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Stabilization of LTI Systems with Planar Anti-stable 
Dynamics Using Saturated Linear Feedback 
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Abst rac t  

In this paper, we first study the stabilization of an 
LTI anti-stable planar system with a saturated linear 
state feedback. We show that the domain of attraction 
of such a system under any saturated linear stabiliz- 
ing feedback can be obtained easily by simulating the 
time-reversed closed-loop system. We then show that a 
saturated linear state feedback can be designed for such 
a system so that the equilibrium of the closed-loop sys- 
tem has a domain of attraction that is arbitrarily close 
to the null controllable region. Finally we present an 
extension of this result to general LTI systems with 
planar anti-stable dynamics. 

1 In t roduct ion  

Two fundamental issues relating to the control of a 
system are its controllability and stabilizability. These 
issues are well-known to be difficult in the presence of 
input saturation even when the system itself is linear. 
They have been focuses of study of linear systems that 
have no poles in the open right half of the complex 
plane (we will call such systems semi-stable systems) 
and are now well addressed. For example, it is well- 
known [8, 10, 111 that such systems are globally null 
controllable with bounded controls as long as they are 
controllable in the usual linear system sense. Based on 
this fact, extensive literature has been devoted to the 
control of semi-stable systems using bounded control. 
In [12] and [14], nonlinear globally asymptotically sta- 
bilizing feedback laws were designed. Later, saturated 
linear state feedback laws were constructed so that the 
closed-loop system has a domain of attraction contain- 
ing an arbitrarily prescribed bounded region, see, e.g., 
[5 ,  6 ,  7, 91. In these papers, the feedback gains are 
kept small so that within a prescribed region of states, 
the control signal will not exceed the saturation level. 
It was also recognized that if the feedback is designed 
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by the LQ method, then the feedback can be ampli- 
fied by any positive gain while keeping the domain of 
attraction no smaller that the estimated one (a level 
set) achieved by the original feedback. This positive 
gain is then utilized to improve other performance of 
the closed loop system, see [4, 91. 

The stabilization of an exponentially unstable sys- 
tem with saturated input is a much harder problem. 
Even the analysis problem of describing the domain of 
attraction of a closed loop system under a fixed con- 
trol is not sufficiently addressed. Although a subset of 
the domain of attraction can be estimated, even some 
performance can be guaranteed within this subset, it 
is not clear how conservative this estimation is, nor is 
it clear how to enlarge this subset to meet the perfor- 
mance requirements. 

We begin with the study of anti-stable planar sys- 
tems (an LTI system is said to be anti-stable if it has all 
the poles in the open right half of the complex plane). 
We show that for such a system its domain of attrac- 
tion under a saturated stabilizing linear state feedback 
can be easily obtained from the unique stable limit cy- 
cle of the time-reversed closed-loop system. Then a 
saturated linear sta.te feedback is designed so that the 
domain of attraction is arbitrarily close to its null con- 
trollable region. Finally we show that for a higher order 
system with only two anti-stable modes, a switched sat- 
urated linear state feedback (with only one switch) can 
be designed so that the domain of attraction contains 
any prescribed compact subset of the null controllable 
region. The stabilization of general unstable systems 
with more than two anti-stable modes are left for fu- 
ture study. 

2 Preliminaries and Notation 

Consider a single input system 

i ( t )  = Ax(t)  + bu(t) (1) 

where z ( t )  E Rn is the state and u( t )  E R is the 
control. A control signal U is said to be admissible if 
Iu(t)( 5 1 for all t > 0. In this paper, we are interested 
in stabilizing (1) with some simple control strategies 
such that the closed-loop system has a desired domain 
of attraction. Since the domain of attraction must lie 
within the null controllable region of (l), our objective 
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in this paper is to make the domain of attraction close 
to the null controllable region. Recall that the null 
controllable region is defined as follows. 

Definition 1 

(a) A statc: xo is said to  be null controllable if there ex- 
ists T E [0, m) and a n  admissible control U such 
that the state trajectory x of the system satisfies 
x ( 0 )  := xo and x ( T )  = 0. 

(b) The set of all null controllable states is  called the 
null controllable region of the system and is de- 
noted by C .  

For general systems, C has the following properties. 

Proposition 1 Assume that (A ,  b) is  controllable. 

(a) If A is semi-stable, then C = R". 

