below.

Lemma 3. Suppose that the continuous-time system P in (1) is
controllable and observable. For the non-uniformly sampling pattern
in Fig. 3 and any frame period T , let τ1 = τ2 = · · · = τn =: τ0
and assume that τn+1

τ0
is irrational, then the non-uniformly sampled

system Pn in (6) is always controllable and observable even if both the
frame period T and sampling interval τ0 are pathological.

The proof can be done in a similar way as in Kreisselmeier
(1999).

4. Computation of single-rate models

Assume that using some identification method, we have
identified the parameter matrices (G, F ,0,H) of the non-
uniformly sampled system Pn in (6), a natural question is from
here how to find the n + 1 single-rate system models Pτi with
sampling periods τi. To get Pτi from Pn in state-space data, we need
to compute (Gτi , Fτi , C,D) from (G, F ,0,H) according to (3). This
is accomplished in a few steps.

4.1. Computation of C and D

According to the structures of 0 and H , C can be read directly
from the first block row (first m rows) of 0, and D from the (1, 1)
block (firstm rows and first r columns) ofH . However,we note that
D appears in H in (n+ 1) sub-blocks. In order to reduce numerical
computation errors, we may take their average as D, i.e.,

D =
1
n+ 1

n+1∑
i=1

H(im−m+ 1 : im, ir − r + 1 : ir),

where the notation H(i : j, p : q) denotes the sub-matrix
consisting of rows i to j and columns p to q of H .

4.2. Computation of Gτi

By formulating the extended observabilitymatrix using0 andG
or the extended controllability matrix using G and F , the matrices
Gτi can be computed by the shift invariance structure. The following
is to give an approach to compute Gτi . More specifically, define the
extended observability matrix

Qo :=



0

0G

0G2

...

0GN
CGN exp(Atn+1)


=



C
C exp(At1)
C exp(At2)

...
C exp(Atn)

CG
CG exp(At1)
CG exp(At2)

...
CG exp(Atn)

...

CGN
CGN exp(At1)
CGN exp(At2)

...

CGN exp(Atn+1)


which is formedby0 andG obtained by identification and assumed
to be known. Likewise, use the entries of Qo to form the matrices

0i :=


C exp(Ati)
CG exp(Ati)
CG2 exp(Ati)

...

CGN exp(Ati)

 , 0 ≤ i ≤ n+ 1,

which are also available, noting that G = exp(Atn+1). It follows
easily that
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0i = 00 exp(Ati), 1 ≤ i ≤ n+ 1,

and

0i = 0i−1 exp(Aτi), 1 ≤ i ≤ n+ 1.

Using the assumptions of observability and that the sampling
intervals τi is non-pathological, the matrices 0i have full column-
rank for N ≥ n− 1. Thus, matrices exp(Ati) and exp(Aτi) are given
by

exp(Ati) = (0T000)
−10T00i, i = 1, 2, . . . , n, (9)

and

Gτi = exp(Aτi) = (0
T
i−10i−1)

−10Ti−10i, i = 1, 2, . . . , n+ 1,

where the superscript T is the transpose. Of course, Gτi may be also
obtained by post-multiplying (9) by exp(−Ati−1).

4.3. Computation of Fτi

From the definition of Fi in (4), we have

Fτi = exp(−AT )GiFi = G−1 exp(Ati)Fi, i = 1, 2, . . . , n,

Fτn+1 = G−1 exp(Atn+1)Fn+1 = Fn+1,

since G and F = [F1, F2, . . . , Fn+1] are obtained by identification
and exp(Ati) are available by (9).
We comment that when the single-rate models Pτi are

computed from Pn, the assumptions of observability (0i having
full column-rank) or non-pathological conditions of τi and T
are required because one desires the single-rate models Pτi =
(Gτi , Fτi , C,D) to be observable, although this is not needed to
preserve the observability of Pn.

5. Reconstruction of continuous-time systems

Recovery of the continuous-time P from Pτ is to determine the
matrices (A, B, C,D). The matrices C and D were obtained in the
preceding section; in this section, we discuss how to find A and
B. From (2) and (3), the key of reconstructing the continuous-time
system P = (A, B, C,D) is to compute the matrix A from Pτ =
(Gτ , Fτ , C,D). Once A is available, B is easily computed from (3) by

B =
[∫ τ

0
exp(At)dt

]−1
Fτ

since this integral matrix is invertible under the non-pathological
condition.
According to Chen and Miller (2000), the key of finding A

is to obtain the eigenvalues of A, or the poles of P [the poles
of the transfer matrix C(sI − A)−1B + D, if it is controllable
and observable]. The details are as follows. Since the function
f (s) = es is an analytic function over the entire complex plane,
by the Spectral Mapping Theorem, the eigenvalues of f (A) equal
the values of f (s) at the eigenvalues of A. Thus, from (3), the
eigenvalues λi[A] of A and eigenvalues λi[Gτ ] of Gτ have the
mapping relation:

Gτ = exp(Aτ) H⇒ λi[Gτ ] = exp(λi[Aτ ]), i = 1, 2, . . . , n.

