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Abstract: Compressed Hankel matrix is given by using orthonormal rational functions con- 
structed from the Jury table. The solutions to the optimal and suboptimal Nehari problems via 
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Nehari problem, so it can also be solved via Jury table. 

Keywords: Orthonormal function, Compressed Hankel matrix, Nehari problem, Robust staniliza- 
tion 

1. Introduction 
In this paper, we first study Hankel operator and the 
Nehari problems using the Jury table. After that we 
reduce the robust stabilization problem to the Nehari 
problem, so it can also be solved via Jury table. 

The motivation is to develop elementary solutions to 
advanced optimal control problems so to make the ad- 
vanced optimal control accessible to a wider audience. 
These new investigation of the connection between ad- 
vanced optimal and robust control problems and the 
classical tools yield the solution to the Nehari problems. 
Since the problem plays a fundamental role in H ,  op- 
timal control theory, its elementary solution opens the 
door for a simple, polynomial approach to H, optimal 
control theory. Similar study for continuous time sys- 
tems is also carried out by Qiu 1 3 ) .  

2. Jury Table and Orthonormal 
Functions 

Consider a stable polynomial 

a(2) = aozn + ulzn--l + . . ' + a,, 
where ai e R and a0 > 0. It is said to be stable if all of 
its roots are inside the unit disk. 

Construct the Jury table lo) as in Table 1. In the 
Jury table, the first row is copied from the coefficients 
of the polynomial, 

The row T; ,  i = 0,. . . , n - I, is obtained by writing the 
elements of the preceding row in the reverse order. The 
row r i+l,  i = 0,. . - , n - 1, is computed from its two 
preceding rows ~ i - 1  and as 

fori=O ,..., n-1, j = O  ,..., n - i - 1 .  

Table 1: Jury Table 

The Jury stability criterion states that a(.) is stable 

Consider the set of strictly proper rational functions 
if and only if T,O > 0 for all i = 1 , .  . . , n. 

with denominator a(.) 

degb(z) < dega(z) 

Clearly, ;U, is an n-dimensional subspace of R'H2. In 
applications, as evidenced later in this paper, it is de- 
sirable to find a basis, or better an orthonormal basis 

The Jury table can be used to construct such an or- 
thonormal basis of X,, see *), 4, and 17). Recall the 
Jury table of a ( z )  and for the rows rir i = 1,2, .  . . ,n, 
define polynomials 

of Xa. 

q ( 2 )  = r10zn-l + q 1 z n - 2  + '. . + T q n - l )  (4) 

Tn-lb) = T(,-l)OZ 4- T(n--l)l 

m(.) = rno. 

Since a(z) is stable, T ~ O  > 0, for i = 1, 2 , .  . . ,n. We can 
define 

aj=E, i = o , 1 , 2  ,..., n. 

Theorem 1 The functions & ( E )  = ai-, 2 = 

1 ,2 , .  . . , n, form orthonormal basis of X,. 

. i ( 4  . 
4 2 )  
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3. Hankel Operator and Com- 
pressed Rankel Matrix 

Hankel operators find various applications in engineer- 
ing problems such as in model reduction and optimal 
control. The computation of the Hankel singular val- 
ues and Schmidt pairs i s  the key €or these applications 
and is studied in '1, 9, and '). Let P+ : Cz + H2 and 
P- : E ,  + H i  denote the orthogonal projections such 
that 

Let I : Lz + Cz denote the reversal operator and 
S : Lz + Cz denote the backward shift operator such 
that 

J F ( z )  = F(z- ' ) ,  S F ( 2 )  = z F ( 2 ) .  

Definition Given a stable system with strictly proper 
transfer function G(z), the associated Hankel operator 
rG : a$ -+ as defined by 

~ G U ( Z )  = P+(G(z)u(z)) ,  u(z) E 

It is well-known that l?G is a finite rank operator when 
G(z)  is rational. 

Lemma 1 7, Let G(z) = - be a strictlg proper 

stable transfer function. Then 

b(z)  
4.1 

~m rG = sx a, (Ker l ? ~ ) '  = JX,. 

The Hankel operator r G  is the orthogonal direct 5um 
of a zero operator and a compression of l?G mapping 
JX, into SX,. Everything interesting about it is con- 
tained in the compression. 

