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Abstract— Stabilization of uncertain dynamic systems is
investigated focusing on plant models that involve both multi-
plicative and relative uncertainties that are bounded by H∞-
norm. A new notion of stability margin is proposed to study
the robustness of the feedback stability. It is shown that the
largest possible stability margin is a two-disk problem. An
upper and lower bounds are derived which differ by only
a factor of

√
2. The results are then applied to networked

feedback control systems where logarithmic quantization is
employed at both the plant input and output. Our results
show that the coarsest quantization density can be computed
based on the robust stability margin for plant models involving
H∞-norm bounded multiplicative and relative uncertainties.

1. INTRODUCTIUON

Stabilization of dynamic systems involving H∞-norm
bounded uncertainties has been extensively studied in the
control literature. Many different forms of unstructured
dynamic uncertainties are investigated. There is a class of
uncertain systems which deserves a special attention. This
is the one that involves stable perturbations described by
normalized coprime factors of the plant model [7], [12].
Such a class of systems is equivalent to gap metric uncertain
systems and admits many interesting robustness properties
in terms of feedback stability [6]. In [8], [9] a similar class
of uncertain systems is proposed that involves multiplicative
and relative modeling errors described by coprime factors of
the plant model, and shown to be equivalent to gap metric
uncertain systems as well.

In this paper we investigate stabilization of dynamic
systems that involve multiplicative and relative uncertain-
ties. Such uncertain systems appear similar to those in
[8], [9]. However there is a major difference in that the
H∞-norm bounded multiplicative and relative uncertainties
are not related to each other, and are thus not gap metric
uncertainties. For this reason the stability margin formula
from [6], [7] does not apply. In fact the overall uncertainty
is not even unstructured, although the dynamic uncertainty
in either multiplicative or relative form is unstructured. It
follows that the corresponding robust stabilization is a μ-
synthesis problem. We propose a new notion of stability
margin, and show that it is an equivalent two-disk problem
[1]. In addition we will derive an upper and lower bounds
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that are similar to the one for gap matric uncertain systems,
and differ by only a factor of

√
2.

Our research on robust stabilization of multiplicative
and relative uncertain systems is motivated by networked
feedback control. Specifically logarithmic quantization is
employed in [3] at the plant input where the problem
of coarsest quantization is raised and studied under state
feedback. A Lyapunov approach was adopted to obtain the
coarsest quantization above which quadratic stability holds.
It was recognized in [4] that the quantization error resulted
from logarithmic quantization is equivalent to the sector
uncertainty, and hence the small gain theorem and H∞

approach [13] are applicable. Their results make the connec-
tion between the coarsest quantization in networked control
systems and the robust stability margin in H∞ control.
However results are unavailable in the existing literature
for the same problem of coarsest quantization under output
feedback. It turns out that the sector uncertainty associated
with the logarithmic quantization error can be represented
in either multiplicative or relative form. Thus for networked
feedback control systems where logarithmic quantization is
employed at both the plant input and plant output, coarsest
quantization is equivalent to feedback stabilization for sys-
tems involving both multiplicative and relative uncertainties.
Our robust stabilization results can be applied to compute
and estimate the coarsest quantization density.

2. PROBLEM FORMULATION

Denote H∞ as the collection of all stable and proper
trabsfer functions. Let G(z) ∈ H∞. Then its H∞ norm is
defined as

‖G‖∞ = sup
|z|<1

|G(z)| = ess sup
ω

|G(ejω)| (1)

The dynamic uncertain systems in consideration are of
single-input/single-output, and represented by

PΔ(z) = [1 + Δm(z)]P (z)[1 + Δr(z)]−1 (2)

where P (z) is a known rational transfer function, and
Δm(z), Δr(z) ∈ H∞ are unknown. Stabilization of un-
certain dynamic systems is investigated focusing on plant
models that involve both multiplicative and relative un-
certainties that are bounded by H∞-norm. A new notion
of stability margin is proposed to study the robustness of
the feedback stability. It is shown that the largest possible
stability margin is a two-disk problem. An upper and lower
bounds are derived which differ by only a factor of

