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Absfrmt-Compressed Hankel matrix is given by using 
orthonormal rational functions constructed fmm the Jury 
table. The solutions to the optha l  and suboptimal Nehari 
problems, the solutions to the optimal and suboptimal Hankel 
approximation problems via the compressed Hankel matrix 
are given. 

I. INTRODUCTION 
Various orthogonal functions play important roles in 

science and engineering. Examples include orthogonal poly- 
nomials, the standard basis functions in Fourier series or 
power series, wavelet functions. In this paper, we deal 
with orthogonal rational functions. The study of orthogonal 
rational functions has a long history. The idea of decom- 
posing a linear system in term of orthogonal components, 
such as Laguerre functions, other than the functions in the 
standard Fourier series dates back to the work of Lee [151 
and Wiener 1191. Kautz 1131 formulated a more general 
class of orthogonal rational functions with two parameters. 
Heuberger et al. [lo] developed a theory on constluction 
of orthogonal rational functions using balanced realizations 
of inner transfer functions. The standard basis functions 
in power series, Laguerre functions and Kautz functions 
are special cases in this theory. A further generalization 
was presented by Ninness and Gustasson [17]. The studies 
in [IO] and [17] are motivated by applications in system 
identification. 

These recently developed orthogonal functions are gen- 
erated through the balanced realization of inner transfer 
functions and hence rely on modern state space system 
theory. Some new investigation of the connection between 
advanced optimal and robust control problems and the 
classical tools for continuous time systems is recently 
carried out by Qiu [18]. The motivation is to develop 
elementary solutions to advanced optimal contml problems 
so to make the advanced optimal control accessible to a 
wider audience. It is shown that the Routh table can be used 
to form orthonormal rational functions, to compute the ' H 2  

norm of a stable transfer function and can also be used to 
find the Hankel singular values and vectors, hence yielding 
the solution to the Hankel approximation and the Nehari 
problems. Since these problems play fundamental roles in 
'Hm optimal control theory, their elementary solutions open 
the door for a simple, polynomial approach to 'H, optimal 
contml theory. 
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The Jury table and the Jury stability criterion are the 
counterparts of the Routh table and the Routh stability 
criterion in the discrete time case. The Jury table can also 
be used to construct orthonomal rational functions 141. In 
this paper, we will study Hankel operator by using these 
orthonormal functions and give a compressed Hankel matrix 
representation and find the Hankel singular values and the 
corresponding Schmidt pairs. They will further be used 
to solve the optimal and suboptimal Nehari problem, the 
optimal and suboptimal Hankel approximation problem in 
the discrete time signal and system context. 

11. JURY TABLE AND O R T H O N O R M A L  FUNCTIONS 
Consider a stable polynomial 

a(.) = Qzn + a12n-1 + . ' ' i- a,, 

where ai E W and q > 0. It is said to be stable if all of 
its roots are inside the unit disk. 

Construct the Jury table [I21 

In the Jury table, the tirst row is copied from the coefficients 
of (he polynomial, 

= an-lr ran =a.,. roo = ao, rol = a l ,  . . . , 
The row r,?, i = 0 , .  . . , n - 1, is obtained by writing the 
elements of the preceding row in the reverse order. The row 

i = 0,. . . , n- 1, is computed from its two preceding 
rows and TG] as 

for i = 0,. , . ,n - 1, j = 0,. . . ,n- i - 1 

In general, the Jury table cannot he completely con- 
structed when r,,, = 0 for some 1 _< i < n. In this case, 
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there is no need to complete the rest of the table since the 
polynomial is unstable. 

Consider the set of strictly proper rational functions with 
denominator a(.) 

Clearly, X ,  is an n-dimensional subspace of R H z .  In 
applications, as evidenced later in this paper, it is desirable 
to find a basis, or better an orthonormal basis of X,. 

The Jury table can be used to construct the orthonormal 
basis, see [2], [4] and [22]. Recall the Jury table of a ( z )  
and for the rows T ~ ,  i = 1,2, .  . . , n, define polynomials 

T1(Z) = TlOzn-1 + T11zn-Z t,, , + Tl(n-l) (3) 

TrL-l(z) = T(n-l)o" +T(n-l)I 

Tn(2) = Tn0. 

Since a(.) is stable, T,O > 0, lrl0/ > 
1,2 , .  . . , n.  We can define 

f o r i  = 

Theorem 1 Thefuncfions E ; ( z )  = ai%, i = 1 , 2 , .  . . , n. 
form orthonormal basis of X,. 