(b) I f  A is anti-stable, then C i s  a bounded convex open 

(c) If A = [ 2 j2 ] with A1 E R"""' being anti- 

stable and A2 E RnzxnZ being semi-stable, and 

b i s  partitioned as [ Lt ] accordingly, then C = 

C1 x :RnZ where C1 is the null controllable region 
of the! anti-stable system i l ( t )  = Alzl + b l u ( t ) .  

set mntaining the origin. 

Statement (a) is well-known [8, 10, 111. Statements 
(b) and (c) are proved in [2]. Because of this proposi- 
tion, we only need to study the null controllable regions 
of anti-stable systems. 

In the st.Jdy of the null controllable region, the time- 
reversed system 

i ( t )  = -Az( t )  - bv( t )  ( 2 )  

plays an important role. Denote the boundary of C as 
dC. Now let us restrict our study to planar anti-stable 
systems. The following results, developed in [3], will 
be used. 

Proposition 2 Suppose that A E R2x2 has two real 
positive eigenvalues. Then  

dC = ( ~ k ( - 2 e - ~ ~  + I ) A - l b  : t E [0, m]} ; (3) 

suppose that A E R2x2 has a pair of conjugate complex 
eigenvalues, Q f j p ,  a ,  p > 0 .  Let  Tp = ;, Z ;  = ( I  + 

( I  - ePATp)A-'b. Then  

dC = {zk[e-Atz; - ( I  - ePAt)AP1b]  : t E [O,Tp]} . 
(4) 

The description of the null controllable regions paves 
the way for the study of stabilization of systems with 
input saturation. Consider the open loop system 

i ( t )  = Ax( t )  + bu( t )  ( 5 )  

with admissible control lu(t)J 5 1. A saturated linear 
state feedback is given by U = o ( f x )  where f E Rlxn 
is the feedback gain and o(.) is the saturation function 

1 , s > l  
o(s) = s , Is1 < 1 . { -1 , ss-1 

Such a feedback is said to be stabilizing if A + bf is 
stable. With a saturated linear state feedback applied, 
the closed-loop system is 

i ( t )  = Ax(t)  + b a [ f z ( t ) ] .  (6) 

Denote the state transition map of (6) by 4 : ( t ,  X O )  I+ 

x ( t ) .  Then the domain of attraction S of the equilib- 
rium x = 0 of (6) is defined by 

Obviously, S must lie within the null controllable re- 
gion C of system ( 5 ) .  Therefore, a design problem is to  
choose the state feedback gain so that S is close to C. 

This seemingly simple task is actually quite non- 
trivial, even for semi-stable systems. In the past few 
years, extensive research has been reported on the 
stabilization of semi-stable plant, see, for example, 
[5, 6, 9, 12,  13, 141. The problem for exponentially 
unstable systems is much harder. In this paper, we 
will first deal with planar anti-stable systems, then ex- 
tend the results to higher order systems with only two 
anti-stable modes. 

3 Domain of attraction 

Consider system (6). Assume that A E R2x2 and A 
is anti-stable. In this section, we analyze the domain 
of attraction of the equilibrium z = 0 of (6). In [l], it 
was shown that the boundary of S ,  denoted by dS, is a 
closed orbit, but no method to find this closed orbit is 
provided. Generally, only a subset of S lying between 
f x  = 1 and f x  = -1 is detected as a level set for some 
Lyapunov function, see, for example, [4]. Let P be a 
positive definite matrix such that (A+bf ) 'P+P(A+bf )  
is negative definite and since { z  E R2 : -1 < fz < 1) 
is an open neighborhood of the origin, it must contain 

(7) Q o  := { Z  E R2 : Z'PZ 5 T O }  

for some T O  > 0. Clearly Q o  c S. We will see latter 
that this estimate of the stability region can be very 
conservative (see, for example, Fig. 1). 

Lemma 1 [l] The  origin is  the unique equilibrium 
point of system (6). 

Let us introduce the time-reversed system of (6): 

i ( t )  = -Az( t )  - b o [ f ~ ( t ) ] .  (8) 
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Clearly (8) also has only one equilibrium point, an un- 
stable one, at the origin. By applying the describing 
function method, one can predict that (6) and (8) have 
a unique limit cycle. Due to the approximate nature 
of the describing function analysis, we cannot expect it 
to give a definite answer. Further investigation shows 
that the prediction is indeed correct. Denote the state 
transition map of (8) by + : ( t ,  zo) t-) z ( t ) .  

