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Abstract

In this paper, we study stabilization of multi-input networked control systems over
additive white Gaussian noise (AWGN) channels. Different from the single-input
case, which is available in the literature and boils down to a typical H2 optimal
control problem, the multi-input case involves a judicious allocation of the total
capacity among the input channels in addition to the design of the feedback con-
troller. With this channel-controller codesign, we successfully show that a net-
worked multi-input system over AWGN channels can be stabilized by state
feedback under channel resource allocation, if and only if the total channel capacity
is greater than the topological entropy of the plant. A numerical example is given to
demonstrate our result.

16.1 Introduction

The networked control systems (NCSs) have received great attention recently. They
are feedback systems in which the plant and controller communicate through the
shared network. Such systems have many applications, including mobile sensor
networks [1], multiagent systems [2], aerial space technologies [3], etc. Many
papers on this topic have been published in technical journals and conferences. See
the special issues [4], [5], and the references therein.

One fundamental issue studied in the context of NCS is stabilization under
information constraints due to communication channels. These constraints take
various forms, such as quantization [6,7], packet drop [8], data rate constraint [9],
signal-to-noise ratio (SNR) [10] constraint, and so on. Numerous results for stabi-
lization of NCSs under information constraints are reported in the literature. For
single-input NCSs, logarithmic quantization of the control inputs was considered in
References 6 and 7 that show that the coarsest quantization density ensuring
closed-loop stabilizability is given in terms of the Mahler measure of the plant, that



is, the absolute product of the unstable poles. The multiplicative stochastic input
channel has been studied in Reference 8 that states that the networked feedback
system can be mean-square stabilized by state feedback, if and only if the mean-
square capacity of the multiplicative channel exceeds the topological entropy of the
plant, that is, the logarithm of the Mahler measure. For multi-input NCSs, the
authors of Reference 11 model the information constraint in the input channels as
general sector uncertainties including the logarithmic quantization as a special case.
Their main contribution lies in introducing the channel resource allocation and
solving the networked stabilization problem. Specifically, they assume that the
allowable information constraint is determined by the total network resource
available to the channels that can be allocated by the controller designer. Thanks to
the additional design freedom gained by the channel resource allocation, an ana-
lytical solution has been obtained, which states that the largest overall uncertainty
bound rendering stabilization is given again in terms of the Mahler measure. In
Reference 12, the multi-input NCSs over multiplicative stochastic channels are
studied. With the help of channel resource allocation, its authors extend the stabi-
lizability condition in Reference 8 to the multi-input case. These results shed some
light on the significance and role of channel resource allocation in NCSs, entailing
the idea of channel-controller codesign, that is, the control designer should parti-
cipate in the channel design rather than passively taking the given channels. This
idea will bring us substantially more freedom and flexibility in designing NCSs and
is envisioned to be common practice in future engineering applications. Later, one
can see that our main result in this paper can be obtained by allocating the channel
resource judiciously.

Another line of work [10], that is most pertinent to our work in this paper,
models the information constraint for a single-input NCS as the SNR constraint in
an additive white Gaussian noise (AWGN) channel. The technique of H2 optimal
control is used to design the stabilizing controller. A nice analytic solution is
obtained for the minimum channel capacity required to stabilize the NCS, which is
also given in terms of the topological entropy of the plant. The authors in Refer-
ences 13–15 have studied further the disturbance attenuation issue for NCS over an
AWGN channel. These papers show that the requirement for the channel capacity
greater than the topological entropy of the plant remains to be necessary for feed-
back stabilization, even if nonlinear time-varying communication and control laws
are used. One interesting observation from the literature is that the NCS stabiliza-
tion problem over an AWGN channel is closely related to some nonstandard H2

optimal control problem. This fact will be seen in this paper when we derive our
result later. For the multi-input NCSs over the AWGN channels, unfortunately, the
existing results remain to be quite incomplete. An investigation is carried out in
Reference 16, which assumes that the total transmission power is constrained and
can be distributed among different channels, leading to a necessary and sufficient
stabilization condition on the transmission power. Different from the result in
Reference 10 that is given directly in terms of the topological entropy of the plant,
the condition in Reference 16 involves unpleasant computation of theH2 norm of a
transfer function.
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Motivated by these existing results, we study further stabilization of a multi-
input NCS over the AWGN channels in this paper. Instead of assuming the con-
strained total transmission power, we assume that the total capacity of the input
channels are constrained and can be allocated among different channels. By allo-
cating the channel resource, we successfully derive the minimum total capacity
required for stabilization given also by the topological entropy of the plant.

