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Abstract— Compressed Hankel matrix is given by using
orthonormal rational functions constructed from the Jury
table. The solutions to the optimal and suboptimai Nehari
problems, the solutions to the optimal and suboptimal Hankel
approximation problems via the compressed Hankel matrix
are given.

1. INTRODUCTION

Various orthogonal functions play important roles in
science and engineering. Examples include orthogonal poly-
nomials, the standard basis functions in Fourier series or
power series, wavelet functions. In this paper, we deal
with orthogonal rational functions. The study of orthogonal
rational functions has a long history. The idea of decom-
posing a linear system in term of orthogonal components,
such as Laguerre functions, other than the functions in the
standard Fourier series dates back to the work of Lee [15]
and Wiener [19]. Kautz [13] formulated a more general
class of orthogonal rational functions with two parameters.
Heuberger et al. {10] developed a theory on construction
of orthogonal rational functions using balanced realizations
of inner transfer functions. The standard basis functions
in power series, Laguerre functions and Kautz functions
are special cases in this theory. A further generalization
was presented by Ninness and Gustasson [17]. The studies
in [10] and [17] are motivated by applications in system
identification.

These recently developed orthogonal functions are gen-
erated through the balanced realization of inner transfer
functions and hence rely on modern state space system
theory. Some new investigation of the connegction between
advanced optimal and robust control problems and the
classical tools for continuous time systems is recently
carried out by Qiu [18]. The motivation is to develop
elementary solutions to advanced optimal control problems
50 to make the advanced optimal control accessible to a
wider audience, It is shown that the Routh table can be used
to form orthonormal rational functions, to compute the Ho
norm of a stable transfer function and can also be used to
find the Hankel singular values and vectors, hence yielding
the solution to the Hankel approximation and the Nehari
problems. Since these problems play fundamental roles in
"H optimal control theory, their elementary soluticns open
the deor for a simple, polynomial approach to H, optimal
control theory.
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The Jury table and the Jury stability criterion are the
counterparts of the Routh table and the Routh stability
criterion in the discrete time case. The Jury table can also
be used to construct orthonormal rational functions [4]. In
this paper, we will study Hankel operator by using these
orthonormal functions and give a compressed Hankel matrix
representation and find the Hanke! singular values and the
corresponding Schmidt pairs. They will further be used
to solve the optimal and suboptimal Nehari problem, the
optimal and suboptimal Hanke! approximation problem in
the discrete time signal and system context.

II. JURY TABLE AND ORTHONORMAL FUNCTIONS
Consider a stable polynomial
a(z) =agz" +a12" 7 + - +ap,

where a; € R and ag > 0. It is said to be stable if all of
its roots are inside the unit disk.
Construct the Jury table [12}

o Too o1 Totn-1) Ton
T3 Ton  To(n-1) o1 o0
1 10 11 T1{n-1)
T Tign-1) Tign-2) T1g

Tan-1 | Tn-10 Tm-1)1

o 3l Ta-)1  Tin—1)0
Tn Tno

In the Jury table, the Grst row is copied from the coefficients
of the polynomial,

Too = &g, ToL =4y, -.., To{n—-1) = Gn-1, Ton = CGn.

The row 7, § = 0,--- ,n — 1, is obtained by writing the
elements of the preceding row in the reverse order. The row
Tig1, 8 =0,-+ ,n~1,is computed from it two preceding
rows r;_1 and r}_; as

1 Tij Tifn—i)
Ti0 | Ti(n—i—j) rio

(1}

TE+15 =
fori=0,...,n-1, 3=0,...,n—4~1,

In general, the Jury table cannot be completely con-
structed when ryg = 0 for same 1 < ¢ < n. In this case,

=
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there is no need to complete the rest of the table since the
polynomial is unstable.

Consider the set of strictly proper rational functions with
denominator a{z)

X, = {%, degb(z) < dega(z)} . 2

Clearly, X, is an n-dimensional subspace of R'Hj. In
applications, as evidenced later in this paper, it is desirable
to find a basis, or better an orthonormal basis of A.