Since es is periodic with period j2π , i.e., exp(s + j2π) = es where
j =
√
−1, from the above equation, the possible eigenvalues of A

are

λi[A] =
1
τ
Ln{λi[Gτ ]} =

1
τ
ln{λi[Gτ ]} +

j2kπ
τ
, k ∈ Z,

where Z denotes the set of integers, ln{λi[Gτ ]} is the principal
logarithm of Ln{λi[Gτ ]} and−π < arg{λi[Gτ ]} ≤ π .

Define the eigenvalue set of A as follows:

Eigτ =
{
1
τ
ln{λi[Gτ ]} +

j2kπ
τ
: i = 1, 2, . . . , n, k ∈ Z

}
.

From (3), if one knows that A has all real eigenvalues, then so
has Gτ . This can help eliminate every element of Eigτ except
the real element 1

τ
ln{λi[Gτ ]}, i = 1, 2, . . . , n. In such a

case, the eigenvalues of A can be determined uniquely from its
corresponding single discrete-time Pτ or Gτ . To allow complex
eigenvalues in A, suppose we know an upper bound, ωmax, for the
imaginary parts of eigenvalues λi[A], i.e.,
Im(λi[A]) ≤ ωmax, i = 1, 2, . . . , n.

Then if we sample fast enough, reconstruction of eigenvalues of
A is possible from its corresponding single discrete-time Pτ . In
fact, P is reconstructible if the sampling period τ < π/ωmax
because the upper bound can be used to show that Eigτ has exactly
n elements. This is reminiscent of the well-known Shannon’s
Sampling theorem. However, from here we also know that the
poles of the continuous-time P cannot be uniquely determined
from the poles of its single discrete-time Pτ without other
information such as the pole locations as above.
The purpose here is to recover P by introducing several

discretized models Pτj = (Gτj , Fτj , C,D) for different choices of
τj; but, how to choose these sampling periods τj so that from
these models Pτj we can reconstruct P? That is, can one determine
the poles of the continuous-time system P or the eigenvalues of
A uniquely from several Gτj by appropriately choosing sampling
periods τj, j = 1, 2, . . . , l? The answer is yes. The system Gτj ’s give
rise to the (possible) eigenvalue set of A as follows:

Eigτj =
{
1
τj
ln{λi[Gτj ]} +

j2kπ
τj

, i = 1, 2, . . . , n, k ∈ Z
}
,

j = 1, 2, . . . , l.

If their intersection set

Eigτ1
⋂
Eigτ2

⋂
· · ·

⋂
Eigτl (10)

has exactly n elements by choosing the sampling periods τj
properly, then the eigenvalues of A are reconstructible. Clearly,
the choice of sampling periods plays an important role in the
reconstruction of P . This can be summarized as the following
lemma.

Lemma 4. For at most n+ 1 sampling periods τj (j = 1, 2, . . . , n+
1), the eigenvalues λi[A] of the continuous-time system can be
uniquely determined from the set in (10) if the ratios of any two of
τj are irrational.

Proof. If we can prove that the eigenvalue intersection set of A,

Eigτ1
⋂
Eigτ2

⋂
· · ·

⋂
Eigτn+1 ,

has exactly n elements {µ1, µ2, . . . , µn}, then the conclusion of
Lemma 4 is true. So suppose that it does not, i.e., that there exists
a µ in this set which is not in {µ1, µ2, . . . , µn}. Then from the
definition of Eigτj , there must exist i1, i2, . . . , in+1 ∈ {1, 2, . . . , n}
and k1, k2, . . . , kn+1 ∈ Z satisfying

µ = µi1 + j
2πk1
τ1
= µi2 + j

2πk2
τ2
= · · · = µin+1 + j

2πkn+1
τn+1

.

Thus,

Re(µi1) = Re(µi2) = · · · = Re(µin+1).