The remainder of this paper is organized as follows. Section 16.2 formulates
the NCS problem to be studied in this paper, and section 16.3 provides some pre-
liminary results on H2 optimal control. The main result is stated and proved in
section 16.4. A numerical example is worked out in section 16.5 to illustrate our
main result. The paper is concluded in section 16.6. The notation of this paper is
more or less standard and will be made clear as we proceed.

16.2 Problem formulation

We consider a discrete-time system described by state-space equation

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ

where u(k) 2 R
m and x(k) 2 R

n. We will denote this system by ½AjB� for simplicity.
Assume that ½AjB� is stabilizable and the state variable x(k) is available for feedback
control. As shown in Figure 16.1, we are interested in stabilizing ½AjB� by a con-
stant state feedback controller F over a communication network that is modeled as
m parallel AWGN input channels. Here, by parallel, we mean that each component
of the controller output is separately sent through an independent AWGN channel
to the actuator. One of these AWGN channels is depicted in Figure 16.2, where the
transmitted signal vi and the noise di are zero mean Gaussian random processes
with variances ~s2

i and s2
i , respectively. Different from the classical setup in LQG

control where the noise comes from outside with fixed power, the noise considered
here is generated internally from the transmission process. The noise power is

F [A|B]
v u

d

x

Figure 16.1 Networked control system over AWGN channels

vi ui

di

Figure 16.2 An additive Gaussian channel
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proportional to the transmission power with proportional coefficient given by the
SNR of the channel [17]:

SNRi ¼
~s2

i

s2
i

ð16:1Þ

We will come back to this point when we do the channel resource allocation to derive
the main result in section 16.4. The capacity of the channel in Figure 16.2 is given by

Ci ¼
1
2

logð1þ SNRiÞ

Then the total capacity of the communication network is as follows:

C ¼ C1 þ � � � þ Cm

Clearly, the larger capacity, or equivalently the larger SNR, implies that more
reliable information can be transmitted through the channel. Therefore, the capacity
Ci measures the information constraint of the ith channel and the total capacity C

measures the information constraint of the communication network.
Assume that all the signals in Figure 16.1 are wide sense stationary and the

closed-loop system has reached its steady state. According to our setup, the total
noise d is a vector white Gaussian noise with covariance

S2 ¼
s2

1

. .
.

s2
m

2
64

3
75

The closed-loop transfer function from the noise d to the controller output v is the
complimentary sensitivity function

TðzÞ ¼ FðzI � A� BFÞ�1B

Then the power spectrum density of vi is given by

fTðe jwÞS2Tðe jwÞ�gii

and the mean power of vi is

1
2p

Z 2p

0
fTðe jwÞS2Tðe jwÞ�giidw

where {�}ii stands for the ith diagonal element of the matrix. In view of (16.1), the
SNR of channel i is expressed as

SNRi ¼
1

2p

Z 2p

0
fTðe jwÞS2Tðe jwÞ�giidw=s

2
i

¼ 1
2p

Z 2p

0
fS�1Tðe jwÞS2Tðe jwÞ�S�1giidw
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Consequently, the capacity of channel i is given by

Ci ¼
1
2

log I þ 1
2p

Z 2p

0
S�1Tðe jwÞS2Tðe jwÞ�S�1dw

	 

ii

Finally, the total channel capacity is

C ¼ C1 þ � � � þ Cm

¼ 1
2

log
Ym
i¼1

I þ 1
2p

Z 2p

0
S�1Tðe jwÞS2Tðe jwÞ�S�1dw

	 

ii

Our objective is to find the smallest total channel capacity such that the NCS
over AWGN channels can be stabilized by a constant state feedback controller, that
is, to find