The Jury table can be used to construct the orthonormal
basis, see [2], [4] and [22]. Recall the Jury table of a(z)
and for the rows r;, 7 = 1,2,...,n, define polynomials

n—2

r(z) = rp2* a4 ey 3)

r_1(2) Tn=1)0% + T(n-1)1

Tn(z) = Tno.

Since a(z) is stable, rio > 0, |rio] > |rym—yl, fori =
1,2,...,n. We can define

{rao Ti(n—i) .
a; = —_—, lc,-:———,z:O,l,Q,...,n.
70 Tip

Theorem 1 The functions E;{z) = ai';i—({;’)l, i=12,.. n.
form orthonormal basis of X,.

III. HANKEL OPERATOR AND COMPRESSED HANKEL
MATRIX

Hankel operators find various applications in engineering
problems such as in model reduction and optimal control.
Analysis and description of the Hankel matrix, the Hankel
singular values and Schmidt pairs are the key for these
applications and are studied in [1}, [8] and [6].

Since the Hankel matrix is an infinite dimension matrix, it
is not convenient for practical computation, We will define a
compressed Hankel Matrix which has only finite dimension.
It will be shown later in this paper that this compressed
Hankel matrix is very useful in solving the Nehari and
Hankel approximation problems.

Let Py : £3 — Hy and P. : L3 — Hy denote the
orthogonal projections such that

P+( > f(k)z") = s

k=—o0
Pu( > f(k)z-k) i flk)z=*.
k=—0c0

k=—o0

Let J : Lo — L, denote the reversal operator and S : Lo —
L3 denote the backward shift operator such that

JF(2)
SF{(z)

F(z™h
zF(z).

Il

Clearly J and S are both unitary operators, For any F(z) =

% € X,, we have

z~(z)
a~(z)’

where a™(z) = z"a(z™!) and 2™~ (2} = z"z(z 7).

JR(z)=F(z ) =

Definition Given a stable system with strictly proper
transfer function G(z), the associated Hankel operator
g : Hy — Mz is defined by

TeU(z) = P4(G(2)U(2)), U(2) € Hy.

It is well-known that ' is a finite rank operator when
G(2) is rational.

Lemma 1 [6] Ler G(z) = % be a strictly proper
stable transfer function. Then

Im FG’ = SXQ,
(Ker Tg) = JAX..

The Hankel operator I'i; is the orthogonal direct sum of
a zero operator and a’compression of I'g mapping JAX,
into 5A,. Everything interesting about it is contained in
the compression.

This compressed Hankel operator can be represented
by a matrix if we choose a basis in (Ker [g)™ and a
basis in Im T'g. Note that both (Ker I':)* and Im I are
isomorphic to A;,. Hence we can use the orthonormal basis
of A,

B() = Buz) Balz) - Bu(2) ]

defined in Theorem 1 to form an orthonormal basis in
(KerHg)™

Bt =] Bye) Bals) ... Ea(z™) ]
and one in ImH¢g
2B(z) =1{ zE1(2) zEs(z) ... zBEn(2) |

We call the matrix representation under this basis Com-
pressed Hankel Matrix and denote it by Hg. The singular
values of Hg are the Hankel singular values of G(z) and
are denoted by o1, o3, ..., 0. We assume that

012092 2 0y

The largest singular value is called the Hankel norm of G(z)
and is denoted by ||G(z)| 5. Let (u;, v;) be a left and right
singular vectors of H¢g corresponding to o; and let

U,-(z) = E(z_l)u,-
Vi(z) = zE{z)v;.
Then (U;(z), Vi(z)) is a Schmidt pair of T' corresponding
to g;. '
We are interested in computing the Hankel singular

values and Schmidt pairs of I'g, the key is to find Hg
from G(z) = 24(%
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For any U(z} = ":—:g% € JA,, Theorem 2 Construct the Jury table of a(z). Define matrix
Aasin (10) and M as:

(2) = (Z)J { b(z) x”(z)}
FGU =P [ P . T 0 Ve 0
S roran) ki reewe 119
Define a new operator T : SX, — SX,, by M= 1Ty G720
z™~(2) £~ (2) : 1 -0
T a(z) =P, [Z a(2) ] @ 1T (n—1) @2T2(n-2) "~ CnTno
Note that ;h)en
P, [Zz"’(z)} _p, [zﬁ(z) +z’y} _ 2B(2) € SX., 0 --- 1
a(z} a{z) a(z} Te=A Kg=M"'}: . 1 {M; (5
where -y is some constant and J(z) is a polynomial with -0
deg §(z) < n. Hence T (z € 54, and T is well defined. )
Then
0 -1
i77(2) _ z™(z) _ _
e P*[ a(z)] =h2 He = a“(A)7TH(AM™ 11 o 2 M (6)
Let 01 10
b(z) .
= k 27, * - - . .
() a~(z) Zf( )t = (A7 AAMTH 0 M
then £(T) is well defined by 1 0
where
z z™(z =(.\ — om—l, ¢, -1
W G ri(e) =2 G,
k=1 The adjoint Hankel operator T'f; : Hy — H3- is given by
2*x~(z .
- Zf(k)P+ =) H3U(z) = P-(G("YU(2), U(:) € Mo
N () o
Z Tz
- L
B [ 5(z) I”(z)] (Ker )™ = SXa.
a~(z) a(z) |’ Corollary 1 The adjoint Hankel operator Ty, satisfies
Let us also define a unitary mapping K : X, — X, by [} = S8JTeSJ. (8)
2(z) _ :BN("'), Remark 1 : Corollary 1 implies that the compressed matrix
afz) za(z) representation of I'}; is also Hg. By definition, the matrix
then we have representation of I'f, is the ranspose of that of I'c. Hence

Hg must be symmetric.

1658 - perysk T2,
a~(z) a™(z) Since Hy is symmelric, it is easy to show that
We denote the matrix representation of T, K under the R o1y _
above basis by T, K. Then we get the following theorem. Ui(e} = e2Vi(z™") = e8.0Vil2) ©)
Similar result can be found in [22]. where ¢ = lore = -1. This fact may offer some
simplification in the computation.

—kokl (11/0!2 L 0 0
—kokzay fas ~k1ka 0 0
A= : . . . . . (10)
—kpkn_101/n—1 —kiks_roofan - —kn—okn_1 an—1/0n,
~kokpo o, —kiknoz/on, s =k okpan 1/ —kn_ 1k

10
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IV. OPTIMAL AND SUBCPTIMAL NEHARI PROBLEM

In this section, we apply the materials in the last section
to the solutions of the optimal and suboptimal Nehari prob-
lem, The Nehari problem [16] plays an important role in
robust and optimal control, it is an approximation problem
with respect to the £, norm: Given a stable strictly proper
system G(z} = Zgg find Q(z) € Huo to minimize

16(z"") - Q()ics-

The following theorem is well-known [1], see also [6], [21].

Theorem 3 Let (U1(z),Vi(2)) be the Schmidt pair
of Hg corresponding to the largest Hankel singular value
o1. Then

1G(z"") — Q@)oo = o1,

min
Q{z)eMHa

and the unique minimizing Q(z) is given by

Vi(z"})
A)

Since the Hankel singular values and Schmidt pairs can be
obtained using the orthonormal basis constructed from the
Jury table, a computational method for solving the Nehari
problem is thus obtained.

The key point of Nehari’s theorem is that the lower bound
of |G{z™1) — @Q(2)]| is achievable, i.e., there exists a
Q(z2) € Heo such that |G{z)llg = ||G(z7?) — Q(2)]loe. If
however, we look for a Q(z) € Heo such that [|G(z71) —
Q(2)lleo < v with ||G{2)lix < =, then Q(z) is called a
suboptimal Nehari complement of G/(z71).

The suboptimal Nehari problem is to characterize all
suboptimal Nehari complements of a given G(z7!) and is
studied in [5], {3] and [7], the methods in these papers are
all related to the state space system theory. Our approach
to the solution will be based on the orthonormal basis and
the compressed Hankel matrix I'¢; in Theorem 2.