111. HANKEL OPERATOR A N D  COMPRESSED HANKEL 
MATRIX 

Hankel operators find various applications in engineering 
problems such as in model reduction and optimal control. 
Analysis and description of the Hankel matrix, the Hankel 
singular values and Schmidt pairs are the key for these 
applications and are studied in [l], [SI and [61. 

Since the Hankel matrix is an infinite dimension matrix, it 
is not convenient for practical computation. We will define a 
compressed Hankel Matrix which has only finite dimension. 
It will be shown later in this paper that this compressed 
Hankel matrix is very useful in solving the Nebari and 
Hankel approximation problems. 

Let P+ : C2 + H Z  and P- : CZ i Hi denote the 
orthogonal projections such that 

Let J : C2 + C2 denote the reversal operator and S : C2 + 
CZ denote the backward shift operator such that 

J F ( z )  = F(z-1) 
SF(2)  = zF(2) .  

Clearly J and S are both unitary operators. For any F ( z )  = 
.(.) E X,, we have 
4 2 )  

where a"(.) = z"a(z- ')  and f ( z )  = z"s(z- ')  

Definition Given a stable system with strictly proper 
rransfer function G(z), the associated Hankel operator 
rc : 'I: 'HZ is dejned by 

r,U(z) = P+(G(z)U(z)), U ( z )  E 'Hi .  
It is well-known that rc is a finite rank operator when 
G(z) is rational. 

Lemma 1 [6] Let G ( z )  = - be a strictly proper 
stable transfer function. Then 

I m p G  = SX,, 
(Ker rc)' = JX,. 

The Hankel operator rc is the orthogonal direct sum of 
a zero operator and a'compression of rc mapping J X ,  
into SX,. Everything interesting about it is contained in 
the compression. 

This compressed Hankel operator can be represented 
by a matrix if we choose a basis in (Ker rc)l and a 
basis in Im rc. Note that both (Ker rc)l and Im rc are 
isomorphic to X,. Hence we can use the orthonormal basis 
of x, 

E ( z )  := [ El(z) Ez(z)  ... E,(t) ] 
defined in Theorem 1 to form an orthonormal basis in 
(KerHC)' 

E(2-l)  = [ E~(z-?) Ez(z-') . _ _  En(z-') ] 
and one in ImHc 

~ E ( z )  = [ ZEI(Z) t E z ( z )  . . . zE,(t) 1 .  
We call the matrix representation under this basis Com- 
pressed Hankel Matrix and denote it by Hc. The singular 
values of H c  are the Hankel singular values of G(z )  and 
are denoted by UI, U Z ,  . . . , U,,. We assume that 

U1 2 U2 2 " '  2 U". 

The largest singular value is called the Hankel norm of G ( z )  
and is denoted by IIG(z)liH. Let ( U ; ,  U ; )  be a left and right 
singular vectors of HC corresponding to U; and let 

U;(.) = E(z-l)u; 

qz) = zE(z)IU;. 
Then (U; ( z ) ,  K(z)) is a Schmidt pair of rc corresponding 
to U ; ,  

We are interested in computing the Hankel singular 
values and Schmidt pairs of rc, the key is to find HG 
from ~ ( z )  = 

&) '  
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For any U ( z )  = E JX, ,  Theorem 2 Construct the Jury table of a(z) .  Define matrix 
A as in (IO) and M as: 

. . .  f f i T i o  0 

Define a new operator T : SX, -t S X ,  by 

Note that 

(4) 

where y is some constant and P(z )  is a polynomial with 
d e g p ( t )  < n. Hence T- E SX, and T is well defined. 
Then 

then F ( T )  is well defined by . .  
where 

x"(z) T T ( 9 )  = zn- 'T l (9-1) .  
m 

z"(z) = x f ( k ) T k m  
k=l The adjoint Hankel operator I?& : Hz + 'Hi is given by 

F(T)a(t) 

= 9 f (k)P+ [q] H&U(z)  = P - ( G ( z - l ) U ( z ) ) ,  U ( t )  E H H ~  
k=l 

m and 

Im r; = JX,, 
(Kerrb) '  = SX,. 

~~ 

Corollary 1 The adjoint Hankel operaror r& satisfies 

r; = sJrcsJ. (8) Let us also define a unitary mapping K : X, + X, by 

,.(.) = .-(z) 
a ( z )  z a ( z ) '  

then we have 

Remark 1 : Corollaty 1 implies that the compressed matrix 
representation of r; is also HG. By definition, the matrix 
representation of r& is the transpose of that of r G .  Hence 
HG must be symmetric. 

