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Abstract— Networked control system (NCS) is a newly emerg-
ing topic within control theory community. In this paper we
pay particular attention to the problem concerning data rate
constraint. Motivated by many successful results in related
research, we study the lowest data rate needed to stabilize an
LTI system when the controller structure is limited to be a
static state feedback and the channel is modeled as a finite
logarithmic quantizer. We prove that the lowest data rate is
a function of the system Mahler measure alone. We also give
the optimal state feedback controller achieving the lowest data
rate and the associated Lyapunov function when proving the
closed-loop stability.

I. INTRODUCTION

Networked control system (NCS) has drawn broad interest
within control system community recently. It takes the ef-
fects of non-ideal communication channels into consideration
when applying system analysis or synthesis. Refer to some
survey papers such as [7], [15] for an overview. There are
many subtopics concentrating on different aspects of channel
effects, e.g. quantization [4], [5], delay [11], signal-to-noise
(SNR) constraint [2], disturbance [12], packet drop [16], etc.

However there is still one more aspect which receives
much attention, i.e. the stabilization of linear system with
data rate constraints. Such problems normally arise when
a digital communication channel is employed to transmit
control signals. More precisely, a channel at data rate R can
only transmit no more than R digits in one time step. Hence it
can produce no more than 2R distinct output values. Thanks
to the efforts of many researchers, it is becoming clear that
the data rate of the channel has to exceed some specific value
so as to make it possible to design a controller stabilizing
the system.

Early efforts include the work by Wong and Brockett, i.e.
[18], [19]. In both papers they investigate the necessary and
sufficient condition for stabilizing a linear system with finite
code-word options. The idea of the asymptotic convergence
of system state is replaced by a weaker concept of contain-
ability which is related to uniform boundedness. The authors
show that, the containability is achievable if and only if

τ2 ≤ D,

where τ is a value corresponding to the unstable dynamic
feature of the system and D is the number of all possible
codes, which is related to data rate. This is the first time
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that the data rate constraint and the unstable dynamics of
the system were connected effectively.

Several years later Nair and Evans [13], [14] do some
fundamental research on stochastic systems. They consider
a stochastic system with noise, and the stability is defined
as supk E‖Xk‖2 < ∞ where Xk is the state variable. They
derived that a stabilizing controller for the system exists if
and only if the data rate of the channel exceeds the so-called
topological entropy of the system, i.e.

R > H(A) :=
∑

λ∈σ(A)

max{0, log2 |λ|},

where A is the system matrix of the state-space model for
the given system and σ(A) is the spectrum of A. This not
only is consistent with earlier results but also make the bound
more precise and clear.

In fact this is not the only appearance of topological
entropy. In the paper of Matveev and Savkin [10], they put
their emphasis on a linear system with multiple sensors,
and each sensor only partially observes the system. With a
similar system and channel setup, they prove that the system
is asymptotically stabilizable with a time-variant coding
scheme at channel coder, if and only if the data rate of the
channel satisfies

R > H(A).

Similar results also come out in the paper by Tatikonda
and Mitter [17], which mainly discuss MIMO systems. They
employ a traditionally designed controller, and prove that the
system can be stabilized if and only if

R > H(A).

Li and Baillieul have also shown consistent results [9]. By
their virtual system approach for digital finite communication
bandwidth (DFCB) control, the absolute lowest data rate is
found to be

R > log2 e ·
n∑

i=1

pi,

where p1, · · · , pn are all the unstable poles of the system.
This is the continuous-time version of topological entropy
while other results are the discrete-time version.

The topological entropy also shows up in other aspects
of NCS research. One of the most related results belongs
to quantization research given by Elia and Mitter [4] and
is later restated by Fu and Xie [5]. They find that for a
single-input linear system, the lowest quantization density
for infinite logarithmic quantizers is exactly

ρinf =
2H(A) − 1
2H(A) + 1
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Fig. 1. The Closed-loop System (A, B, F, Q)

or its highest quantization sector bound coincides the Mahler
measure of system matrix A

δ−1
sup = M(A) :=

∏

λ∈σ(A)

max{1, |λ|} = 2H(A).

Again something determined by topological entropy.
Motivated by the successful results above, we wonder

whether the topological entropy still serves as the minimum
data rate if a finite logarithmic quantizer is used to quantize
input signals. We concern this since most results in the data
rate literature ([17] etc.) achieve the topological entropy by
directly quantizing the state with uniform quantizers, then
it is natural to further ask whether this could also be true
if the input signal is quantized instead. On the other hand,
infinite logarithmic quantizers have proved their advantage in
quantizing input signals, but meanwhile they are not realistic
and require infinite data rate. Hence we truncate infinite
logarithmic quantizers to obtain finite ones, and hope it still
allows the least admissible data rate to be as low as uniform
quantizers.