It follows that two of the µij ’s must be equal; without loss of
generality we assume that µi1 = µi2 . Hence

2πk1
τ1
=
2πk2
τ2

.
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Due to the assumption that µ is not an eigenvalue of A, neither k1
nor k2 can be zero, which means that

τ1

τ2
=
k1
k2
,

a rational number. This is a contradiction. Hence Lemma 4 is
proven. �

Once the eigenvalues λi[A] ofA are found, it is relatively routine
to compute A from Gτ . The following is to give a way to find A
from Gτ . When A has n distinct eigenvalues, so does Gτ because
τ is non-pathological with respect to A; then Gτ and A share same
eigenvectors. Let T be the matrix consisting of the eigenvectors of
Gτ and

3 :=

λ1[Gτ ] . . .

λn[Gτ ]

 .
We have

A =
1
τ
Ln[Gτ ] =

1
τ
Ln[T3T−1] =

1
τ
TLn[3]T−1

= T

Ln{λ1[Gτ ]}
1/τ

. . .

Ln{λn[Gτ ]}1/τ

 T−1.

Replacing Ln{λi[Gτ ]}1/τ by λi[A] yields

A = T

λ1[A] . . .

λn[A]

 T−1.

Since Gτ has been obtained in the preceding section, T can be
computed according to Gτ .
If A is not diagonalizable, but A and Gτ have the same Jordan

structure, by which we can find A from Gτ .

6. Parameter identification algorithms

In the preceding two sections, assuming that the parameter
matrices (G, F ,0,H) of the non-uniformly sampled system in
(6) are known, we have discussed computation of the single-
rate models with different sampling intervals and recovery of
the continuous-time system. Next, we develop the identification
algorithms for non-uniformly sampled systems, including the two
cases with either known or unknown states.

6.1. The case with known state

In practice, the system output and/or states are often contam-
inated by disturbances and after introducing uncorrelated noise
vectors {w(kT ), v(kT )}, the system in (6) becomes

Pn :

[
x(kT + T )
y(kT )

]
=

[
G F
0 H

] [ x(kT )
u(kT )

]
+

[ w(kT )
v(kT )

]
. (11)

Define the parameter matrix θ, information vector ϕ0(kT ),
generalized output vector Z0(kT ) and noise vector E(kT ) as

θT =

[
G F
0 H

]
, ϕ0(kT ) =

[
x(kT )
u(kT )

]
,

Z0(kT ) =
[
x(kT + T )
y(kT )

]
, E(kT ) =

[
w(kT )
v(kT )

]
.

The system in (11) may be written as a linear regression model,

Z0(kT ) = θTϕ0(kT )+ E(kT ). (12)

Suppose the input and output data are available and persistently
exciting. If the system states x(kT ) are measured [i.e., Z(kT ) and
ϕ0(kT ) are known], then the parameter matrix θ can be estimated
by the least squares algorithm:

θ̂(kT + T ) = θ̂(kT )+ P0(kT + T )ϕ0(kT )
×[ZT0 (kT )− ϕ

T
0(kT )θ̂(kT )], (13)

P0(kT + T ) = P0(kT )−
P0(kT )ϕ0(kT )ϕT0(kT )P0(kT )
1+ ϕT0(kT )P0(kT )ϕ0(kT )

, (14)

where P0(kT ) denotes the covariance matrix and θ̂(kT ) represents
the estimate of θ with[
Ĝ(kT ) F̂(kT )
0̂(kT ) Ĥ(kT )

]
= θ̂

T
(kT ).

6.2. The case with unknown states

If the states are not measured, it is clear that the identification
expression in (12) contains both the unknown state vector x(kT )
in ϕ0(kT ) and unknown parameter matrix θ and thus, the least
squares algorithm in (13) and (14) cannot be applied to identify
the models in (12). In order to identify/estimate the parameter
matrix θ and state vector x(kT ), we derive combined state and
parameter estimation algorithms according to the hierarchical
identification principle (Ding & Chen, 2005a,b,d). The basic idea
is as follows: when recursive estimating the parameter matrix
θ, the unknown state vector x(kT ) in ϕ0(kT ) is replaced by its
corresponding estimate x̂(kT ), and ϕ0(kT ) by ϕ(kT ); in the same
way, when estimating the state vector x(kT + T ), the unknown
parametermatrix θ is also replaced by its estimates θ̂(kT ). Based on
this idea, we easily derive the following hierarchical identification
algorithm consisting of both parameter and state estimation steps
as follows.