Since Hr: is symmetric, it is easy to show that - .  

(9) 
We denote the matrix representation of T, K under the 
above basis by TE,  KE.  Then we get the following theorem. 
Similar result can be found in [221. where 6 = 1 or L = -1. This fact may offer some 

U&) = czv,(z-') = €SJV,( t )  

simplification in the computation. 

I C  
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IV. OPTIMAL AND SUBOPTIMAL NEHARI PROBLEM 

In this section, we apply the materials in the last section 
to the solutions of the optimal and suboptimal Nehari prob- 
lem. The Nehari problem [I61 plays an important role in 
robust and optimal control, it is an approximation problem 
with respect to the Cw norm: Given a stable strictly proper 
system G(z )  = %, find Q ( z )  EH, to minimize 

The following theorem is well-known [l]. see also [6], [21]. 

Theorem 3 Let (U1(z) ,V1(z ) )  be the Schmidt pair 
of H c  corresponding to the largest Hankel singular value 
U'. Then 

and the unique minimizing Q ( z )  is  given by 

Since the Hankel singular values and Schmidt pairs can be 
obtained using the orthonormal basis constructed from the 
Jury table, a computational method for solving the Nebari 
problem is thus obtained. 
The key point of Nehari's theorem is that the lower bound 
of I/G(z-') - Q(z)llw is achievable, i.e., there exists a 
&(z)  E H, such that l lG(z) l \~  = IlG(z-') - Q(z)llm. If 
however, we look for a Q(z )  E 71, such that l/G(z-') - 
Q(z)liw 5 y with l lG(z) l i~ < y, then Q ( z )  is called a 
suboptimal Nehari complement of G(2-l). 

The suboptimal Nehari problem is to characterize all 
suboptimal Nebari complements of a given G(z- ' )  and is 
studied in [ 5 ] ,  [31 and [71, the methods in these papers are 
all related to the state space system theory. Our approach 
to the solution will be based on the orthonormal basis and 
the compressed Hankel matrix rc in Theorem 2. 

We also define the entropy of F ( z )  as 

Theorem 4 Let G(z )  = $$ E N, be rational, strictly 
proper and l IG(r) l l~ < y. Expand G ( z )  as 

G(z )  = E(z)P 
and let 

where 

( 2 )  Define 

Example 1 
For 

G ( z )  = - b ( z )  = &z+0.5 
z2 + &z + 0.5' a ( z )  

We wish to find all Q ( z )  E H ,  such that IlG(z-') - 
Q(z)ll,  5 y with y = 8. 

Construct the Jury table, we can get 

2& 
I 

ko = 0.5, k i  = -, 3 k2 = 1 
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Define 

and 

1.8856 -3’3333 , = 6,2925, 
-3.3333 3.7712 1 H e =  [ 

Now let 
0.432 + 0.2 

2’ + 4 2  + 0.5 
X(2) = 

1.22’ + 1.372 + 0.42 
Y(2) = 

z2 + f i z f0 .5  . 

so, V ( 2 )  = 

0 . 8 3 ~ ~  + 1.502 + 0.60 
zz + fit + 0.5 

0.432 + 0.20 

0.240’ + 0.142 
z2 + f i t  + 0.5 

1 . 2 0 ~ ~  + 1.372 + 0.42 i z2 + fiz + 0.5 2’ + fit + 0.5 

and P ( z )  = 

0 . 2 4 ~ ~  + 0.142 2’ + f iz + 0.5 
1.202’ + 1.372 + 0.42 ( 1 . 2 0 ~ ~  + 1.372 + 0.42 

0.432 + 0.20 ( Z 2 + f i 2 + 0 . 5  - 
1 . 2 0 ~ ~  + 1.372 + 0.42 1.202’ + 1 . 3 7 ~  + 0.42 

By setting R(z) = 0, the unique Q ( z )  satisfying llG(z-’)- 
Q(z)l\, 5 8 which minimizes Z[G(t-’) - Q ( z ) ]  is given 

where 

W ( Z ) >  R(2)l 
= pll(z) +Plz(t)R(z)(r - P~~(~)R(Z))-~P~~(Z). 