To answer the question we consider the following setup.
Given a discrete time linear system (A,B) or

x(t + 1) = Ax(t) + Bu(t),

with system state x(t) ∈ Rn and input signal u(t) ∈ R.
We assume that all eigenvalues of A are unstable, (A,B)
is stabilizable and x(t) is available for state feedback. In
the feedback loop first x(t) meets the controller F and is
mapped to a temporary control signal v(t) = Fx(t). Then
v(t) becomes the input of the channel Q(·) while the output
is u(t). At last u(t) goes back to (A,B) as an input and
the loop is completed. We denote the closed-loop system as
(A,B, F,Q), which is depicted in Fig. 1.

Now we state our goal in this paper. For a closed-loop
system (A,B, F,Q), find the lowest value of data rate R
such that there exists a static state feedback controller F
stabilizing (A,B). We will state the answer to our question
in the next section, which turns out to be not so good
as expected: the lowest admissible data rate is higher than
H(A) for time-invariant quantizers. After the answer we will
present the derivation of the optimal Lyapunov function and
controller, which are used in the proof of our main result.
Finally all the proofs are collected in the appendix.

II. THE OPTIMAL DATA RATE

In this section we will show that the lowest data rate
required for stability is actually a function of system Mahler
measure or topological entropy only.

The channel model we adopt here is a time-invariant finite
logarithmic quantizer, i.e.

u(t) = Q(v(t)) :=





ρlu0, if ρlu0
1+δ < v ≤ ρlu0

1−δ

0, if |v| ≤ ρN u0
1−δ

−Q(−v(t)), if v < −ρN u0
1−δ

where u0 > 0, 0 < ρ < 1, δ = 1−ρ
1+ρ and l = 0, 1, 2, . . . , N .

The quantizer fails if |v(t)| > u0
1−δ .

Note that the quantizer Q(·) defined above has 2N + 1
levels in all. Hence to work properly it requires a data rate
satisfying

R ≥ log2(2N + 1).

We will try to find the optimal N first, and then obtain the
optimal R by this inequality.

Since the asymptotic stability is not possible with time-
invariant finite quantizers in the closed-loop system [3], we
have to define a weaker stability first. Denote a system
Lyapunov function candidate to be V (x) = x′Px, where
P ∈ Rn×n is a well selected positive definite matrix, and
given a > 0, also denote that Ωa = {x|V (x) < a}, then
here comes the definition.

Definition 1: A closed-loop system (A,B, F,Q) is said
to be practically stable w.r.t. r1 and r2 if there exists a Lya-
punov function candidate V (x) such that, for any compact
set C with the origin as its interior point and Ωr1 ⊃ C ⊃ Ωr2

holds, we have V (x(t+1)) < V (x(t)) when x(t) ∈ C \Ωr2 ,
and x(t + 1) ∈ Ωr2 when x(t) ∈ Ωr2 .

Moreover, a system (A,B) is said to be practically stabi-
lized by F w.r.t. quantizer Q(·) if (A,B, F,Q) is practically
stable w.r.t. some r1 and r2. If such an F exists for (A,B)
and Q(·) then (A,B) is said to be practically stabilizable
w.r.t. Q(·).

Similar definitions also showed up in many other papers,
e.g. [4], [19], etc. Such definitions relax the restriction that
the state has to converge to origin, and only require the
convergence to a uniformly bounded neighborhood of origin.

Now we are ready to present our main result in this paper.
Theorem 1: In our system setup, the system (A,B) is

practically stabilizable w.r.t. Q(·) if and only if the quantizer
Q(·) satisfies

R > log2

(
2 log M(A)+1

M(A)−1
M(A) + 1

)
.

Proof: See appendix.
The result seems to be fine since only M(A) is involved,

however it is not so good as expected. We wish to find a
consistent result to others, i.e. H(A) or log2 M(A) serves
as the minimum data rate, but the result is more complicated
and in fact higher than H(A). Hence we may conclude that
time-invariant finite logarithmic quantizers require higher
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data rate for stabilization. But things could be better if time-
variant quantizers are used instead. A recent paper by Fu,
Xie and Su [6] reports that for a first order system, i.e.
x(t) ∈ R, a lower bound consistent with ours is found. And
furthermore, they apply the control action only once every
m time steps, and as m →∞, the ultimate lowest data rate
is exactly H(A). This suggests that maybe it also holds in
our case. Further research is to be carried out.

III. THE OPTIMAL LYAPUNOV FUNCTION AND
CONTROLLER

One crucial fact used in the proof to Theorem 1 is the op-
timal value of the Lyapunov function and the corresponding
controller given by an algebraic Riccati equation (ARE). We
will give explicit derivation of the optimal solutions in the
following, which can be written in analytic form as shown
in [8]:

P =

[
(1− δ2)

∞∑
t=1

A−tBB′A′−t

]−1

.