Theorem 1 d S  is  the unique limit cycle of systems 
(6) and (8). Furthermore, d S  is the positive limit set 
of +(. ,zo)  for all zo # 0. 

This theorem says that 8s is the unique limit cycle 
of (6) and (8). This limit cycle is stable for (8) (in 
a global sense) but unstable for (6). Therefore, it is 
easy to determine dS by simulating the time-reversed 
system (8). See Fig. 1 for a typical result, where two 
trajectories, one starting from outside, the solid curve, 
and the other starting from inside, the dashed curve, 
both converge to the unique limit cycle. The straight 
lines in Fig. 1 are fz = 1 and fz = -1. 

1 1 1 1 1 1 1 / 1 1 1  
3 0  -8 -6 -4 -2 0 2 4 6 8 10 

Figure 1: Determination of dS from the limit cycle 

To prove Theorem 1, we need the following two lem- 
mas, whose proofs are omitted due to space limitation. 

Lemma 2 Suppose that A E R2x2 is anti-stable and 
(f ,  A)  is observable. Given c > 0 ,  let x1 , x2 ,  y1 and y2 

( X I  # 22)  be four points on the line f x  = c, satisfying 

y1 = eAT1xl ,  y2  = eAT2 x2 

for some T I ,  T2 > 0 and 

f e A t l x l  2 c, f eAtzx2 2 c, 

then 1Iy1 - ~ 2 1 1  > 11x1 - 2211. 

V t l  E [0, T I ] ,  t 2  E [0, T2], 

Lemma 2 indicates that if any two different trajec- 
tories leave a straight line on the same side, they will 
be further apart when they return to it. 

Lemma 3 : Suppose that A E R2x2 is asymptotically 
stable and (f, A) is observable. Given c > 0, let x1,x2 
be two points on the line f x  = c and y1,ya be two points 
on f x  = -c such that 

for some T I ,  T2 > 0 ,  and 

I feAt lx l I  5 C, IfeAt2x21 i C, '+ti E [O,Ti], t 2  E [O,T2], 

then 11Y1 - Yall > 11x1 - x211. 

This lemma says that if two different trajectories 
of the autonomous system j. = A x  enter the region 
between f x  = c and f x  = -c,  they will be further 
apart when they leave the region. 

Proof of Theorem 1: We first prove that for system 
(8), every trajectory + ( t , z O ) ,  zo # 0 ,  converges to a 
limit cycle as t -+ W. Recall that Qo(defined in (7)) 
lies within the domain of attraction of (6) and is an 
invariant set. It follows that, for every state zo # 0 of 
(8), there is some t o  2 0 such that + ( t , z 0 )  lies outside 
Qo for all t 2 t o .  The state transition map of system 
(8) is, 

t 
dJ(t ,zo) = e - 1 e-A(t-7)ba(  f z(T))dT (9) 

Since -A is stable, the first term converges to the 
origin. Since Ia(fz(T))l 5 1, the second term be- 
longs to C, the null controllable region of (5), for all 
t .  It follows that there exists an r1 > ro such that 
$ ' ( t , z o ) P $ ( t , z o )  5 r1 < cc for all t 2 t o .  Let 
Q = { z  E R2 : ro 5 z'Pz 5 q}. Then $ ( t , z o ) ,  
t 2 to, lies entirely in Q. It follows from the Poincark- 
Bendixon theorem that dJ( t , zo)  converges to a limit 
cycle. 

The preceding paragraph shows that (6) and (8) 
have limit cycles. We claim that system (6) and (8) 
each has only one limit cycle. For direct use of Lemma 2 
and Lemma 3, we prove this claim through the original 
system (6). 

First notice that a limit cycle must be symmetric 
to the origin Also, it cannot be completely contained 
in the linear region between f x  = 1 and f x  = -1. 
Hence it has to intersect each of the lines f x  = f l  
at least twice. Assume without loss of generality that 
(f, A, b) is in the observer canonical form, i.e., f = 

[ 0  1 ] , A =  [ ::' ] , b  = [ !i 1 ,  with a1,a2 > 

0, and denote x = [ Et 1 .  In this case, f x  = f l  are 

horizontal lines. The stability of A + b f  requires that 
-a1 + bl < 0 and a2 + b2 < 0.. Observe that on the line 
fx = 1, we have J 2  = 1 and ( 2  = (1 +a2 + b2. Hence, 
if (1 > -a2 - b2 ,  then ( 2  > 0, i.e., t he  trajectories 
go upwards; if < -a2 - b2, then ( 2  < 0, i.e., the 
trajectories go downwards. This implies that any limit 
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cycle crosses fx = 1 exactly twice and similarly for 
fx = -1. It also implies that a limit cycle goes anti- 
clockwisely. 