Example 2 
Consider the same system 

b(2) d z  f0.5 

a(.) 
G ( r )  = - = 

z2 + fir + 0.5’ 

We wish to find all Q ( t )  E H, such that [IG(z-’) - 
Q(z)llm 5 y with y = 8 and y = 6.2925 = U’. 

From Example 1 and Theorem 5 ,  for y = 8, we get 
CY = 0.83 and 

0.432 + 0.2 
X ( z )  = 0.83 t2 + f iz + 0.5 

1 . 2 ~ ~  + 1.372 + 0.42 
2’ + &z + 0.5 

Y ( z )  = 0.83 

and P ( z )  = 

0 . 2 4 ~ ~  + 0.142 
1 . 2 0 ~ ~  + 1.372 + 0.42 

z2 + f i z  + 0.5 

2’ + f i z  + 0.5 
1.202’ + 1.372 + 0.42 

0.432 + 0.20 - i 1 . 2 0 ~ ~  + 1.372 + 0.42 1 . 2 0 ~ ~  + 1.372 + 0.42 

by 
0 . 2 4 ~ ~  + 0.142 

1.202’ + 1.372 + 0.42 ’ 
Q ( z )  = -8 

Note that when y = U I ,  y21 - If; becomes singular - 
and its inverse doesn’t exist. Hence we couldn’t get the 
optimal solution by just let y + u1 in the suboptimal 
solution. That’s the reason why the solutions to optimal 
and suboptimal problems are so different in their formulas. 
The same gap exists for the state space solutions. We will 
give an alternative algorithm which gives the optimal and 
suboptimal solution in one unified formula. 

Theorem 5 Let G ( z )  = # E 7-1, be rational, 
strictly proper and l lG(z)[l~ 5 y. Expand G(z )  as 

G(2) = E(2)P 

and let 

CY = J1- / j ” (yZ1 - ( A H C ) ~ ) - ’ @  (1% 

X ( z )  = y E ( z ) ( y 2 1  - ( A H G ) ~ ) - ’ P  (20) 
Y ( z )  = 1 + E(z)AHc(+l  - (AHG)~)-‘O (21) 

Note that P ( z )  is exactly the same as in Example 1. 
For y = 6.2925 = U’ ,  we get a = 0 and 

= U1(z- l )  I + 0.5 
2 2  + f iz  + 0.5 

X(2) = 

z2 + 0.52 
Y(2) = 9 + fit + 0.5 = V ’ ( Z ) ,  

where (Ul@), VI(.)) is the Schmidt pair corresponding to 
U I .  so, 

i 0 
0.842 + 0.5 

0.432 + 0.2 
t2  + 0.52 

P(2)  = 

and 

I C  
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Hence, 

and Q is the optimal solution of Nehari problem. 

V. OPTIMAL AND SUBOPTIMAL HANKEL NORM 

In this section, we will study the optimal and suboptimal 
Hankel norm approximation problems. We first take a 
look at the optimal Hankel norm approximation problem. 
Given a stable system with strictly proper transfer function, 
we want to find a strictly stable lower order system to 
approximate the high order system so that the Hankel 
norm of the error is minimized. The solution is given by 
the following known theorem. 

Theorem 6 Let (Lik+~(z),Vk+l(z)) be the Schmidt 
pair of H c  corresponding to ( k  + 1)-st Hankel singular 
value ~ k + ~ .  Then 

APPROXIMATION PROBLEMS 

and the stable minimizing G ( z )  is given by 

where c is any constant. 

The minimum to the Hankel norm approximation is 
uk+l, j f  however we look for a stable G ( z )  with 
order G ( t )  5 k such that llG(z) - G ( z ) l l ~  5 y with 
u k + l  5 y < uk, then G ( t )  is not unique. The suboptimal 
Hankel norm approximation problem is to characterize all 
such G ( t )  for a given G(z) .  This problem is also studied 

The solution to this problem is closely related to the so 
called Nehar-Takagi problem, see [9] and [31. It is known 
that solution Q(z)  to the Nehari-Takagi problem is given 
by the same formula as in the suboptimal Nehari problem, 
but Q ( z )  doesn't belong to li, anymore, Q(z )  will have 
precisely k poles outside the unit disk. 

Replacing z by z - l ,  it's easy to get the solution to the 
suboptimal Hankel approximation problem. 

Theorem 7 Let G(r)  E li, be rational, proper and 
with singular values u1 2 U* 2 . . . 2 unL also let 
uk+l 4 y < u k .  Then the set of all stable G(r )  with 
order G ( t )  5 k such that 

in P I .  PI ,  181. 

