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Abstract 

We consider the control of an unstable LTI system with 
a constraint on the control input. We show that for ev- 
ery compact subset of the null-controllable region of 
the system, we can constructively design a nonlinear 
state feedback controller which ensures the internal ex- 
ponential stability of the closed loop system, i.e., the 
state and control signals go to zero exponentially, for 
every initial condition in this subset. Two controllers 
are explicitly constructed: one has the property of be- 
ing continuous and homogeneous, the other one can be 
considered as a one step ahead model predictive control 
(MPC) scheme with a special cost function. 

1 Introduction 

Control of systems with input and state constraints has 
a strong practical motivation and is currently an ac- 
tive research area, see recent survey paper [3], collec- 
tion of articles [l, 201 and monographs [ll] and [18]. In 
this paper, we consider the state feedback stabilization 
of a general unstable LTI system with a constraint on 
the control input. We aim to design a controller which 
makes the closed loop domain of attraction as large as 
possible. If possible, this controller should have such 
desirable properties as simplicity and continuity. 

In the case of semi-stable LTI systems, i.e., continuous 
time systems with all poles in the closed left half of the 
complex plane and discrete time systems with all poles 
in the closed unit disk, it was shown that nonlinear 
controllers could be designed to make the closed loop 
system globally stable, e.g. see [19]; it was shown that 
saturated linear controllers could be designed to make 
any prescribed bounded set attractive e.g. see [12, 13, 

lThis work is supported by the Research Grants Council of 
Hong Kong and the Natural Sciences and Engineering Research 
Council of Canada. 

14, 171. The input constrained stabilization of general 
unstable LTI systems has also been studied before. For 
such a system, the closed loop domain of attraction 
has to be a subset of the null-controllable region, i.e., 
the set of states that can be steered to the origin by 
a constrained open loop control. One group of such 
works [7, 21 aimed at finding a simple saturated linear 
controller so that the domain of attraction is reasonably 
large and the performance is reasonably good, but in 
general the achievable domain of attraction using linear 
saturated feedback might have quite a distance from 
the domain of attraction (except in the case of planar 
systems as shown in [lo]). It was recognized in [6, 41 
that by using nonlinear control it is possible to make 
any prescribed compact subset of the null-controllable 
region attractive. However, the controllers developed in 
these works and other related works are based on online 
linear programing and they have the tendency that the 
dimension of the linear programming problems involved 
grow exponentially as the domain of attraction required 
approaches the null controllable region. 

In this paper, two controllers are obtained. The first 
controller can be considered ils an infinite horizon model 
predictive control and it has the properties of being ho- 
mogeneous and continuous. The second controller can 
be considered as a one step ahead model predictive con- 
trol scheme with a special cost function. Neither con- 
troller has the tendency to lead to online mathematical 
programming of high dimension when the domain of 
attraction approaches the null controllable region. 

The notation used in this paper is standard. The Holder 
pnorm in Rn is denoted by 1 . Jp.  !g denotes the stan- 
dard R"-valued sequence space with norm 11 - Il.m. 
denotes the space of all Rm-valued sequences with only 
finite many nonzero terms. eYxm denotes the WXm- 
valued sequence space with norm 11 . 1 1 1 .  Let S be a 
subset of &normed linear space. Then its closure is de- 
noted by S. If S is bounded, absorbing and convex, its 
Minkowski functional is denoted by ps. 
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2 Preliminaries 

Consider the plant 

~ ( k  + 1) = Az(k)  + Bu(lc) (1) 

where z ( k )  E R" and u ( k )  E Rm. A control signal U is 
said to be admissible if \Iullw 5 1. 

Definition 1 A state xo E R" of system (1) is said to 
be null-controllable if there exists an admissible control 
so that the time response x of (1) with initial condition 
x(0)  = 20 satisfies x ( K )  = 0 for some K > 0. The 
set of all null-controllable states of the system (1) is 
denoted by C(A, B )  and is called the null-controllable 
region of the system (1) or the pair ( A ,  B) .  

By carrying out a similarity transformation if necessary, 
we may as well assume that A and B are of the form 

with A 1  antistable, i.e., having all eigenvalues outside 
of the unit circle, and A2 semistable, i.e., having all 
eigenvalues on or inside the unit circle. 

' The following is well-known. 

Lemma 1 ( [ 8 ] )  Assume that ( A , B )  is controllable 
in the usual sense. Then C(A1, B1) is an open, 
bounded, absorbing, convex, and balanced subset of Rnl ; 
C(A2,Bz) = Rn2; andC(A,B) = C(Al,Bl)@C(A2,Bz). 

In the rest of this section we assume that A is antistable. 

