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Abstract 
We also define y(S1,Sz) = 0 if SI = SZ = (0) and y(S1,Sz) = 1 if 
one of SI or Sp is (0) and the other one is not (0). 

It is well-known that in general y is not a metric on the set of 
all subspaces of X ,  but it does induce a topology on this set. A 
comprehensive treatment of the gap function can be found in [7]. 

Let A be a bounded linear operator on X with bounded inverse. 

This paper studies the robust stabi1it.y of feedback systems. 
The special features of this study are: (1) the input-output 
signal spaces of the feedback systems are assumed to be Banach 
spaces, posaibiy L-, tm, LI, and e , ;  (2) the pert,urbations in 
systems are measured by the gap funtion. 

1 Introduction 

Consider a feedback system 

By closed graph theorem, this requires only that A be a bijective 
bounded linear operator [6, Problem 521. Define the condition num- 
ber of A t o  be K ( A )  = IIAIIIIA-'II. The following result is new. 

Proposition 1 n-'(A)-y(S1,Sz)  5 y ( A S 1 , A S z )  I K ( A ) ~ ( S I , S ~ ) .  

Associated with the concept of the gap, there is another useful 
concept called the minimum opening. The minimum opening between 
SI and Sz, where SI and Sz are two nontrivial subspaces of X, is 
defined by 

inf inf 111 - yll, inf inf IIy - 211 
zh&. llr11=1 v G a  Y€& IIyII=l zxs% 

Yl 

Figure 1: The Standard Feedback System 

where 

u1, e l ,  yl are signals in a Banach space U ;  

u ~ ,  ep, yz are signals in another Banach space Y ;  
P is an unbounded linear operator from U t o  y, considered usually 

as the plant; 

C is an unbounded linear operator from y to U, considered usually 
as the controller. 

The purpose of this paper is t o  study the robust stability of this 
feedback system when the plant is subject to uncerta.inties measured 
by the gap function [7]. 

A new robust control theory based on the gap description of un- 
certainties for systems on Hilbert spaces has recently emerged. Espe- 
cially, many good results have been discovered for the case when U 
and .Y are Lz or e,, and P and C are finite dimensional time-invariant 
systems. A list of major publications (by no means complete) on this 
theory is given in the reference section ((2]-[6], [9]-[15]). However, in 
many control applications, the signal spaces are not Hilbert spaces. 
Here, we strive to  extend some existing results for Hilbert space case 
t o  Banach space case. Our ultimate goal is to study robust stability 
of feedback systems on some common signal spaces such as L,, C,, 
LI , and 4. 

2 General gap theory 

It can be shown that SI n Sz = (0) and S1 + Sz is closed if and only 
if p(S1,Sp) # 0. In the following, we write SI @ Sp = X to  mean 
SI n S2 = (0) and S1 + Sz = X. The following result follows from 
[7, Theorem 4.241. 

Proposition 2 Assume SI@& = X. Then S1@Sz = X if y(S1,Sl) 
< P(S1,SZ). 

3 Robust stability 

Here we need the concept of the graph of an operator. Let F be an 
unbounded linear operator from X to  2. The domain of F is defined 
by 

and the graph of F is defined by 

z)F = {I E X  :FZ E a?}, 

C F { [  ;;I 
Clearly, QF is a linear manifold of X x 2. The product space X x Z 
is a Banach space if we assume that the norm in X x 2 is defined by 

where 4 is a norming function. We leave the particular choice of 4 to 
the user. A natural choice usually depends on the nature of X and 
Z. If QF is closed, then F is said to be a closed operator. Define -~ 
the gap between two closed operators, denoted by 6, t o  be the gap 
between their graphs, i.e., Let X be a Banach space with norm 11 . /I and let S1 and Sz be 

two subspaces (closed linear manifolds) of X. If SI and Sz are both 
nontrivial, the gap between SI and Sp is defined by 6(Fl,FZ) = Y ( G F t t G F 2 ) .  
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In the following, we also need the so-called inverse graph of an 
operator which is given by 

G + { [  y ]  
Now consider the feedback system shown in Figure 1. We will 

simply call it (P,C).  Assume P and C are closed operators. We will 
first look a t  the qualitative properties. The equations governing the 
system variables are 

el +Cez = UI 

Pel + e2 = 112. 

Consider the linear manifold 

el + Cez 

S={ [ '.1..] : e l  E 'Dp>tg E Dr ] c U x y x U x y 

It is easy to  show that S is closed. If there exists a closed operator 
F from U x y t o  U x y such that G F  = S, then ( P , C )  is said to  be 
well-posed. A necessary and sufficient condition for the existence of 

such F is that  1 e! 1 @ S if either el or e2 is nonzero. In this case, 

1 ez J 
F is said t o  be the closed loop operator of ( P , C ) .  If F is bounded, 
then ( P , C )  is said to  be stable. Denote by H the ma.p which maps a 
well-posed ( P , C )  to  its closed loop operator F .  Then the domain of 
H is the set of all well-posed ( P , C )  and its range is a subset of the 
set of all closed operators from U x y to  U x y .  

Theorem 1 H is  a homeomorphism between its domain and mnge. 

The proof of Theorem 1 follows from Proposition 1 easily by notic- 
ing that 

r l  o o 1 1  

and the 4 x 4 big matrix is a bijective operator. 
Now let us look a t  the quantitative properties. 

Proposition 3 ( P ,  C) is stable if and only if G p  @ Gk = U x y. 

The proof of Proposition 3 goes as follows: The system equations 

define an operator from 'Dp x 'Dc to U x y which maps 

[ zl ] = [ 7 ] [ :: 1. This operator ha.s a set-theoretic inverse 

if and only if it is bijective. Since we have alrea.dy known that the 
graph of the inverse, i.e., the set S, is closed, the inverse is always 
bounded by the closed graph theorem. A necessary and sufficient 

condition for the operator [ 7 ] to  be bijective is the condition 

given in Proposition 3. 

Theorem 2 (P ,C)  is stable for all p E B ( P , r )  i f r  5 p ( G p , G & ) .  

Theorem 2 is simply a combined consequence of Propositions 2 
and 3. 

4 Concluding remarks 

One might want to  know if the condition in Theorem 2 is tight. In 
the Hilbert space case, it is tight, i.e., the condition is also necessary. 
However, in the Banach space case, it is not tight in general. To see 
this, let us first show tha t  the condition in Proposition 2 is not tight. 
Let X = RZ be equipped with the Holder m-norm and let SI be 

spanned by . It is easy to  compute 

that p(S1,SZ) = 4. In order for 31 n Sz # {0} or 3, + Sz # X ,  we 
either have dims1 # 1 or $1 = Sz. In either case, r(S1,Sl) = 1. 
This shows that 31 @ Sz = X if y ( s1 ,S l )  < 1 and therefore the 
condition in Proposition 2 is not tight. Now if we take P and C 
to be static systems on e ,  with gain 0 and 1 respectively, a similar 
argument shows tha t  (P ,C)  is stable for all P E B ( P , r )  if r 5 1, 
whereas p ( E p ,  &) = f. How to  improve the condition in Theorem 2 
constitutes a recent research topic. 

As having been said in the introduction, our ultimate goal is to  
study the robust stability for feedback systems on some specific signal 
spaces. In the specific spaces, the computation of the quantities such 
as ~ ( G F ~ , G F ~ )  and p ( G p , G b )  will be our concern. An immediate 
robust control problem is t o  find a controller C for a given plant 
P such tha t  p ( G p , G k )  is minimized. These prohlems are also our 
current research topics. 

and Sz be spanned by [:I [:I 
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