√
2.
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The results are then applied to networked feedback control
systems where logarithmic quantization is employed at
both the plant input and output. Our results show that the
coarsest quantization density can be computed based on the
robust stability margin for plant models involving H∞-norm
bounded multiplicative and relative uncertainties. We aim
at synthesizing a feedback controller K(z) such that the
feedback system in Fig. 1 is stabilized for all stable Δm(z)
and Δr(z) such that ‖Δm‖∞ ≤ δm and ‖Δr‖∞ ≤ δr.
The dynamic uncertainties Δm(z) and Δr(z) are termed
unstructured, but Δ(z) = diag{Δr(z), Δm(z)} as in (6) is
structured that has a diagonal structure of size 2 [2].

PΔ(z)

K(z)
w(t)v(t)

�

�

Fig. 1 Uncertainty feedback system

For feedback stability, we are often interested in comput-
ing the stability margin or the supremum of the uncertainty
bound below which stabilizing feedback controllers exist.
However for the feedback system in Fig. 1, there are two
unstructured uncertainties. Thus the stability margin is not
clearly defined. For this reason we consider δ =

√
δ2
r + δ2

m

with fixed ratios

r
S

= δr/δ, r
T

= δm/δ =⇒ r2
S

+ r2
T

= 1 (3)

and search for the supremum of δ below which stabilizing
feedback controllers exist. This new notion of stability
margin helps to clarify the mathematical issue at hand and
leads to results which have applications to computing the
coarsest quantization density as defined in [3].

Because P (z) is assumed to be rational, it admits normal-
ized coprime factorization P (z) = N(z)M(z)−1 satisfying

|N(ejω)|2 + |M(ejω)|2 = 1 ∀ω ∈ IR (4)

By the fact that 0 < δm < 1 and 0 < δr < 1,

PΔ(z) = {[1 + Δm(z)]N(z)} {[1 + Δr(z)]M(z)}−1 (5)

is also coprime factorization. Denote the transfer matrix
consisting of the coprime factors of PΔ(z) by

GΔ(z) = [I + Δ(z)] G(z), G(z) =

[
M(z)
N(z)

]
(6)

with Δ(z) = diag {Δr(z), Δm(z)}. It follows from (4) that
G(z) is an inner. The next lemma holds. See also [6], [7].

Lemma 2.1: Denote So(H∞) as the collection of all the
outer functions or the subset of H∞ whose elements admit
inverses in H∞. Suppose that the nominal feedback system
is stable, i.e., the feedback system in Fig. 1 is stable for the
case δm = δr = 0. Then the uncertainty feedback system

in Fig. 1 is robustly stable in the case δ =
√

δ2
r + δ2

m > 0,
if and only if

inf
W1,W2∈So(H∞)

∥∥∥∥
[

r
S
W2 0
0 r

T
W1

]
T

∥∥∥∥
∞

< δ−1 (7)

where

T (z) =

[
1
P

]
(1 − KP )−1

[
1 −K

]
(8)

We skip the proof. It is commented that similar uncer-
tainty feedback systems to that in Fig. 1 are investigated
in the literature [8], [9] so that the results on gap-metric
or ν-metric are applicable that is different from the robust
stability problem as considered in this paper. Here we are
interested in supremum of δ =

√
δ2
r + δ2

m over all the sta-
bilizing controllers K(z) and W1(z), W2(z) ∈ So(H∞). It
turns out that the gap-metric stability margin is instrumental
to the stability margin to be studied in this paper.