Now suppose on the contrary that (6) has two differ- 
ent 1imit.cycles rl and r2, with rl enclosed by r2, as 
illustrated in Fig. 2. Note that (6) has only one equilib- 
rium point,. Hence all its limit cycles must be ordered 
by enclosement. Let x1 and y1 be the two intersections 
of with f x = 1, and 2 2 ,  y2 be the two intersections 
of r2 with fx = 1. Then along rl ,  the trajectory goes 
from x1 to y1, -XI ,  -y1 and returns to zl; and along 
r 2 ,  the trajectory goes from 2 2  to y2, -x2, -y2 and 
returns to 5 2 .  

Figure 2: Illustration for the proof of Theorem 1 

Let x$ = -A-'b. Since x1 -+ y1 along and 
5 2  -+ y2 along r2 are on trajectories of x = Ax + b (or 
d(x - x$),'dt = A(. - x:)), we have 

y 1 -  x: = eAT1(zl - zz), y2 - xz = eAT2(x2 - xz) 

for some Tl,T2 > 0. Furthermore, f(z1 - x$)= f(x2 - 

x$)= f (y1  - x:) =f(yz - x$) = 1 - fxr > o (since 
fx$ = 2 < 1) and for all x on the two pieces of 
trajectories, f(x - x:) 2 1 - fz$. It follows from 
Lemma 2 that 

11Y2 - Y111 > 11x2 - 2111 

On the other hand, y1 -+ -xl along l?l and yz + -ZZ 

along r2 are on trajectories of 2 = ( A  + bf )x  satisfying 

T3,T.l > 0. It follows from Lemma 3 that 
-51 = e(i'+bf)T3yl and - x 2  = e(Afbf)T4y2 for Some 

11x2 - 2111 > llY2 - Y l l l ,  

which is a contradiction. Therefore, r 1  and rz must 
be the same limit cycle. 

We have so far proven that every trajectory 
$(t ,  ZO), zo # 0 of (8) converges to a unique limit cycle. 
This implies that a trajectory 4(t ,  20) of (6) converges 
to the origin if and only if xo is inside the limit cycle. 
This shows that the limit cycle is dS. 0 

Moreover, it can be shown that S has the following 
nice feature. 

Proposition 3 S is convex. 

4 Semi-Global Stabilization on the Null 
Controllable Region 

In this section, we examine issues related to semi- 
global asymptotic stabilization on the null controllable 
region of linear systems with saturating actuators. 

4.1 Second order anti-stable systems 
In this subsection, we continue to assume that A E 

is anti-stable and ( A ,  b )  is controllable. To state 
the main result of this section, we need to introduce 
the Hausdorff distance. Let XI, X2 be two bounded 
subsets of Rn. Then their Hausdorff distance is defined 
as: 

R 2 X 2  

d(x1, x2) := m a x { & x 1 ,  ~ 2 ) ,  4x2, XI)}, 
where 

Here the vector norm used is arbitrary. 

following Riccati equation, 
Let P be the unique positive definite solution of the 

A'P + P A  - Pbb'P = 0.  

Note that this equation is associated with the minimum 
energy regulation, i.e., an LQR problem with cost 

(10) 

J = lm u'(t)u(t)dt .  

The corresponding minimum energy state feedback 
gain is given by fo = -b'P. The origin is a stable 
equilibrium of system 

k ( t )  = Ax(t)  + ba(kfox(t)) (11) 

for all k > 0.5. Let S ( k )  be the domain of attraction 
of the equilibrium 3: = 0 of (11). 

Theorem 2 limk+m d ( S ( k ) , C )  = 0. 

This shows that a second order anti-stable linear sys- 
tem can be semi-globally asymptotically stabilized on 
its null controllable region by saturated linear feedback. 