Note that this is well defined since (A,B) is assumed to be
stabilizable. Moreover with the optimal P at hand we also
know the optimal controller to be

F = −[I + (1− δ2)B′PB]−1B′PA.

In fact the optimal Lyapunov function is derived for infi-
nite quantizers. However since the only difference between
infinite quantizers and finite ones is that the later have zero-
control region, which merely gives extra parameters to be
designed, they share the same argument on this issue. Hence
it suffices to study the case with infinite quantizers and the
conclusion will also work for finite ones. We will only study
infinite quantizers in this part.

The model for infinite quantizers is a bit different from the
one for the finite ones. According to [8], such a quantizer
can be modeled as a unity transfer function with an additive
uncertainty with norm bound, or specifically

u(t) = Q(v(t)) = v(t) + ∆(v(t)), ‖∆‖∞ ≤ δ.

Now for the closed-loop system (A,B, F,Q) where Q
adopts the infinite logarithmic quantizer model above, we
defined the modified quadratic stability below:

Definition 2: A closed-loop system (A,B, F,Q) is
quadratically stable w.r.t. δ if its Lyapunov function V (x)
satisfies V (x(t + 1)) − V (x(t)) < 0 for all x(t) = x ∈
Rn \ {0} and ‖∆‖∞ ≤ δ.

There are also other important definitions of stability. One
of them is robust stability. Many important conclusions are
linked to it, and we will make use of this. Considering
the robust sense in our definition of quadratic stability, we
are to show that the two are in fact equivalent, and the
optimal Lyapunov function and controller emerge during the
proof. The proof will be divided into two cases, i.e. analysis
problem and synthesis problem.

(A,B, C)

∆ ¾

-

u(t) y(t)

Fig. 2. Analysis Problem Setup

A. Analysis Problem

Consider the following situation shown in Fig 2. Given a
discrete time linear system

{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

where A ∈ Rn×n, B ∈ Rn, C ′ ∈ Rn. Suppose that A is
stable. The output y(t) and the input u(t) are connected
by a nonlinear memoryless disturbance block, i.e. u(t) =
∆(y(t)). Then for the analysis problem we need to prove
the following theorem.

Theorem 2: The closed-loop system (A,B, C,∆) is
quadratically stable w.r.t. δ if and only if the small gain
condition is satisfied. In other words, there exists P such
that V (x(t + 1)) − V (x(t)) < 0 for all t if and only if
‖G(z)‖ = ‖C(zI − A)−1B‖ < δ−1. Moreover P is the
solution to the following ARE related to (A,B, C):

P = A′PA + δ2C ′C + A′PB(I −B′PB)−1B′PA (1)

with P ≥ 0, I −B′PB > 0.
Proof: See appendix.

B. Synthesis Problem

For synthesis problem we consider another setup. Given a
discrete time linear system x(t+1) = Ax(t)+Bu(t), where
A ∈ Rn×n, B ∈ Rn, suppose that (A,B) is stabilizable, and
x(t) is available for state feedback. Then we put it into a
close loop for stabilization, as shown at page bottom.

The loop consists of the system (A,B), a controller F , and
a channel. The controller F is presumed to be a static linear
gain. The channel is modeled as introducing a multiplicative
uncertainty ∆ which is bounded in the sense that ‖∆‖∞ ≤ δ.
We aim to prove the result below:

(A,B)

F

∆

?

6

6

- -j

x(t)

v(t)

u(t)w(t)

Channel

Fig. 3. Synthesis Problem Setup
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Theorem 3: The closed-loop system (A,B, F,Q) is
quadratically stable if and only if A + BF stable and
‖F (zI −A−BF )−1B‖∞ < δ−1. Moreover one admissible
F is given by F = −[I + (1 − δ2)B′PB]−1B′PA, where
P is the solution to the synthesis Riccati equation

P = A′P [I + (1− δ2)BB′P ]−1A (2)

with P ≥ 0 and I − δ2B′PB > 0, which also establishes
the Lyapunov function defining the quadratic stability, i.e.
V (x) = x′Px.

Proof: See appendix.
It is quite intuitively obvious but in fact non-trivial that

the proofs for analysis and synthesis problem are equiva-
lent in some sense. Indeed by tedious but straight forward
calculation we may find that if given (A,B) in synthesis
problem, the analysis ARE and the synthesis ARE share
the same solution by setting the system in analysis prob-
lem to be (Ac, B, C) where C = F = −[I + (1 −
δ2)B′PB]−1B′PA, Ac = A+BF . Hence we may conclude
that the optimal Lyapunov function is exactly the solution of
the AREs, which is given earlier in this part.

This goes farther than what we used in the previous part,
and we believe that the result may be meaningful not only
to the deduction in this paper, but also to related research in
this topic.