We also define the entropy of F(z) as

Q) =Gz -0y

2

IFE) = —5- [ Iall =4 2F (e ) F(e)]dw.
Theorem 4 Let G(z) = % € Mo be rational, strictly
proper and |\G(2}||u < ~v. Expand G(z) as

G(z) = E(z)0
and let
a = 148021 HE)P an
X(z) = YE@(I-HE) 6/ (12)
Y(z) = [14z2E{(z)He(+*T-HEZ)0/a (13)
(1} Define

(14)

2) = Vir(z) Vaa(z)
Viz) = [ V;(z) Vag(2) ]’

where
Vi(2) =Y (27") =y 'G(z7") X (2)
Viz(2) = X(271) =y 'G(z7 )Y (2)
Viu(z) = X(2)

Vaa(2) = Y(2)

Then the set of all Q(z) such that [|G(z™') = Q(z}|ee < ¥
is given by

{Q(z) = 7LV (2}, B{2)] : R(2) € Hoo, |R(2)]| e <1},

where

(5)

_ Vi(2)R(z) 4 Via(2)
(2) Define
_ | Pulz) Pu(z)
Plz) = [ Py (2) Pzz(z)]
1 (U@ 1
= Yol 1 -X() ] (16)
with
Uz) = X()=-7'GETY (R an

Then the set of all Q(z) such that ||G(z7!) = Q(z)]|eo < 7
is given by
{Q(z) = —F[P(2), R(2)], R(z) € Hos, [ R(z}llc0 < 1},

where
F[P(z), R(z)]
= P11{z) + Pr2{2) R(z)(I — Paa(2)R(2)) "' Py1(2).

(3} By setting R(z) = 0, the unique Q(2) satisfving
Gz Y—Q{2)| 0o <~y which minimizes T[G(z™1)-Q(z)]
is given by

Qz) = —’YVljz(Z)Vzﬁl(z) = —vPui(z).

and (-1
G - Q(z) = v jﬁ‘zz) ).
Example 1
For
V22405

b(z)
Glz)=— = —————,
(2) a(z) 22422405
We wish to find all Q(z} € Heo such that ||G(z71) —
Q(2)|oo € ¥ with v = 8.
Construct the Jury table, we can get

2

agzl,alzg,aQ:Q\/g

!

‘ 22
kozo.s,k1=?f,k2=1
3/2z +/6/3z 3/6

El(z)=u‘ Eg(z):L,

2242405 22 +/2405
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and

-3.3333
3.7712

1.8856
Ao = [ ~3.3333

Now let

] |07 = 6.2925.

043z +0.2

22 +4/2240.5
1.222 4+ 1.372 4+ 0.42

Y =
(2) 22 4 +/22405

So, V(z) =
0.83z% + 1.50z + 0.60
22422405
0.43z + 0.20
22422405
and P{z) =
0.2422 + 0.142
1.2022 4 1.37z + 0.42

224422405
1.2022 +1.372 4+ 0.42

0.242% +0.142

2+v22405
1.202% + 1.37z + 0.42

22+ /22405

22+ V22405
1.2022 + 1.372 + 0.42
 0.43240.20
1.2022 4 1.372 + 0.42
By setting R(z) = 0, the unique Q(z) satisfying ||G(2~1)—
@(2)|los < 8 which minimizes Z[G(z~') — Q(z)] is given
by

0.242% +0.14z

Q)= -85z 13 T o1z’

Note that when v = &y, v — HZ becomes singular
and its inverse doesn’t exist. Hence we couldn’t get the
optimal solution by just let ¥+ — o1 in the suboptimal
solution. That's the reason why the solutions to optimal
and suboptimal problems are so different in their formulas.
The same gap exists for the state space solutions. We will
give an alternative algorithm which gives the optimal and
suboptimal sclution in one unified formula.