Note that the use of high gain feedback is crucial 
here. The minimum energy feedback fo itself does not 
give a domain of attraction that is close to C. This 
is quite different from the related result in [5, 71 for 
semi-stable systems. In these two papers, it was shown 
that if A is semi-stable and ( A ,  b )  controllable (of ar- 
bitrary dimension), then a near minimum energy feed- 
back gives an arbitrarily large domain of attraction. 
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0 - 0 5  0 Example 1 Let A = 1 1  1.5 1 and = 1-1 1 .  
L .I L .I 

Then fo = [ 0 3 1.  In Fig. 3, the boundaries of the 
domains of attraction corresponding to different f = 
k f o ,  k =  0.50005,0.65,1,3, are plotted. The regions do 
become bigger for greater k .  The outermost boundary 
is dC. When k = 3, it can be seen that dS is already 
very close to dC. 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

1 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 3: Domains of attraction under different feedbacks 

4.2 Higher order systems with two exponen- 
tially unstable poles 

Consider the following open-loop system 

where x = [ xi xh ] I ,  x1 E R2,x2 E Rn, A1 E R2x2 
is anti-stable and A2 E R" is semi-stable. Assume 
that ( A ,  b) is controllable. Denote the null controllable 
region of the subsystem 

j.1 ( t )  = Aixi  ( t )  + biu(t) 

as C 1 ,  then the null controllable region of (12) is C1 x 
R". Given y1,yz > 0, denote 

Rl(y l )  := ( ~ 1 ~ 1  E R 2 :  2 1  E C ~ }  
0 2 ( 7 2 )  := ( ~ 2  E R" : IIRzII L 7 2 ) .  

When y1 = 1, Rl(y1) = c1 and when y1 < 1, Rl(y1) 
lies in the interior of C1. In this section, we will show 
that given any y1 < 1 and 7 2  > 0, a state feedback can 
be designed such that Rl(yl) x R2(72) is contained in 
the domain of attraction of the equilibrium x = 0 of 
the closed-loor, system. 

- 1  

For E > 0, let P ( E )  = [ 2 2 E R(2+n) x(2+n) 

be the unique positive definite solution to the ARE 

A'P + P A  - Pbb'P + e 2 1  = 0. (13) 

Clearly, as E 4 0, P ( E )  decreases. Hence lime+.O P ( E )  
exists. Let PI be the unique positive definite solution 
to the ARE 

Then by the continuity property of the solution of the 
Riccati equation [16], 

Let f ( E )  := -b'P(E). First, consider the domain of 
attraction of the equilibrium x = 0 of the following 
closed-loop system 

i ( t )  = Ax( t )  + bo(f(E)x(t)) .  (14) 

It is easy to see that 

D ( E )  := {x E R2+n : x ' P ( ~ ) z  5 1/lIb'P4(t)l12}. 

is contained in the domain of attraction of the equilib- 
rium x = 0 of (14) and is an invariant set. 

Theorem 3 Let fo = -blPl. For any y1 < 1 and 
y2 > 0 ,  there exist k > 0.5 and E > 0 such that Rl(y1) x 
Rz(y2) is contained in the domain of attraction of the 
equilibrium x = 0 of the following closed-loop system 

Example 2 Consider an open-loop system described 
by (12) with 

0.6 -0.8 0 0 0 ' 

0.8 0.6 0 0 0 

0 0 - 1 0  0 
0 0 0 0 - 1  

A =  [ 0 0 0 1 0  

The desired domain of attraction 
with y1 = 0.9,72 = 10. 

The design result is, 

k f o  = [ 0.1360 -0.748 3 ,  
f ( ~ )  = [ 0.120097 -0.660525 0 0.000949 0 3 .  

Fig. 4 is the time response x3(t) of (15) with an ini- 
tial state xo = [ 4.7005 0.70001 10 0 0 ]', which 
is on the boundary of Rl(y1) x R2(y2). The figure 
shows that the convergence is very slow. This is be- 
cause A + b f ( ~ )  has a pair of eigenvalues very close to 
the imaginary axis, -0.0005 f j l .  

The convergence can be accelerated after the state 
enters D ( E )  by applying the piecewise-linear con- 
trol(PLC) law of [15]. The idea is as follows: select 
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:Figure 4: Time response of z3 

a chain of f i r  E N  > E N - I  > . . .  > € 1  > E ,  compute 
P ( G ) ,  f ( ~ i ) ,  then 

is a sequence of nested invariant sets corresponding to 
each feedback control u ( t )  = a( f (E i ) z ( t ) ) ,  i.e., 

With the fcillowing multiple switching control law, 

the convergence rate is increased. Applying the above 
control (N=:20) to the previous example with the same 
initial state, the time response of z3 is plotted in Fig. 5. 

Figure 5: Time-response of 2 3  under multiple 
control 

: 7w 

switching 
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