Consider first the case r
S

= r
T

= 1/
√

2. Denote

TW (z) =

[
W2

W1P

]
(1 − KP )−1

[
W−1

2 −KW−1
1

]
(9)

The following quantity is related to our stability margin:

γopt := inf
W1,W2∈So(H∞),K stabilizing

‖TW‖∞ (10)

where δmax =
√

2γ−1
opt holds. It follows that the computation

of the stability margin is a μ-synthesis problem. Indeed
for each given pair W1(z), W2(z) ∈ So(H∞), the H∞

optimization problem

γopt(W1, W2) = inf
Kstabilizing

‖TW ‖∞ (11)

has a solution K(z) in the literature. Specifically we have
the following expression from [7]:

inf
Kstabilizing

‖T ‖∞ =
1√

1 −
∥∥[ M∼ N∼

]∥∥2
H

(12)

where T (z) is the same as in (8), ‖ ·‖H denotes the Hankel
operator norm, and (·)∼ denotes para-hermitian. Simple
calculations can be carried out for the transfer matrix TW (z)
in (9) to arrive at

TW (z) =

[
1

PW

]
(1 − KW PW )−1

[
1 −KW

]
(13)

Therefore TW (z) has an identical expression to
T (z) in (8) except that P (z) is now replaced by
PW (z) = W1(z)P (z)W2(z)−1 and K(z) by KW (z) =
W2(z)K(z)W1(z)−1. With PW (z) = NW (z)MW (z)−1 as
a normalized coprime factorization for PW (z), there holds

inf
KW stabilizing

‖TW ‖∞ =
1√

1 −
∥∥[ M∼

W N∼
W

]∥∥2
H

(14)

Once KW (z) is obtained, the controller K(z) =
W2(z)−1KW (z)W1(z)−1 is also available. We may then
search for a new pair of W1(z), W2(z) ∈ So(H∞) in
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computing the left hand side of (7). This is so called W -K
iteration in μ-synthesis. However such an iterative scheme
may not be convergent, and can be costly in computation.
An alternative approach is taken. In the next section we will
present our results in computing the stability margin δmax

for the general case of r
S
�= r

T
.

3. STABILITY MARGIN

Because of the use of weighting functions, there is no
loss of generality to assume that P (z) = Ni(z)Mi(z)−1 is
allpass or |P (z)| = 1 for all |z| = 1 where both Ni(z) and
Mi(z) are inners. Our first result characterizes the stability
margin δmax.

Theorem 3.1: Suppose that P (z) = Ni(z)Mi(z)−1 with
Ni(z) and Mi(z) inners, and

V (z)Mi(z) − U(z)Ni(z) =
√

2 ∀ |z| ≥ 1 (15)

for some U(z), V (z) ∈ H∞. Then the stability margin for
the feedback system in Fig. 1 has the following expression:

δmax√
2

=

[
inf

Q∈H∞

{
sup
ω∈IR

∣∣VQ(ejω)
∣∣ r

S
+
∣∣UQ(ejω)

∣∣ r
T

}]−1

where r
S

> 0, r
T

> 0 are fixed satisfying r2
S

+r2
T

= 1, and
VQ(z) = V (z)+ Q(z)Ni(z), UQ(z) = U(z)+ Q(z)Mi(z).

Proof: It is clear that {Mi(z)/
√

2, Ni(z)/
√

2} are nor-
malized coprime factors of P (z). Thus (15) is the Bezout
identity, and all stabilizing controllers are parameterized by

K(z) = [U(z)+Q(z)Mi(z)/
√

2][V (z)+Q(z)Ni(z)/
√

2]−1

where Q(z) ∈ H∞. Since the uncertain system is given by
PΔ(z) = [1 + Δm(z)]P (z)[1 + Δr(z)]−1, the closed-loop
system is stable for all Δr(z), Δm(z) ∈ H∞ satisfying
‖Δr‖2 + ‖Δm‖2

∞ < δ2
max, if and only if

|1 − PΔ(z)K(z)| �= 0 ∀ |z| ≥ 1 (16)

Hence robust stability is equivalent to (0 ≤ ε < 1)∣∣∣1 − εδmax

(|VQ(ejω)|r
S

+ |UQ(ejω)|r
T

)
/
√

2
∣∣∣

∀z = ejω , ω ∈ IR by taking Δm = εδme−jφ and ΔM =
−εδre

−jψ with φ and ψ arguments of (U + QMi)Ni and
(V + QNi)Mi, respectively. Hence by using the definition
of δmax leads to the expression in Theorem 3.1.