Theorem 5 Let G(z) = X4 € H,, be rational,
strictly proper and |G (z)||la < . Expand G(z) as
G(z) = E(z)8
and let
a = 1-p(21 - (AHg)") 18 (19)
X(z) = yE(z)(2*I-(AHe)) '8 (20)
Y{(z) = 14+ E(2)AHe(YI - (AH '8 2D

Define

CRNb ]
1 U(z) o
ol e @
with
Ulz) = XY —-~71G(z""YY(z2) 23)

Then the set of all Q(z) such that |G{z™') = Q(2)jlee <
is given by

{Q(z) = —vF[P(2), R(2)], R(2) € Hoo, | R(2)lec < 1},
where

F[P(z), R(2)]

= Pp(2) + Pi2(2)}R(2)(I — Poa(2)R(2)) " Pur(2).

Example 2
Consider the same system

Glz) = b(z) _ V22405 ’
a(z) 22422 +05
We wish to find all Q(2) € Hy such that [[G(z7!) —
Q(2)]|eo < v with v = 8 and v = 62925 = 0.

From Example 1 and Theorem 5, for v = 8, we get
a = (.83 and

0.432+0.2
X(z) = o.ssm
1.2z° 4+ 1.372 + 0.42
Y{z) = 083 N, Ty
and P(z) =
0.2422 +0.14z 22 + /22405
1.202%2 +1.37z + 042 1.202% + 1.37z + 0.42
22 +v22+05 0.43z -+ 0.20

1.2022 + 1372 +0.42  1.2022 +1.372 + 0.42

Note that P(z) is exactly the same as in Example 1.
For v = 6.2925 = 71, we get a = 0 and

z+0.5

X = — 2 U (2=}
@ - F e v
22+ 0.5z
Y = ———— =V(z2),
) 22 4+ /224 0.5 1(2)

where (U1(2), Vi(2)) is the Schmidt pair corresponding to
agy. S(),

0.84z + 0.5 0
22 +0.52
Pl = | 0.43z+0.2
22 + 0.5z
and
X(z“l)

Q(z) = —vPu(z) = Glz"l —~ OR

1C
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Hence,

21
1617 - Qe = 7]

o0

and @ is the optimal solution of Nehari problem,

V. OPTIMAL AND SUBOPTIMAL HANKEL NORM
APPROXIMATION PROBLEMS

In this section, we witl study the optimal and suboptimat
Hankel norm approximation problems. We first take a
look at the optimal Hankel norm approximation problem.
Given a stable system with strictly proper transfer function,
we want to find a strictly stable lower order system to
approximate the high order system sc that the Hankel
norm of the error is minimized. The solution is given by
the following known theorem.

Theorem 6 Let (Uiy1(z), Virr(2)) be the Schmid:
pair of Ha corresponding to (k + 1)-st Hankel singular
value oyy1. Then

min

! IG(2) = G(2)at = oxt3,
order G(z)<k

and the stable minimizing G(z) is given by

G(z) = G(2) - Py [akﬂ%g] +¢,

where ¢ is any constant.

The minimum to the Hankel norm approximation is
og41, If however we look for a stable G{(z) with
order G(z) < k such that |G(z) — G(z}||lg < v with
Tr41 < ¥ < 0%, then G(z) is not unique. The suboptimal
Hankel norm approximation problem is to characterize all
such G(z) for a given G/(z). This problem is also studied
in [9], [3], [8].

The solution to this problem is closely related to the so
called Nehari-Takagi problem, see [9] and [3]. It is known
that solution (z) to the Nehari-Takagi problem is given
by the same formula as in the suboptimal Nehari problem,
but Q(z) doesn’t belong 10 H,, anymore, ((z) will have
precisely & poles outside the unit disk.

Replacing = by 27!, it’s easy to get the solution to the
suboptimal Hankel approximation problem,

Theorem 7 Let G(z) € Ho be rational, proper and
with singular values oy > a9 > > o, also let

Ok+1 S ¥ < ok Then the set of all stable G(z) with
order G(z) < k such that

IG(z) = G2l < v

is given by R
G(z) = P.[Q(z"")] + ¢,

where (2} is given by Theorem 5 and ¢ is any constant.

VI. CONCLUSION

Compressed Hankel matrix is given by using orthonormal
rational functions constructed from the Jury table. The
solutions to the optimal and suboptimal Nehari problems,
the solutions to the optimal and suboptimal Hankel approx-
imation problems via the compressed Hankel matrix are
given.
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