This compressed Hankel operator can be represented 
by a matrix if we choose a basis in (KerHG)l and a ba- 
sis in ImHG. Note that both (KerHc)l and ImHc are 
isomorphic to X,. Hence we can use the orthonormal 
basis of X, 

E(2)  := [ E l ( f )  E&) " *  E&) 1 
defined in Theorem 1 to form an orthonormal basis in 
(KerHG ) 

E(z-') = [ El(2-l)  Ez(2-l) . . . E , ( Z - ~ )  ] 

and one in ImHG 

We call the matrix representation under this basis Com- 
pressed Hankel Matria: and denote it by HG.  The sin- 
gular values of HG are the Hankel singular values of 
G(z) and are denoted by 01, uz, . . . , U-, We assume 
that u1 2 a2 2 1 . .  2 un. The largest singular value is 
the Bankel norm of G(z) and is denoted by ~/G(Z)IIH. 
Let (u i ,~ , )  be a left and right singxlar vectors of HG 
corresponding to U,  and let 

Then (Ui(z), v(z)) is a Schmidt pair of l?c correspond- 
ing to CT~. 

We are interested in computing the Hankel singular 
values and Schmidt pairs of r G ,  the key is to find HG 

from G ( z )  = -. The following resuIt can be found 

in l7). 

b ( z )  
4 2 )  

Theorem 2 Construct the July table of u(z). Define 
matrix A as an (7) and M as: 

where ki = v, i = 0,1,. . , , n. Then 

The adjoint Rankel operator r; : 'Flz + 'Hi is given by 

Corollary 1 The adjoint Hankel operator rg  satisfies 

- 1639- 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 16,2021 at 03:26:59 UTC from IEEE Xplore.  Restrictions apply. 



Remark 1 : CorolIary 1 impIies that the compressed 
matrix representation of I?; is also HG. By definition, 
the matrix representation of I?& is HA. Hence HG must 
be symmetric and 

Vi(2) = &zs/ , (z- l )  = *:sJv,(z). (8) 

This fact may offer some simplification in the computa- 
tion, 

special structure and we can obtain the orthonormal 
basis and these coefficients pi simultaneously by using 
the augmented Jury table, see details in 17). 

Theorem 4 Let G(z)  = 

proper and l lG(z)I l~ < y. Eqmnd G(z) as 

E H, be rational, strictly 
44 

G ( 4  = W P  
and let 

4. Solution to Nehari Problem 
In this section, we apply the materials in the last 
section to the solutions of the optimal and suboptimal 
Nehari problem. The Nehari problem 12) plays an 
important role in robust and optimal control, it is an 
approximation problem with respect to the t, norm: 

Given a stable strictly proper system G(r)  = -, 
find Q(z) E H, to minimize \lG(z-') - Q(z)Ilm. The 
following theorem is well-known '1, see also '). 

Theorem 3 Let (Ul(z),V1(z))  be the Schmidt 
pair of HG corresponding to the largest Hankel singular 
value u1. Then 

b b )  
4.1 

and the unique minimizing Q ( z )  is given by 

Since the Hankel singuIar values and Schmidt pairs can 
be obtained using the orthonormal basis constructed 
from the Jury table, a computational method for solving 
the Nehari problem is thus obtained. 

The suboptinid Nehari problem is to characterize all 
Q ( z )  E 8- such that \IG(z-') - Q(z)Ilm 5 y with 
IlC(z)l\~ < y. I t  is studied in '), 3, and '1, the methods 
in these papers are all related to the state space sys- 
tem theory. Our approach to the solution will be based 
on the orthonormal basis and the compressed Hankel 
matrix Hc in Theorem 2. 

We also define the entropy of F ( z )  as 

Given a strictly proper transfer function G(z)  = 

_. b(z)  we can expand G(z) as 
44 

G ( z )  = P l E l ( z )  + I  + A&(Z) = E(z)P, (9) 

where E[z )  = [ El(z) E&) * - .  E,(z) 1 are the 
orthonormal functions constructed from Jury table. 

Finding pi, i = 1,. . . , n, is simple. One only need 
to compare the coefficients in (9) and solve a set of 
linear equations. It turns out that these equations have 

(1) Define 

(2) Define 
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5. Robust Stabilization 

Example 1 
For 

b ( z )  f iz+0.5 
a(.) 

C ( z )  = - = 
z2 f z/zz  + 0.5' 

we wish to find all Q(z) E 'H, such that llG(2-l) - 
Q ( Z ) / / ~  5 7 with y = 8. 

Construct the Jury table, we can get 

Hence, 

1 - c  -- 3 

and 

1 3  775 

3'3333 ] ,u1 = 6.2925. 1.8856 
Hc = [ -3.3333 3.7712 

Now let 
0.432 + 0.2 

2' -+ d% 4 0.5 
1.22' + 1.372 + 0.42 

z2 i- f i z  + 0.5 

X ( a )  = 

Y(2) = ' 

We can get 

0.83~' -t 1.502 + 0.60 
22 + ./22 + 0.5 
0.432 + 0.20 

z2 + &z + 0.5 

0 . 2 4 ~ ~  + 0.142 
z2 + 4.z + 0.5 

1 . 2 0 ~ ~  + 1.372 + 0.42 
z2 -t f i z  + 0.5 

P(2) 
0 . 2 4 ~ ~  + 0.142 z2 f fiz + 0.5 ( 1 . 2 0 ~ ~  + 1.372 + 0.42 1 . 2 0 ~ ~  f 1.372 + 0.42 