Theorem 3.1 shows that computation of stability margin
is a two-disk problem. Results in [1] can be used to calculate
δmax. It is worth to pointing out that

S(z) = [1 − K(z)P (z)]−1 = VQ(z)/
√

2

Sc(z) = K(z)P (z)[1 − K(z)P (z)]−1 = UQ(z)/
√

2

are the sensitivity, and complementary sensitivity functions,
respectively. Hence the stability margin in Theorem 3.1 can
alternatively be written as

δmax =

[
inf

Q∈H∞

{
sup
ω∈IR

∣∣S(ejω)
∣∣ r

S
+
∣∣Sc(e

jω)
∣∣ r

T

}]−1

(17)

The following result gives an upper and lower bound for
the stability margin δmax.

Corollary 3.2: Under the same hypotheses of Thereom
3.1, the stability margin is bounded as

δmax ≥

√
1 −
∥∥[ r

S
N∼

i r
T
M∼

i

]∥∥2
H√

2r
S
r

T

δmax ≤

√
1 −
∥∥[ r

S
N∼

i r
T
M∼

i

]∥∥2
H

r
S
r

T

Proof: Upper and lower bounds can be obtained by using

∥∥[ r
S
S r

T
Sc

]∥∥
∞

≤
√

2

δmax
≤

√
2
∥∥[ r

S
S r

T
Sc

]∥∥
∞

(18)
As P (z) = Ni(z)Mi(z)−1 is allpass, there holds∥∥[ r

S
S r

T
Sc

]∥∥
∞

= r
S
r

T
‖Tr‖∞

where Tr(z) = TW (z) with W1 = r
S

and W2 = r
T

. Since
Pr(z) = [r

S
Ni(z)][r

T
Mi(z)]−1 is a normalized coprime

factorization of Pr(z) by r2
S

+ r2
T

= 1, we have

γopt = inf
K stabilizing

∥∥[ r
S
S r

T
Sc

]∥∥
∞

(19)

=
r

S
r

T√
1 −
∥∥[ r

S
N∼

i r
T
M∼

i

]∥∥2
H

in light of (12) by noting that |r
S
Ni(z)|2 + |r

T
Mi(z)|2 =

r2
S

+ r2
T

= 1 for all |z| = 1. We thus obtain the upper and
lower bounds for δmax.

Although Corollary 3.2 gives an upper and lower bound
for the stability margin that differ by a factor of

√
2,

Hankel operator norm is involved giving rise of difficulty in
optimizing δmax by searching for the values of r

S
> 0 and

r
T

> 0 satisfying r2
S

+ r2
T

= 1. In the following theorem
we present an explicit expression for the upper and lower
bounds of δmax.

Theorem 3.3: Suppose that the plant model P (z) =
Ni(z)Mi(z)−1 where Mi(z) and Ni(z) are coprime
and non-trivial inners. Let {AM , BM , CM , DM} and
{AN , BN , CN , DN} be balanced realizations of Mi(z) and
Ni(z), respectively. Then

∥∥[ r
S
N∼

i r
T
M∼

i

]∥∥2
H

=
1

2
+

√
1

4
− r2

S
r2

T
[1 − σ(Z)2]

(20)
where Z satisfies Z = AMZAN + BMB′

N , σ(·) denotes
the maximum singular value, and r2

S
+ r2

T
= 1. In addition

there holds the maximum stability margin√
[1 − σ(Z)] ≤ sup

r
S

>0,r
T

>0
δmax ≤

√
2[1 − σ(Z)] (21)