Lemma 2 Assume that A is antistable. Then 

Proof: Let 20 E C(A,B).  Then 

K-1 

0 = AKxo + AK-'-' B W  ( 5 )  
1=0 

for some llvllo0 5 1 and K > 0. Equation ( 5 )  is equiva- 
lent to 

K-1 

zo = - A-"-'Bw(l). 
1=0 

Hence 

Let 

xo E (- A-'-'Bv(l) : v E l g ,  IIv1lCO 5 1 . 
1=0 1 

Then 
00 

XO = - A-"'Bv(l) 
l=O 

for some v E eg with Ilwlloo 5 1. Let 

K-1 

XK = - A-"-'BV(Z). 
l=O 

Then XK E C(A, B )  and limK,, x~ = XO. This shows 
that 20 E C(A,B) .  It remains to show that 

is closed. This is equivalent to the fact that its inter- 
section with any one-dimensional subspace is a closed 
interval. This intersection is given by 

CO 

- E /  E A - ~ - ~ B ~ ( Z )  : w E eg, llVllm 5 1 

It is a standard result that this is a closed interval given 
by 

L 1=0 1=0 

0 

Lemma 2 implies that it is better to work with C ( A ,  B )  
instead of C(A, B) .  C(A, B )  is a projection of the unit 
ball of e", so it can be considered as a generalized zono- 
tope [21r Even if we approximate it by taking a finite 
sum in (4), we get a zonotope whose numbers of ver- 
tices and facets depend combinatorially on the num- 
ber of terms taken, except in the case when n 5 2. 
Hence it is not a numerically feasible problem to de- 
scribe, even approximately, C(A7 B )  in terms of its ver- 
tices or facets when n > 2. A more feasible problem is 
as follows: given xo E En, find out computationally if 
xo E C(A, B ) ,  or more generally compute pc A,B)(zo). 
In principle, this can be formulated straightkorwardly 
as a linear programming problem, see [4] for example. 
However, the following lemma suggests that it may have 
numerical advantages to work on the dual problem. 

Lemma 3 ([9]) 

PC( A$)  (20 

= EEW" max{<'xo : I l{-<'A-k-- 'B}~o~ll  5 1) (6 )  
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The computation of ~ c ( A , B )  (so) using (6) requires an n- 
dimensional constrained convex programming whereas 
that using (7) requires an n - 1 dimensional uncon- 
strained convex programming. Intuition suggests and 
numerical experience shows that (7) is more convenient 
than (6). A result somewhat related to Lemma 3 was 
reported in [15]. 

We can see from Lemma 2 that for each 20 E Rn, there 
exists a sequence v E l g  with llvllM = ~c(A,B)(zo) such 
that 

00 

20 = - C A - l - l B v ( l ) .  
1=0 

Lemma 4 Each such 
~c(A,B)(zo) for infinitely many k 2 0. 

has the property that Iv(k)lw = 

Proof: Following (6), let ~c(A,B)(zo) = CIso for some 
[ with 

I( { B}& / I  1 = 1. 
Then 

00 

PC(A,B)(~O) = E'zo = - ['A-'-'Bv(Z) 
l=O 

I  - k - 1  I I l{-C A B~EOlllll~llM 
= PC(A,B)(~O). 

This shows that {-J'A-k'-lB }k=O O0 and 2) are aligned. 
This is possible only when Iv(k)l, = ~c(A,B)(zo) for all 
k with -I'A-L-lB # 0. Since ( A , B )  is controllable, 
it is an elementary exercise to show that -['A-"lB 
cannot be zero for n consecutive integer values of I C .  0 

3 Development 

Our problem is as follows: for every compact subset 
S of C(A, B ) ,  design a state feedback controller which, 
for every initial condition in S, results in the state and 
control going exponentially to zero. 

We will abbreviate C(A, B )  by C in this section. We 
first assume that A has all eigenvalues outside or on 
the unit circle; the extension to the general case is easy 
and will be carried out in the end of this section. 

For X E (0, l) ,  define CA = C(X-lA, X-lB). Since X-lA 
is antistable, it follows from Lemma 1 that CA is open, 
bounded, absorbing, convex and balanced. So pcx is a 
norm. Furthermore C A  is monotonically increasing as 
X + 1 and 

U C x = C .  
AE(O,1) 

This implies that for each compact subset S of C, there 
exists X E ( 0 , l )  such that S c CA. Since 

for 5 E CA, we have pc,(<) 5 1 and there exists a se- 
quence v E l g  with IIvllM = pc,(<) such that 

M 

1=0 

Define the feedback control map h: G + Rm by 
h(<) = v(0). Since v given above is not uniquely de- 
termined, the function h for now is not well defined. 
Such nonuniqueness can be exploited and removed by 
further restricting v(0) to meet other requirements, for 
example by choosing h(<) to be such a v(0) with the 
smallest 2-norm. We can even leave the choice of h(C) 
to some agent which is not part of the controller. In 
this case the controller is unconventional and is said to 
be nondeterministic.. At this stage let us assume that 
h(<) is arbitrarily chosen among all possible v(0). 