inf
F:AþBF is stable

C ð16:2Þ

with given ½AjB� and s1, . . . , sm > 0. This is a difficult problem. However, by
judiciously allocating the channel resource, we are able to mitigate this difficulty
and derive the same nice analytic solution as in Reference 10 derived for the
single-input case. For this purpose, instead of imposing the information constraint
on the input channels specified a priori, we assume that the channel capacities Ci,
i¼ 1, . . . , m, can be allocated with a given total capacity C. This assumption is quite
legitimate and can be utilized as an extra design freedom for the NCS. For example,
the total channel resource or budget for the m input communication channels is
often fixed. Allocating more resource to a certain channel will increase its relia-
bility. How to allocate the channel resource appropriately for control of NCS can be
considered as a case of channel-controller codesign. The controller designer should
simultaneously design the controller and channels to stabilize the closed-loop
feedback system. Applying this channel-controller codesign gives rise to the fol-
lowing minimization problem:

inf
s1;...;sm40

inf
F:AþBF is stable

C ð16:3Þ

that is, the infimum of the total channel capacity required for networked stabili-
zation with channel resource allocation. At first sight, this problem looks even
harder than problem (16.2). However, surprisingly, it can be analytically solved, as
shown in the remainder of this paper.

Before proceeding, let us recall two notions that were introduced to dynamical
systems theory long time ago but only appeared in the control literature recently.
One is the Mahler measure [18] of an n� n matrix A, denoted by M(A), which is
simply the absolute value of the product of the unstable eigenvalues of A, that is,
MðAÞ ¼ Pn

i¼1 maxf1; jliðAÞjg. The second is the topological entropy [19] of A,
denoted by h(A), which is simply the logarithm of M(A), that is, h(A)¼ log M(A).
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16.3 Preliminary on H2 optimal control

As discussed in the previous section, the NCS stabilization problem over AWGN
channels is closely related to some nonstandard H2 optimal control problem. To
find the solution to (16.3), the following lemma on optimal complementary sensi-
tivity will be needed.

Lemma 16.1 Assume that ½AjB� is stabilizable. Then

inf
F:AþBF is stable

1
2

log det I þ 1
2p

Z 2p

0
Tðe jwÞ�Tðe jwÞdw

� �
¼ hðAÞ ð16:4Þ

Furthermore, if A has no eigenvalues on the unit circle, then the unique optimal
controller F is given by

F ¼ �B0X ðI þ BB0X Þ�1A

where X is the unique stabilizing solution of Riccati equation

A0X ðI þ BB0X Þ�1A ¼ X ð16:5Þ

Proof Consider the feedback system shown in Figure 16.3, where F is a state
feedback gain and d0d(kþ 1) is an impulse with an arbitrary direction d0 that sti-
mulates the system. So the initial state is given by x0¼Bd0.

Assume temporarily that A has no eigenvalues on the unit circle. Solving the
minimum energy control problem that is a special H2 optimal control problem with
cost function J ¼ vk k2

2 , we get the minimum energy [20]

J � ¼ x00Xx0 ¼ d00B0XBd0 ð16:6Þ

where X is the stabilizing solution to Riccati equation (16.5). The optimal state
feedback gain is given by F ¼ �B0X ðI þ BB0X Þ�1A. Since v(z)¼T(z)d0, we have

J ¼ 1
2p

Z 2p

0
vðe jwÞ�vðe jwÞdw

¼ d00
1

2p

Z 2p

0
Tðe jwÞ�Tðe jwÞdw

� �
d0 ð16:7Þ

F [A|B]
v(k)

d0d (k + 1)

x(k)

Figure 16.3 Minimum energy control
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Comparing (16.6) with (16.7) implies that the partially ordered set

1
2p

Z 2p

0
Tðe jwÞ�Tðe jwÞdw : Aþ BF is stable

	 


has an infimum that is given by

inf
F:AþBF is stable

1
2p

Z 2p

0
Tðe jwÞ�Tðe jwÞdw ¼ B0XB

Without loss of generality, we can assume that

½AjB� ¼ As 0
0 Au

Bs

Bu






� �

where As is stable and Au is anti-stable. Then by the existence and uniqueness of
solution to (16.5), the solution satisfies