Proof: The hypotheses on balanced realizations for M i(z)
and Ni(z), and on inner transfer functions for M i(z) and
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Ni(z) imply that their respective reachability and observ-
ability gramians are identity matrices. It follows that

Gr(z) =

[
r

S
Mi(z)

r
T
Ni(z)

]
=

⎡
⎢⎢⎣

AM 0 BM

0 AN BN

r
S
CM 0 r

S
DM

0 r
T
CN r

T
DN

⎤
⎥⎥⎦

The assumption on balanced realizations for M i(z) and
Ni(z) lead to

P = AGPA′
G + BGB′

G, Q = A′
GQAG + C′

GCG

=⇒ P =

[
I Z
Z ′ I

]
, Q =

[
r2

S
I 0

0 r2
T
I

]
where Z solves Z = AMZAN +BMB′

N . Denote RM and
RN as the infinity size reachability matrix of M i(z) and
Ni(z), respectively. Then

Z = RMR′
N , RMRM = I, RNRN = I (22)

It follows that σ(Z) ≤ 1, and

‖G∼
r ‖2

H = λ(PQ) = λ

([
r2

S
I r

S
r

T
Z

r
S
r

T
Z ′ r2

T
I

])

Furthermore λmax = λ(PQ) is the maximum root of

det

([
(λmax − r2

S
)I −r

S
r

T
Z

−r
S
r

T
Z ′ (λmax − r2

T
)I

])
= 0 ⇐⇒

λmax =
1

2
+

√
1

4
− r2

S
r2

T
+ r2

S
r2

T
σ(Z)2 = ‖G∼

r ‖2
H

that verifies (20). To prove the bounds for the maximum
stability margin in (21), we need to show

sup
r

S
>0,r

T
>0

√
1 − ∥∥[ r

S
N∼

i r
T
M∼

i

]∥∥2
H√

2r
S
r

T

=
√

1 − σ(Z)

(23)
Denote x = r2

S
r2

T
. Then 0 < x ≤ 1/4 by r

S
> 0, r

T
> 0,

and r2
S

+ r2
T

= 1. We aim at computing the supremum of

f(x) =

1
2 −
√

1
4 − x[1 − σ(Z)2]

x
(24)

over the interval (0, 1/4], as
√

f(x)/2 ≤ δmax ≤
√

f(x).
It is easy to verify that f(x) is an increasing function of x
for x ∈ [0, 1/4], and thus f(x) achieves the maximum at
x = 1/4 that verifies (23).

Remark 3.4: It is interesting to observe that the upper
and lower bounds of δmax are maximized by taking δr =
δm = δmax/

√
2, even though we may have more unstable

poles than unstable zeros, or vice versus. It is also observed
that in light of the expressions in (22), σ(Z) represents
the gap between the reachable subspaces of M i(z) and of
Ni(z). Thus if the two reachable subspaces are orthogonal
to each other, then 1 ≤ δmax ≤ √

2 implying that robust
stability is attained even if each of the multiplicative and
relative uncertainty bounds is close to 1; On the other hand
if the gap between the two reachable subspaces is zero, then
δmax = 0.

4. NETWORKED STABILIZATION

We are motivated to study stabilization of networked
feedback systems where logarithmic quantization is em-
ployed at both the input and output of the plant. As shown
in [4], feedback stability associated with the logarithmic
quantizer is equivalent to robust stability associated with
the sector bounded uncertainty in the multiplicative form.
We would like to point out that such a multiplicative uncer-
tainty is not unique in representation of the sector bounded
nonlinearity. In fact it can be equivalently converted to the
form of relative uncertainty. Indeed the quantization values
at the plant ichoosnput are given by

U =
{±u(i) = ρiu(0) : i = ±1,±2, · · · , 0 < ρ < 1

}
Mathematically the logarithmic quantization function can
be defined by (u(0) > 0 is assumed)

f(v) :=

⎧⎨
⎩

u(i), if 1 − δu < v
u(i)

≤ 1 + δu

0, if v = 0
−f(−v), if v < 0

(25)
The relationship between ρu and δu is thus found to be

δu =
1 − ρu

1 + ρu

⇐⇒ ρu =
1 − δu

1 + δu

(26)

It follows that the quantized input u(t) can be represented
by

u(t) = [1 + Δr(t)]
−1v(t), |Δr(t)| ≤ δu (27)

for which the sector uncertainty is in the form of relative
error.