IlG(2) - G(z)IIH 5 Y 
is  given by 

G(z )  = P+[Q(t-')] + C, 

where Q(t) is given by Theorem 5 and c is any constant. 

VI. CONCLUSION 
Compressed Hankel matrix is given by using orthonormal 

rational functions constpcted from the Jury table. The 
solutions to the optimal and suboptimal Nehari problems, 
the solutions to the optimal and suboptimal Hankel approx- 
imation problems via the compressed Hankel matrix are 
given. 

.REFERENCES 
111 V. M. Adamjan, D. 2. Arov and M. G. Krein. "Analytical properties 

of Schmidt pain for a Hankel operator and the generalized Schur- 
Tagagi problem", Math. USSR Sbomik, vol. 15, pp. 31-73. 1971. 

121 K. 1. Asmom, lnrmducrion to Srochasric Contml Theory, Academic 
Press, New York. 1970. 

[3] J. A. Ball. 1. Fohberg and L. Rodman, Inrerpolalion of Rational 
Marrir Functions. Birkhauser Verlag, 1990. 

141 L. C. Calvez, P. Vilbi. A. Derrien and P. Brthonnet, "General 
orthogonal sequences Via a Routh-type stability may", Electmnics 
Lefters, Vol. 28. No. 19. 1992. 

151 B. Francis, A Course in H ,  Conrrol Theory, Springer-Verlag. 1987. 
161 P. A. Fuhrmann, A Polynomial Approach I D  Lineor Algebra, Springer, 

New York. 1996. 
171 P. A. F u h a n n .  'The bounded real characteristic functions and 

Nehui  extensions". Operator Theory: Advances and Applications, 
vol. 73, pp. 264-315. 1994. 

181 K. Glover,"All optimal Hankel-norm appmximations and their L m -  
error bounds", Int. 3. Contr ~01.39, pp. 1115-1193, 1984. 

I91 I. Gohberg and V. Olshevsky, "Fast stale space algorithms for matrix 
Nehari and Nehari-Takagi interpolation problems", Integral Equ. and 
Operator T h e o y ,  vol.20,I. pp. 44-83, 1994. 

[ I O ]  P. Heuberger, P. M. 1. Van den Hof and D. Bosgra, '' A generalized 
orthonormal basis for linear dynamical systems", IEEE Tmns. Auto. 
Conrr. vol. 40. pp. 451-465, 1995. 

1111 P. A. Iglesias, D. Mustafu and K. Glover. "Discrete time H, con- 
trollen satisfing a minimum enuoy criterion", Systems and Conrorl 
Lertters, vol. 14. pp. 275-286. 1990. 

1121 E. 1. Jury and 1. Blanchardy, "A sfability test for linear discrete 
systems in table form", Pmc. IRE, vol. 50, pp. 1947-1948. 1961. 

1131 W. H. Kautr, "Transient synthesis in the time domain". IRE Trans. 
on Circuit Theory. vol. CT-I. pp. 29-39. 1954. 

1141 S. Y. Kung, 'Dptimal Hankel-nom model reductions: multivariable 
systems", IEEE Trans. Auto. C o n l ~ ,  vol. AC. 26, pp. 832-852, 1981. 

1151 Y. W. Lee, "Synthesis of electrical networks by means of the Fourier 
transforms of Laguene functions", J. Moth. Physics, vol. 11, pp. 83- 
113, 1933. 

I161 Z. Nehari. "On bounded bilinear forms", Annols ofMathemarics, vol. 
15(1). pp, 153-162, 1957. 

I171 B. Ninness and F. Gustasson. "A unfying consmction of arthonomal 
bases for system identification", IEEE Trans. Aura C o n e ,  vol. 42, 
pp. 515-521, 1997. 

I181 L. Qiu. "What can Routh table offer in addition to stability?". IFAC 
Svmnosium on Robusr Conrml Desien. 2003. 

1201 N. Young. 'The  singular-value decomposition of an infinite Hankel 
mauix". Linear Algebm and 11s Applications. vol. 50. pp. 639-656, 
1983. 

1211 N. Young, An Intmduction to Hilbert Space. Cambrige University 
Press, 1988. 

1221 X. Zhao. L. Oiu. "Orthonormal rational functions via the lurv table 
I ~~~ . .  

and their applications", 42nd IEEE Conference on Decision and 
Conrml. 2093. 

107 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 16,2021 at 03:27:50 UTC from IEEE Xplore.  Restrictions apply. 