X ¼ 0 0
0 Xu

� �

where Xu is the stabilizing solution to

A0uXuðI þ BuB0uXuÞ�1Au ¼ Xu ð16:8Þ

Moreover, Xu > 0 and has a closed form expression

Xu ¼
X1
k¼1

A�k
u BuB

0

uA
0�k
u

 !�1

Taking determinant on both sides of (16.8), we get

detðA0uXuðI þ BuB0uXuÞ�1AuÞ

¼ detðA0uAuÞ detðXuÞ det ðI þ BuB0uXuÞ�1

¼ detðXuÞ

Since Xu > 0, it follows that

detðI þ BuB0uXuÞ ¼ detðA0uAuÞ ¼ MðAuÞ2
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Therefore,

inf
F:AþBF is stable

1
2

log det I þ 1
2p

Z 2p

0
Tðe jwÞ�Tðe jwÞdw

� �

¼ 1
2

log detðI þ B0XBÞ

¼ 1
2

log detðI þ B0uXuBuÞ

¼ 1
2

log detðI þ BuB0uXuÞ

¼ hðAuÞ ¼ hðAÞ

If A has eigenvalues on the unit circle, let A(�)¼ (1þ �)A with � > 0 such that
A(�) has the same number of eigenvalues inside the unit circle as A but no eigen-
values on the unit circle. Applying the above procedure and taking limit � ? 0
shows that eigenvalues on the unit circle do not affect the infimum. &

In our application, however, we are more interested in a performance index
with the order of T(e jw) and T(e jw)* in (16.4) reversed. See the following lemma.

Lemma 16.2 Assume that ½AjB� is stabilizable. Then

inf
F:AþBF is stable

1
2

log det I þ 1
2p

Z 2p

0
Tðe jwÞTðe jwÞ�dw

� �
� hðAÞ ð16:9Þ

Proof For an arbitrary F such that Aþ BF is stable, the matrix A0 þ F 0B0 is also
stable. This implies that the system ½A0jF 0� is stabilizable and, moreover, B0 is a
stabilizing state feedback gain. In this case, the complementary sensitivity function
of system [A0jF 0� is T 0ðzÞ ¼ B0ðzI � A0 � F 0B0Þ�1F 0. According to Lemma 16.1,

1
2

log det I þ 1
2p

Z 2p

0
T 0ðe jwÞ�T 0ðe jwÞdw

� �

¼ 1
2

log det I þ 1
2p

Z 2p

0
Tðe�jwÞTðe�jwÞ�dw

� �

¼ 1
2

log det I þ 1
2p

Z 2p

0
Tðe jwÞTðe jwÞ�dw

� �

� hðAÞ

Since the choice of stabilizing F is arbitrary, it follows that

inf
F:AþBF is stable

1
2

log det I þ 1
2p

Z 2p

0
Tðe jwÞTðe jwÞ�dw

� �
� hðAÞ

which concludes the proof. &

One can observe that when T(e jw) is normal, that is, T(e jw) T(e jw)*¼ T(e jw)*

T(e jw) for all w 2 [0, 2p), the left-hand side of (16.9) is the same as that of (16.4),
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and therefore the equality in (16.9) holds. It is natural to ask whether the equality
holds in general. At this moment, we are not sure about this. Nevertheless, our
guess is that the answer is negative.

In the single-input case, the left-hand sides of (16.4) and (16.9) are the same
and they are equivalent to a standard H2 optimization problem.

Lemma 16.3 When m¼ 1,

inf
F:AþBF is stable

TðzÞk k2 ¼ ½MðAÞ
2 � 1�1=2

Proof The proof follows directly from Lemma 16.1. &

16.4 Main result

The main result of this paper is presented in the following theorem.

Theorem 16.1.

inf
s1;...;sm40

inf
F:AþBF is stable

C ¼ hðAÞ

Proof To simplify the proof, we assume that A has no eigenvalues on the unit
circle. This assumption can be removed following the same argument as in [10].
Without loss of generality, realization matrices (A, B, F) are assumed to have the
following decomposition:

A ¼ As 0
0 Au

� �
; B ¼ Bs

Bu

� �
; F ¼ ½Fs Fu �

with compatible partition, where As is stable and Au is anti-stable. As in the single-
input case, Fs¼ 0 can be taken in minimizing the capacity [10], and thus