• The first step: The state estimation algorithm
Let x̂(kT ) be the estimates of x(kT ). Assume that at time kT ,

wehave gotten the estimates x̂(kT ) and input–outputu(kT ) and
y(kT ), and parameter estimation θ̂(kT ) obtained in the second
step:

θ̂
T
(kT ) =

[
Ĝ(kT ) F̂(kT )
0̂(kT ) Ĥ(kT )

]
. (15)

Replacing unknown (G, F ,0,H) in (11) by the estimates
(Ĝ(kT ), F̂(kT ), 0̂(kT ), Ĥ(kT )). Applying the Kalman filtering
principle to (11), it is easy to derive the estimation algorithm
of the state x(kT + T ):

x̂(kT + T ) = Ĝ(kT )x̂(kT )+ F̂(kT )u(kT )+ L1(kT )[y(kT )
− 0̂(kT )x̂(kT )− Ĥ(kT )u(kT )], (16)

L1(kT ) = Ĝ(kT )P1(kT )0̂
T
(kT )

×[Rv + 0̂(kT )P1(kT )0̂
T
(kT )]−1, (17)

P1(kT + T ) = [Ĝ(kT )− L1(kT )0̂(kT )]
× P1(kT )ĜT(kT )+ Rw, (18)

where L1(kT ) and P1(kT ) are the algorithm gain and covari-
ance matrix, respectively, the estimates (Ĝ(kT ), F̂(kT ), 0̂(kT ),
Ĥ(kT )) of (G, F ,0,H) are formed by using the entries of the
obtained θ̂(kT ) by (15) in the second step, and the covariance
matrices Rv and Rw of w(kT ) and v(kT ) are replaced by their
estimates,
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R̂w(kT ) =
1
k

k∑
i=1

[x̂(iT + T )− Ĝ(kT )x̂(iT )− F̂(kT )u(iT )]

× [x̂(iT + T )− Ĝ(kT )x̂(iT )− F̂(kT )u(iT )]T, (19)

R̂v(kT ) =
1
k

k∑
i=1

[y(iT )− 0̂(kT )x̂(iT )− Ĥ(kT )u(iT )]

× [y(iT )− 0̂(kT )x̂(iT )− Ĥ(kT )u(iT )]T. (20)

The state estimator in (16)–(20) is derived by using the obtained
parameter estimates based on the Kalman filtering principle.
But this estimator involves heavy computational efforts; for
computational efficiency, a stochastic approximation algorithm
may be used for state estimation without computing the
covariance matrices:

x̂(kT + T ) = Ĝ(kT )x̂(kT )+ F̂(kT )u(kT )+ ρ(kT )0̂
T
(kT )[y(kT )

− 0̂(kT )x̂(kT )− Ĥ(kT )u(kT )], (21)

where ρ(kT ) is the convergence factor satisfying

ρ(kT ) ≥ 0,
∞∑
k=1

ρ(kT ) = ∞,
∞∑
k=1

ρ2(kT ) <∞.

• The second step: The parameter estimation algorithm
Using x̂(kT + T ), x̂(kT ), u(kT ) and y(kT ) to form ϕ(kT ) and

Z(kT ) as

ϕ(kT ) =
[
x̂(kT )
u(kT )

]
, Z(kT ) =

[
x̂(kT + T )
y(kT )

]
(22)

which are available, replacing ϕ0(kT ) and Z0(kT ) in (12) by
ϕ(kT ) and Z(kT ), and applying the least squares principle lead
to the estimation algorithm of the parameter matrix θ:

θ̂(kT + T ) = θ̂(kT )+ P2(kT + T )ϕ(kT )
×[ZT(kT )− ϕT(kT )θ̂(kT )], (23)

P2(kT + T ) = P2(kT )−
P2(kT )ϕ(kT )ϕT(kT )P2(kT )
1+ ϕT(kT )P2(kT )ϕ(kT )

. (24)[
Ĝ(kT ) F̂(kT )
0̂(kT ) Ĥ(kT )

]
= θ̂

T
(kT ). (25)

To initialize the above algorithms, we take Pi(0) = p0I (i =
0, 1, 2) with p0 normally a large positive number (e.g., p0 = 106),
and x̂(0) and θ̂(0) some small real vectors, e.g., x̂(0) = 1/p0 and
θ̂(0) = 1/p0 with 1 being an column vector/matrix, of appropriate
sizes, whose elements are all 1.
The combined parameter and state estimation algorithm in

(16)–(20) and (22)–(25) or (21)–(25) performs a hierarchical
computation process with k increasing because the state estimates
x̂(kT+T ) depend not only on the previous estimates x̂(kT ) but also
on the parameter estimates θ̂(kT ), and the parameter estimates
θ̂(kT + T ) depend not only on the previous estimates θ̂(kT ) but
also on the state estimates x̂(kT ). Thus, this algorithm is referred
to as the hierarchical identification algorithm for non-uniformly
sampled systems.
The state estimation is very useful for designing state feedback.

This combined state and parameter estimation algorithm for non-
uniformly sampled systems can be regarded as the extension of
that for general dual-rate sampled-data systems (Ding & Chen,
2005d).