Theorem 1 For every initial condition so E 6, the 
solution of (1) under the nonlinear state feedback con- 
troller u ( k )  = h [ z ( k ) ]  satisfies e ( k )  E X k p c , ( z o ) ~  or 
equivalently pc, [ z ( k ) ]  5 Xkpcx (xo), and the control sig- 
nal satisfies lu(k) l ,  5 Xkppc,(so). 

Proof: This theorem can be proved by induction. 
Clearly, the theorem is true for k = 0. Now assume 
that ~ ( k )  E Xkpc, (~o)G. Then PC, [ ~ ( k ) ]  I XkpcA ( s o )  
and there exists v k  E l?z with llvklloo = pc,[s(k)]  and 
vk(0) = h [ s ( k ) ]  such that 

Hence 

s ( k  + 1)  = As(k)  + B h [ s ( k ) ]  
M 

1=0 

This theorem shows that there is a uniform bound on 
the rate of convergence of the state and control for all 
initial conditions in G, which is given by X k .  Hence 
the number X gives a tradeoff between the rate of con- 
vergence of the closed loop response and the domain of 
attraction. 

Conceptually, the controller is formed in the following 
way: at time k find an admissible control sequence 
vk such that it steers s ( k )  to the origin, then we 
just implement the first term in this sequence, i.e., let 
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u(k) = vk(0). This is exactly the idea used in the popu- 
lar receding horizon or model predictive control (MPC) 
scheme [5]. However, an important difference between 
the scheme above and the traditional MPC is that the 
admissible control sequence v k  here is assumed to have 
infinite horizon, whereas the traditional MPC uses only 
a finite horizon admissible control sequence. 

At each step, the controller has to compute pcX (C) and 
h(C) for some C E G. Here h(C) is defined as the first 
term of any sequence v E eg with the property that 
llvll00 5 PCX(C) and 

00 

5 = - C X1A-'-'Bv(Z). (8) 
l=O 

It follows from Lemma 3 that 

(9) 

There are a couple of ways to compute h(C). The first 
way is actually to carry out the Hahn-Banach extension. 
Consider v as a linear functional on Cyx1. The con- 
straint (8) specifies the linear functional on the space 
spanned by the rows of 

M = { -A-'B, -XA-2B, -X2A-3B,. . . } . 
This restricted linear functional has induced norm 
pcX(C) .  The required h(C) is then the first m coordi- 
nates of any extension of v to the whole Cyx1 space. 
Hence it can be computed by extending v to the space 
spanned by the rows of M and rows of 

E={I,O,O ,... } ,  

without increasing its norm. The constructive proof of 
the Hahn-Banach theorem [16, pp. 187-1881 provides a 
way to carry out this extension. Denote the i-th row of 
E by ei. Assume that hj(C), 1 5 j 5 i - 1, have been 
computed. Define 

I i - 1  

(L j 'EW,j<i 

In a practical implementation of the controller, the se- 
quence M in (10) and (11) has to be truncated, i.e., M 
has to be approximated by 

{ -A-lB, -XA-2B,.  . . , -XLA-L-lB , 0 , . - - }  

for a large enough L. In this case, the expression in- 
side the square brackets in the right hand side of (lo), 
considered as a function of 4 and aj, is a continuous 
polyhedral function. Hence the supremum in (10) is 
actually a maximum. Similarly, the infimum in (11) is 
actually a minimum. Hence, the computation of hi(<) 
and & (C) are m + i  - 1 dimensional convex optimization 
problems. If we simply choose hi(C) to  be either of its 
bounds, then we need only compute one bound. 

The feedback control function h is obviously nonlinear 
and there is certain nonuniqueness in its design. Ob- 
serve that hi and i-Ei are homogeneous in the sense that 

hi(aC) = alli(<) and &(a()  = a&(<) 

for a 2 0. Since the expression inside the square brack- 
ets in the right hand side of ( l l ) ,  after M being replaced 
by its truncated version and considered as a function of 
4 and aj,  is a continuous polyhedral function, the min- 
imum is attained in a compact set, namely the set of all 
points corresponding to the extreme points of the epi- 
graph of the function, which depends only on M .  This 
implies that hi is a continuous function. Similarly hi is 
a continuous function. A reasonable choice of h(5) will 
also keep the homogeneity and continuity properties. 
Furthermore, since hi(-[) = -&(<), if we choose 

L 

or 

then we will have h(a[) = ah([) for all a E R. 