TðzÞ ¼ FuðzI � Au � BuFuÞ�1Bu

can also be assumed in the proof. Consequently, we simply assume that A is anti-stable.
First, we prove that for a noise with given covariance S2 and a stabilizing state

feedback gain F, the total channel capacity C � h(A). Denote ~B ¼ BS and
~F ¼ S�1F, then ½Aj~B� is stabilizable and ~F is a stabilizing gain for this system. Let
~TðzÞ ¼ ~FðzI � A� ~B~FÞ�1~B. By Lemma 16.2, we have

1
2

log det I þ 1
2p

Z 2p

0

~Tðe jwÞ~Tðe jwÞ�dw
� �

� hðAÞ

which is equivalent to

1
2

log det I þ 1
2p

Z 2p

0
S�1Tðe jwÞS2Tðe jwÞ�S�1dw

� �
� hðAÞ
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Therefore,

C ¼ 1
2

log
Ym
i¼1

I þ 1
2p

Z 2p

0
S�1Tðe jwÞS2Tðe jwÞ�S�1dw

	 

ii

� 1
2

log det I þ 1
2p

Z 2p

0
S�1Tðe jwÞS2Tðe jwÞ�S�1dw

� �

� hðAÞ

where the first inequality follows directly from Hadamard’s inequality [21]: for any
m�m positive definite matrix Q ¼ ½qij�; detðQÞ � Pm

i¼1qii. The equality holds if
and only if Q is diagonal.

Without loss of generality, assume that ½AjB� has the following Wonham
decomposition [22]:

A ¼

A1 � � � � �
0 A2

. .
. ..

.

..

. . .
. . .

.
�

0 � � � 0 Am

2
6664

3
7775; B ¼

b1 � � � � �
0 b2

. .
. ..

.

..

. . .
. . .

.
�

0 � � � 0 bm

2
6664

3
7775

where each pair ½Aijbi� is stabilizable with state dimension ni. Now we show that
for any � > 0, if the total capacity constraint is given by h(A)þ �, then one can find
an allocation of this constraint among the input channels in the form

hðA1Þ þ �
m; . . . ; hðAmÞ þ �

m

� �
and simultaneously design a state feedback gain F

such that the closed-loop system is stable and each channel capacity satisfies the
constraint Ci5hðAiÞ þ �

m. The allocation of channel capacities is done indirectly
here by choosing the noise covariance matrix. Specifically, let

S ¼

1 0 � � � 0

0 d . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 dm�1

2
6664

3
7775

with d a small real number. Define

S ¼

In1 0 � � � 0

0 dIn2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 dm�1Inm

2
66664

3
77775
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Then

~TðzÞ ¼ ~FðzI � A� ~B~FÞ�1~B

¼ ~FSðzI � S�1AS � S�1~B~FSÞ�1S�1~B

where

S�1AS ¼

A1 oðdÞ � � � oðdÞ

0 A2
. .
. ..

.

..

. . .
. . .

.
oðdÞ

0 � � � 0 Am

2
66664

3
77775; S�1~B ¼

b1 oðdÞ � � � oðdÞ

0 b2
. .
. ..

.

..

. . .
. . .

.
oðdÞ

0 � � � 0 bm

2
66664

3
77775

and oðdÞ
d approaches to a finite constant as d ? 0.

For any given total capacity constraint h(A)þ �, we can always find an allo-
cation of the total constraint in the form hðA1Þ þ �

m; . . . ; hðAmÞ þ �
m

� �
. By Lemma

16.3, for each ½Aijbi�, we can design a stabilizing state feedback gain fi such
that TiðzÞk k2

2¼ MðAiÞ2 � 1, where Ti(z)¼ fi(zI � Ai � bifi)
�1bi. Now let

~FS ¼ diagff1; f2; . . . ; fmg, then

Ci ¼
1
2

log I þ 1
2p

Z 2p

0
S�1Tðe jwÞS2Tðe jwÞ�S�1dw

	 

ii

¼ 1
2

log I þ 1
2p

Z 2p

0

~Tðe jwÞ~Tðe jwÞ�dw
	 


ii

¼ 1
2

logð1þ TiðzÞk k2
2Þ þ oðdÞ

¼ 1
2

log MðAiÞ2 þ oðdÞ

¼ hðAiÞ þ oðdÞ

By choosing a sufficiently small d > 0, we can make the actual channel capacities
satisfy the constraints Ci5hðAiÞ þ �

m; i ¼ 1; . . . ;m. Apparently, the total capacity
satisfies C < h(A)þ �. &

Remark 16.1. From the lines of the above proof, we can see that the channel
resource allocation is done indirectly here by choosing the noise power covariance
matrix. One may question the tenability of this with the argument that the noise
power cannot be allocated. This doubt actually originated from the conventional
setting in LQG control that the noise comes from outside with given power. How-
ever, recall that in our setup, the noise is generated internally from the transmis-
sion process with power proportional to the transmission power. Therefore,
although it looks on the surface that we are choosing the noise power, we are in
fact distributing the transmission power. With this being clarified, the aforemen-
tioned doubt will vanish away. So, for any given total capacity constraint greater
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than the topological entropy of the plant, under channel resource allocation, we
can design a state feedback gain to stabilize the system such that each channel
satisfies its capacity constraint.

Finally, we solve the problem as formulated in (16.3) and obtain a necessary and
sufficient condition for stabilization of the multi-input NCS over AWGN channels
with the help of channel resource allocation. The minimum total channel capacity
required for stabilization is equal to the topological entropy of the plant that is the
same as that needed for the single-input case. Once again, we witness the benefits
brought by the channel-controller codesign. With the additional design freedom
gained by channel resource allocation, the closed-loop stabilization becomes easier.

16.5 An illustrative example

In this section, we provide an example to illustrate the result in section 16.4. For the
sake of numerical computation, we take the logarithm with base 2 in our example.

Consider an unstable system [A|B] with

A ¼
2 0 0
0 4 0
0 0 8

2
4

3
5; B ¼

1 0
1 1
0 1

2
4

3
5

Clearly, it is stabilizable. However, it is easy to verify that [A|Bi] is not stabilizable,
where Bi denotes the ith column of B. This means that it is impossible to stabilize
the closed-loop system by using only one input channel. Both input channels have
to be used to accomplish stabilization. The topological entropy of the plant is

hðAÞ ¼ log22þ log24þ log28 ¼ 6

We solve the minimal energy control problem for the following two single-
input systems:

2 0
0 4

1
1






� �

and ½8j1�

The optimal state feedback gains for the two inputs are given by

f1 ¼
21
16

� 105
16

� �
and f2 ¼ �

63
8

respectively. Now let S ¼ 1 0
0 d

� �
and design the state feedback gain to be

F ¼
21
16 � 105

16 0

0 0 � 63
8

2
4

3
5 ð16:10Þ
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Under the above state feedback controller, the numerical results on the channel
capacities for different d are summarized in Table 16.1.

We can see that as d ? 0, the total capacity C ? h(A). In other words, for any
� > 0, when the total channel capacity constraint is given by h(A)þ �, we can
always simultaneously design a state feedback gain F and find an allocation of the
capacities among input channels to make the closed-loop system stable. To
demonstrate more clearly how the channel resource allocation is done, let the total
capacity constraint be specifically given by 6þ 4� 10�2. Then we allocate this
constraint among the two input channels as {3þ 2� 10�2, 3þ 2� 10�2}. Now we
choose d¼ 10�2 and use the state feedback gain (16.10). Under this channel-
controller codesign, the channel capacities C1¼ 3þ 1.3� 10�2 < 3þ 2� 10�2,
C2¼ 3 < 3þ 2� 10�2 as shown in Table 16.1. The total capacity satisfies the
constraint C¼ 6þ 1.3� 10�2 < h(A)þ �.

16.6 Conclusion

In this paper, we study stabilization of multi-input NCS over AWGN channels. Dif-
ferent from the single-input case, that is available in the literature and boils down to a
typicalH2 optimal control problem, the multi-input case involves an allocation of the
total capacity among the input channels in addition to the design of the feedback con-
troller. With this channel-controller codesign, we successfully show that a multi-input
NCS over AWGN channels can be stabilized by state feedback control under channel
resource allocation, if and only if the total channel capacity is greater than the topolo-
gical entropy of the plant. A numerical example is given to demonstrate our result.
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