For the quantizer at the output of the plant, it is defined
in the same way as in [4] via

g(y) :=

⎧⎨
⎩

w(i), if
w(i)

1+δy
< y ≤ w(i)

1−δy

0, if y = 0
−g(−y), if y < 0

(28)

where the set of quantized outputs has the same logarithmic
form (w(0) > 0 is assumed):

W =
{±w(i) = ρi

yw(0) : i = ±1,±2, · · · , 0 < ρy < 1
}

A similar relation between ρy and δy to that in (26) is

δy =
1 − ρy

1 + ρy

⇐⇒ ρy =
1 − δy

1 + δy

(29)

With the quantizer in (28), the corresponding sector uncer-
tainty has the multiplicative form:

w(t) = [1 + Δm(t)]y(t), |Δm(t)| ≤ δy (30)

It is interesting to observe that even though the two loga-
rithmic quantization functions are defined differently and
correspond to different forms of (multiplicative/relative)
uncertainties, their quantization densities [3] have the same
expression:

ηf = 2/ log(ρ−1
u ), ηg = 2/ log(ρ−1

y ) (31)
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In the existing literature, minimization of the quantization
density is an important problem area for feedback control
over the networks. The number of bits represents resource
of the network. For logarithmic quantization, the resource is
measured by quantization density. It is clear that minimiza-
tion of the quantization densities in (31) over all stabilizing
feedback controllers is equivalent to minimization of ρu and
ρy which is in turn equivalent to maximization of δu and
δy , respectively over all stabilizing feedback controllers.

A possible doubt is whether or not the relative sector
uncertainty is equivalent to the multiplicative sector un-
certainty. The answer is firmative. Let us first consider
the case when the logarithmic quantization is employed
at only the plant output. With the multiplicative form for
the quantization error as in (30), a sufficient condition for
feedback stability is δy < δ

(mul)
max with

δ(mul)
max = min

{(
inf

K stabilizing

∥∥∥∥ KP

1 − PK

∥∥∥∥
∞

)−1

, 1

}
(32)

This condition is also necessary if quadratic stability is of
the interest [3], [4]. On the other hand if the relative form
of the quantization error is employed, the dual condition for
feedback stability is δy < δ

(rel)
max with

δ(rel)
max = min

{(
inf

K stabilizing

∥∥∥∥ 1

1 − PK

∥∥∥∥
∞

)−1

, 1

}
(33)

The next result shows that the coarsest quantization density
computed from either δ

(mul)
max or δ

(rel)
max remains the same by

proving δ
(mul)
max = δ

(rel)
max .

Theorem 4.1: Suppose that P (z) has n poles and m

zeros strictly outside the unit circle, denoted by {p (u)
i }n

i=1

and {z(u)
k }m

k=1, respectively with n ≥ 1 and m ≥ 1.
Then δ

(mul)
max = δ

(rel)
max which are defined in (32) and (33),

respectively.
Proof: Nevanlinna-Pick interpolation [5] can be used

to derive the stability margins for multiplicative and rel-
ative uncertainties. In the case of multiplicative uncer-
tainty, the existence of robustly stabilizing controllers is
equivalent to the existence of an H∞ function T (z) =

γ−1
mulP (z)K(z)[1−P (z)K(z)]−1 such that T (p

(u)
i ) = γ−1

mul

and T (z
(u)
i ) = 0 for 1 ≤ i ≤ n and 1 ≤ k ≤ m such

that ‖T ‖∞ ≤ 1 at each given γmul > 1/δ
(mul)
max . This is

equivalent to the problem of Nevanlinna-Pick interpolation
that has an equivalent condition:

Pmul =

[
Z Ω
Ω′ (1 − γ−2

mul)P

]
≥ 0 (34)

where Z , P , and Ω are given respectively as

P =

[
p
(u)
i p̄

(u)
k

p
(u)
i p̄

(u)
k − 1

]n,n

i,k=1,1

Z =

[
z
(u)
i z̄

(u)
k

z
(u)
i z̄

(u)
k − 1

]m,m

i,k=1,1

Ω =

[
z
(u)
i p̄

(u)
k

z
(u)
i p̄

(u)
k − 1

]m,n

i,k=1,1

On the other hand, the existence of robustly stabilizing
controllers for relative uncertainty is equivalent to the
existence of an H∞ function S(z) = γ−1

rel [1−P (z)K(z)]−1

such that S(z
(u)
i ) = γ−1

rel and S(p
(u)
k ) = 0 for 1 ≤ i ≤ m

and 1 ≤ k ≤ n such that ‖S‖∞ ≤ 1 at each given
γrel > 1/δ

(rel)
max . This is equivalent to

Prel =

[
(1 − γ−2

rel )Z Ω
Ω′ P

]
≥ 0 (35)

Because Z > 0 and P > 0, Pmul ≥ 0 and Prel ≥ 0 are
equivalent to

Z − ΩP−1Ω′

(1 − γ−2
mul)

≥ 0, (1− γ−2
rel )Z −ΩP−1Ω′ ≥ 0 (36)

respectively. It follows that the infimum of γmul under the
condition Pmul ≥ 0 is the same as the infimum of γrel under
the condition Pmul ≥ 0 that concludes the proof.

The proof of Theorem 4.1 shows that γopt = 1/δ
(mul)
max =

1/δ
(rel)
max has an alternative expression:

γopt =
1√

1 − σ2(Γ−1
p ΩΓ−1

z )
(37)

where P = ΓpΓ
′
p and Z = ΓzΓ

′
z are Cholesky factoriza-

tions. The above resembles to the formula in (19), and both
depend on only unstable zeros and poles of P (z).

With the doubt cleared on relative form description for
the quantization error, the feedback system consisting of
the logarithmic quantization at both the input and output of
the plant model can be represented by the feedback system
in Fig. 1. The only difference from Section 2 is that the
uncertainties are now nonlinear and time-varying instead of
linear and time-invariant dynamic uncertainties. In order for
our stabilization results to apply, we make an assumption
on the plant model:

P (z) = F1(z)P0(z)F2(z) = Ni(z)Mi(z)−1 (38)

where F1(z), F2(z) ∈ So(H∞) are filters employed at the
input and output of the original plant P0(z), and P (z) is
allpass. In addition we are interested in searching for δ

(u,y)
max ,

the supremum of δu = δy below which stabilizing feedback
controller exists.

Theorem 4.2: Suppose that the composite plant model
P (z) given in (38) is allpass for some filters F1(z), F2(z) ∈
So(H∞). Let V (z), U(z) ∈ H∞ satisfy Bezout identity
(15). There exists a stabilizing controller for the feedback
system in Fig. 1 with nonlinear and time-varying uncertain-
ties |Δr(t)| ≤ δu and |Δm(t)| ≤ δy satisfying δu = δy , if
δu = δy < δ

(u,y)
max that is bounded as

δ(u,y)
max ≥

√
1 − 1

2

∥∥[ M∼
i N∼

i

]∥∥2
H

δ(u,y)
max ≤

√
2 − ∥∥[ M∼

i N∼
i

]∥∥2
H
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Proof: We note that the multiplicative and relative uncer-
tainties induced by the quantization errors are nonlinear and
time-varying. Hence the results in the previous section do
not apply directly, because now the weightings need to be
restricted to nonzero constants. On the other hand suppose
that K(z) stabilizes P (z) in absence of the logarithmic
quantization. Then the inequality