Although the function h computed in the above way has 
the nice homogeneity and continuity properties, expe- 
rience show that the optimization problems in (10) and 
(11) have very bad numerical properties. Continuous 
research is underway to address the computational is- 
sues of the optimization problems. An alternative way 
to compute h is given as follows. Let 

Theorem 2 For each < E G, there exists v E 
IIvlla, = pc,(C) and v(0) = p* such that 

with 

00 

Proof: From Theorem 1, we know that 

PCX (AC + BP*) 5 XPCX (('1- 
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Suppose that 

PCX (4 + BP*) < XPCX (0. 
Then there exists G E lz with llG1lOO = pc, (A< + Bp*) 
such that 

00 

A< + Bp* = - C A1A-"'BG(1). 
1=0 

Then 
00 

Let 

Then 
M 

and lWl00 5 PCX ( C )  but Iv(l)lCo < PCX ( C )  for all 1 > 0. 
However Lemma 4 says that Iv(l)I, = pcX ( S )  must hold 
for infinitely many I ,  which is a contradiction. Hence 
we have shown that 

to ensure that x l ( k )  goes to the origin exponentially 
for all initial conditions x l (0 )  in a prescribed compact 
set S c C(A1, B1). If we apply the same controller to 
the whole system, then z l ( k )  goes to the origin expo- 
nentially for all initial conditions q ( 0 )  in a prescribed 
compact set S c C(A1, B1) and 22 satisfies 

22(k + 1) = A2zz(k) + B2h[2i(k)],  zz(0) = 2 2 0 .  

Now since A2 is stable and ~ ~ h [ ~ 1 ( k ) ] ~ ~ ~  5 
Xkp~X(~l,B1)(zO), it follows that ~ ( k )  also converges 
to the origin exponentially. This shows that for every 
initial condition 

210 E S ,  220 E R"" 

the nonlinear feedback control u ( k )  = h[z l (k ) ]  makes 
~ ( k )  converge to the origin exponentially. 

4 An Example 

The following system is a transformed version of a sys- 
tem considered in [15]: 

2 2 0  

0 0 0.5 
z ( k +  1) = [ -2  2 0 ] z ( k )  + [ ;] u ( k )  

This system has poles at 2 f j 2  and 0.5. Its antistable 
subsystem is given by 

Then v can be constructed using the same way as above. Figure 1 shows the null-controllable regions 
U 

This theorem shows that h(<) = p* defines a feedback 
controller needed by Theorem 1. This controller also 
has an MPC interpretation: it is obtained from a one- 
step MPC with the cost function being the Minkowski 
functional of the state at the next step. This theorem 
effectively shows that in the particular case studied in 
this paper, an infinite horizon MPC is equivalent to a 
one-step horizon MPC. 

Now let us turn to the general case when A has both 
stable and antistable eigenvalues. In this case, we can 
assume, without loss of generality, that A and B have 
the following form 

with A1 having all eigenvalues on or outside the unit 
circle, and A2 having all eigenvalues inside the unit cir- 
cle; notice that (13) and ( 2 )  are partitioned differently. 
For the subsystem 

2 1  (k + 1) = A121 ( I C )  + Biu(k) ,  

the method in the last section can be used to design a 
controller 

u ( k )  = h [ a ( k ) l  

Figure 1: Null-controllable regions of the antistable sub- 
system 

C ([ :2 i ] , [ ;" I) (the region inside the 

outer curve) and CO.* ([:2 ; ] , [ A 3 ] )  (the 
region inside the inner curve). The controller given in 
terms of Theorem 1 and Theorem 2 can then guarantee 
exponential internal stability for all initial conditions 
satisfying 
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k k 

Figure 2: A typical closed loop response 

and 23(0) E R The rate of convergence is bounded by 
0.8k for all such initial conditions. Figure 2 shows the 
response of the system for the initial condition 

2 3  (0)  - 10 

5 Concluding Discussions 

In the paper we constructed a state feedback control 
law satisfying a prespecified constraint that makes the 
state and control variables converge exponentially to 
zero if the initial state lies in any prespecified compact 
subset S of the null-controllable region C(A, B). 

An important implication of this paper, in the perspec- 
tive of the popular model predictive control, is that 
infinite horizon open loop control sequences can be as- 
sumed at each step for the optimization purpose. This 
paper provides a way to turn the resulting infinite di- 
mensional optimization (or feasibility) problem into an 
equivalent finite dimensional optimization problem by 
using the Hahn-Banach theorem. This has the potential 
to overcome the difficulty of the traditional model pre- 
dictive control in addressing the stability issues. The 
development along this line is currently being under- 
taken. 
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