Fig. 5. The parameter estimation error δ vs. kT .

7. Example

Consider the systemdepicted in Fig. 4with the processmodel P ,

P(s) =
s+ 0.8

s2 + 0.8s+ 0.8

which has the following state space realization,ẋ(t) =
[
−0.8 −0.8
1 0

]
x(t)+

[
1
0

]
u(t),

y(t) = [1, 0.8]x(t).

Let t1 =
√
2− 1 s, t2 = 1 = T s, i.e., τ1 = t1 s, τ2 = 2−

√
2 s. Dis-

cretizing this example system and introducing the noise vectors,
we get

x(kT + T ) =
[
0.22659 −0.48086
0.60107 0.70745

]
x(kT )

+

[
0.15443 0.44665
0.22129 0.1444

] [
u(kT )

u(kT + t1)

]
+w(kT ),[

y(kT )
y(kT + t1)

]
=

[
1 0.8

0.93905 0.47557

]
x(kT )

+

[
0 0

0.40553 0

] [
u(kT )

u(kT + t1)

]
+ v(kT ).

The identification procedure is summarized as follows: First, we
use the idinput function in Matlab to generate a random signal se-
quence with zero mean and unit variance as the input signal and
two uncorrelated noise sequences with zero mean and variances
σ 2 = 0.12 as w(kT ) and v(kT ), and then compute the states and
outputs. Second, based on the input–output and state data with
corrupted noises, we apply the identification algorithm in the pre-
ceding section to estimate the parameters of the non-uniformly
sampled system. The parameter estimation error δ versus kT is
shown in Fig. 5, where δ := ‖θ̂(kT ) − θ‖/‖θ‖(‖X‖2 := tr[XXT]),
θ represents the true parameter matrix, θ̂(kT ) the estimate of θ.
The identification results are as follows. The estimated system
matrices:

Ĝ =
[
0.23336 −0.47827
0.60267 0.71027

]
, F̂ =

[
0.15635 0.44578
0.22443 0.14320

]
,

0̂ =

[
1.00020 0.79904
0.93456 0.47766

]
, Ĥ =

[
0.00466 0.00037
0.40294 0.00125

]
.

The eigenvalues of Ĝ:

λ[Ĝ] = {0.79877+ j0.26836, 0.79877− j0.26836}.
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Fig. 6. The step responses of the original system and the estimated model.

The transform matrix:

T =
[
−0.29544+ j0.59596 −0.29544− j0.59596

0.74669 0.74669

]
.

The eigenvalues of Â:

{λ1[Â], λ2[Â]} = {−0.39484+ j0.79505,−0.39484− j0.79505}.

The estimated parameter matrices of the continuous-time system:

Â = T
[
λ1[Â]

λ2[Â]

]
T−1

=

[
−0.78897 −0.79050
0.99613 −0.00071

]
.

B̂ =
[∫ T

0
exp(Ât)dt

]−1
[F̂(:, 1)+ F̂(:, 2)] =

[
0.99652
0.00358

]
,

Ĉ = 0̂(1, :) = [1.00020, 0.79904].

D̂ = [Ĥ(1, 1)+ Ĥ(2, 2)]/2 = 0.00296.

The estimated transfer function:

P̂(s) = Ĉ[sI − Â]−1B̂+ D̂

=
0.00296s2 + 1.002s+ 0.7956
s2 + 0.7897s+ 0.788

.

Fig. 6 compares step responses of the two systems P(s) and P̂(s).
From Figs. 5 and 6, we can see that the parameter estimation er-
ror δ is becoming smaller (in general) as the number of iterations
(k) increase, and the step response of the estimated model P̂(s) is
very close to that of the original system P(s). This indicates that the
estimated model can capture the process dynamics very well and
can achieve satisfactory results.
For the system with unknown parameters, it is impossible

to know beforehand that D equals zero, so we must estimate
D. Otherwise, D does not require identifying and the estimated
transfer function will be:

P̂0(s) =
s+ 0.7933

s2 + 0.7897s+ 0.788
.

The step responses of P(s) and P̂0(s) in Fig. 7 are also very close.

8. Conclusions

This paper addresses some related issues of non-uniformly
sampled systems, including computation of single-rate models
with different sampling periods and recovery of the continuous-
time systems from their non-uniformly sampled systems. It

Fig. 7. The step responses of the original system and the estimated model with
D = 0.

is shown that a continuous-time system can be reconstructed
uniquely from its non-uniformly sampled discrete-time model.
Finally, parameter identification algorithms for non-uniformly
sampled discrete-time systems are developed.
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