ρW = inf
W1,W2∈IR

‖TW ‖∞ < δ−1 (39)

with δ = δu = δy ensures stability of the quantized
feedback system in Fig. 1. The above can be shown with the
same proof for Lemma 2.1. We first prove the upper bound.
By the assumption on the allpass plant model, W1, W2 ∈ IR
can be scaled to satisfy the normalization condition W 2

1 +
W 2

2 = 1 implying that PW (z) = [W1Ni(z)][W2Di(z)]−1

is a normalized coprime factorization. In addition

ϕ(ω) := |W2|−2 + |W1|−2|K(ejω)|2

=
(
1 + |K(ejω)|)2 +

(∣∣∣∣W1

W2

∣∣∣∣−
∣∣∣∣W2K(ejω)

W1

∣∣∣∣
)2

≥ [
1 + |K(ejω)|]2 ∀ω ∈ IR

Using again the hypotheses on P (z) and normalization
condition for W1 and W2, we have

‖TW ‖∞ = sup
ω∈IR

√
|[1 − K(ejω)P (ejω)]|−2

ϕ(ω)

≥ sup
ω∈IR

√
[

1 + |K(ejω)]2|
|1 − K(ejω)P (ejω)|2

≥
∥∥(1 − KP )−1

[
1 −K

]∥∥
∞

=
1√
2

∥∥∥∥
[

1
P

]
(1 − KP )−1

[
1 −K

]∥∥∥∥
∞

≥ 1√
2 −
∥∥[ M∼

i N∼
i

]∥∥2
H

over all stabilizing controllers K(z). Because the lower
bound for ‖TW ‖∞ is independent of weighting functions
W1 and W2, and is true for all stabilizing controllers K(z),
we have

δ(u,y)
max ≤

√
2 −
∥∥[ M∼

i N∼
i

]∥∥2
H

(40)

On the other hand by taking W1 = W2 = 1/
√

2 shows that

δ(u,y)
max ≥

√
1 − 1

2

∥∥[ M∼
i N∼

i

]∥∥2
H

(41)

in light of the proof of Corollary 3.2. Hence the upper and
lower bounds hold.

Several comments are in order. First, by the results in the
previous section,

∥∥[ M∼
i N∼

i

]∥∥2
H

= 1 + σ(Z) is true
with Z the same as in Thereom 3.3. Second the coarsest
quantization density at both the input and output is given by

2
[
log
(

1−δ(u,y)
max

1+δ
(u,y)
max

)]−1

, although at present we have only an

estimate for the upper and lower bounds of δ
(u,y)
max . However

it remains unknow if the computation of δ
(u,y)
max is a two-disk

problem as in the previous section. Finally we comment
that we have assumed that in the setup of Fig. 1, feedback
controller has no access to the quantized control input
u(t) due to the consideration of transmission error, coding
error, or modeling error. This is a worst-case formulation
consistent with [3], [4].

5. CONCLUSION

In this paper robust stabilization is investigated for dy-
namic systems involving H∞-norm bounded multiplicative
and relative uncertainties. For the linear and time-invariant
dynamic uncertainties, computation of the stability margin
is an equivalent two-disk problem. Upper and lower bounds
are derived for the proposed stability margin that differ
by a factor of

√
2. On the other hand when logarithmic

quantization is employed at the plant input and output, it in-
duces similar multiplicative and relative uncertainties which
are nonlinear and time-varying. Similar lower and upper
bounds for the associated stability margin are derived to aid
computation of the coarsest quantization density. In addition
the stability margin induced by logarithmic quantization at
only the plant output is obtained via Nevanlinna-Pick in-
terpolation, and shows the equivalence of the multiplicative
and relative uncertainties. Our results shed some new lights
to networked stabilization in the case of output feedback
complementing the existing work reported in [3], [4].
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