0 . 4 3 ~  -t- 0.20 
1 . 2 0 ~ ~  + 1.372 + 0.42 

- 
E ( z 2 +  f i 2  + 0.5 

1 . 2 0 ~ ~  + 1 . 3 7 ~  f 0.42 

By setting R(z)  = 0, the unique &(z)  satisfying 
IIG(2-l) - & ( ~ ) 1 1 ~  5 8 which minimizes Z[G(z-l) - 
&(.)I is given by 

0.242' 4- 0.142 
1 . 2 0 ~ ~  + 1.372 + 0.42' 

Q(z )  = -8 

In this section, we will study a typical robust stabiliza- 
tion problem 14), In this problem, we design a con- 
troller K ,  for a given piant P, such that the following 
quantity is maximized. 

This quantity gives a measure of the robustness of the 
feedback system under the gap metric or u-gap metric 
uncertainty. Hence the robust stabilization problem is 
a special discretetime 7-lm optimal control problem. 

We are interested in finding suboptimal controllers. 
Let us first recall the Youla parameterization of all 

stabilizing controllers. For a proper system P ( z )  = 

- where U ( Z )  and b(z )  are coprime polynomials with 

degree n. We first find the spectral factor d(z)  such that 

b M  
44 

zn/a(z)a(z- ')  -+ b(z)b(z-')] = znd(z)d(z-l). 

Then, we solve the following Doiphantine equation 

u(z)x(z )  f b ( z ) y ( z )  = d2(z). 

Define 

Then the set of all controller K ( z )  that internally sta- 
bilize P ( z )  is given by 

for &(z)  E R'H,. Apply the parameterized controller 
to the above 'H, problem, we can get 

for some polynomial W I Z )  that satisfies 
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Let G(z)  = a, the original robust stabilization prob- 

lem reduce to find Q ( z )  E RW, to minimize 
44 

IIG(z-’) - Q(z)IIo0. (20) 
Let 

G(2) = G,( z )  + G(w) 

where GS(z) is a strictly proper transfer function. Also 
let Q ~ ( z )  = Q ( z )  - G(m), then equation (20) becomes 

( IGa (2-l) - &I ( 2 )  11 
which is a Nehari problem solved in Section 4. 

Example 2 Consider 

1.5 P(z)  = - 
22fl‘ 

We wish to find the the suboptimal controller K ( s ) .  
Step 1: (Spectral factorization) From 

(2’ + l ) (r2 + 1) + 1 . 5 ’ ~ ~  = Z‘d(z)d(z-’), 

we can get 

Step 2 (Diophantion equation) From 

d(z) = 22’ + 0.5. 

(E’ + l)z(z) + 1.5y(z) = (2z2 + 0.5)’, 

we can get 

E(%) = 4z2 - 2, y(z) = 1.5. 

h o m  

(1.5(z2 + 1) - 4z2 - 2)1.5z2 = ( 2 ~ ’  + 0.5)(3z2 - a), 

we get 
W(2)  = 3Z2 - 3. 

Hence 
3z2 - 3 

2 3  + 0.5 
G(z)  = ~ 

Step 3 (Suboptimal Nehari problem) Let 

-3.75 
2z2 + 0.5 GB(2) = G(z) - G(co) = - ,.-y = 3. 

I 1 2z2 +0.5 2z2 + 0.5 
1.203 1.871~’ 3- 0.2673 V(z) = 

t m  222 +0.5 J 
Hence, the central solution such that 

llG(z-’) - &Iz)ilm < 3,,  &(.I E R‘& 

is given by 

- 2 . 9 4 ~ ~  4- 0.4009 - 0.1336~’ 
1 . 8 7 1 ~ ~  + 0.2673 

&(z) = 1.5 + 
1.8712’ + 0.2673’ 

The central controller K is given by 

K =  
i . 5 ( 1 . 8 7 1 ~ ~  + 0.2673) - (2 -t i)(2.94z2 + 0.4009) 
(4~’ - 2)(1.871z2 + 0.2673) + 1.5(2.94.~’ + 0.4009) 

- - 2 . 9 4 ~ ~  - 
7 . 8 4 8 ~ ~  + 1 . 7 3 7 ~ ~  

2 . 5 5 ~ ~  + 0.59’ 
2 - - -  

6. Conclusion 
Compressed Hankel matrix is given by using orthonor- 
mal rational functions constructed from the Jury table. 
The solutions to the optimal and suboptimal Nehari 
problems via the compressed Hankel matrix are also 
given. Robust stabilization problem is reduced to the 
Nehari problem, so it can also be solved via Jury table. 
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