However one may find that the optimal controller is
different from the one appeared in many papers, e.g. [4],
[5]. The reason is that we found the optimal controller in
different sense. The controller in [4] is in fact an H2 optimal
controller, and the related ARE in the paper is also for
H2 optimization. But our ARE is in H∞ sense, and so is
the optimal controller. Nevertheless, the results on ultimate
bound of quantizer parameters are identical. This confirms
that we are all correct, and implies that the given bound is
quite fundamental as well.

IV. CONCLUSION

In this paper the stabilization of a discrete-time linear
system with data rate constraint is considered. The chan-
nel is modeled as a finite logarithmic quantizer. Its only
difference from the infinite quantizer is that it has upper
bound and zero-control region. With such quantizers a linear
system cannot achieve asymptotic stability, so the concept
of practical stability is also introduced. The lowest data rate
which assures the existence of a stabilizing controller is given
by a function only determined by the Mahler measure or
equivalently the topological entropy of the system.

During the derivation, a property of the optimal Lyapunov
function is also used which is proved in the later part. The
analytic solution of the optimal Lyapunov function and the
optimal controller is also derived.

The work by Fu, Xie and Su [6] has shed some light on
the possibility to find even closer relationship between the
data rate bound and the topological entropy. It is believed
that a more general and rigorous result will be found on this
direction, which is currently under our research.

V. APPENDIX

A. Proof to Theorem 1

A lemma is needed before the proof begins. We need the
restatement of practical stability which is easier to handle.
Denote the zero-control region of quantizer Q(·) to be Ω0 =
{x|Q(Fx) = 0} = {x||Fx| ≤ ρN u0

1−δ }, then
Lemma 1: (A,B, F,Q) is practically stable w.r.t. r1 and

r2 if and only if for any x ∈ Ωr1 ∩ Ω0 which also satisfies
x′A′PAx ≥ x′Px, we have Ax ∈ Ωr2 .

Proof: We prove the necessity and sufficiency sepa-
rately. Note that in the definition of practical stability, C is
arbitrary as long as Ωr1 ⊃ C ⊃ Ωr2 , we may always set
C = Ωr1 without loss of generality.

Necessity: If (A,B, F,Q) is practically stable then for
x(t) ∈ Ωr1 ∩ Ω0 − Ωr2 , V (x(t + 1)) < V (x(t)); for
x(t) ∈ Ωr2 ∩ Ω0, x(t + 1) = Ax(t) ∈ Ωr2 .

Sufficiency: If x ∈ Ωr1 − Ω0, then under the nonzero
quantized feedback control, V (x) is assured to drop, the
same as the infinite quantizer case. Especially if x ∈ Ωr2 −
Ω0, V (x(t + 1)) < V (x(t)) < r2, i.e. x(t + 1) ∈ Ωr2 .

If x ∈ Ωr1 ∩ Ω0 − Ωr2 , we have V (x(t + 1)) < V (x(t))
otherwise by the proposition x ∈ Ωr2 , a contradiction. If x ∈
Ωr2∩Ω0, there are two situations: V (x(t)) > V (x(t+1)) and
V (x(t)) ≤ V (x(t+1)). For the first situation V (x(t+1)) <
V (x(t)) < r2; for the second situation V (x(t + 1)) < r2 by
the proposition.

Conclusively if x ∈ Ωr1 − Ωr2 then V (x(t + 1)) <
V (x(t)), and if x ∈ Ωr2 then V (x(t + 1)) < r2. This is
exactly the definition of practical stability.

Note that Q(·) is merely a finite proportion of an infinite
logarithmic quantizer, but it has been proved that [8] an
infinite logarithmic quantizer with proper density assures
that V (x) always drops, as long as the optimal Lyapunov
function and controller are used. Then this also happens in
our quantizer when input does not fall into the zero-control
region. Hence (A,B) is practically stabilized by the optimal
controller w.r.t. Q(·) if and only if the upper bound of zero-
control region satisfies some constraint, which gives the limit
to R described in the theorem.

Proof to Theorem 1: Look into Lemma 1 and we
may find out that the maximum upper bound of the zero-
control region (or equivalently the maximum lower bound
of the quantization region) can be further concluded into the
following optimization problem: find

max
x′Px≤x′A′PAx≤r2

Fx,

where F is the optimal controller.
If x′Px = 0 then the stability is trivial; if x′Px = kr2 6= 0

where 0 < k ≤ 1 also satisfies Ax ∈ Ωr2 , then

r2 ≥ x′A′PAx

= x′Px · x′A′PAx

x′Px

= kr2 · x′A′PAx

x′Px
.
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Hence

k ≤ x′Px

x′A′PAx
for all such x,

or

k̃ = max k =
(

max
x∈Ωkr2

x′A′PAx

x′Px

)−1

=
(

max
x

x′A′PAx

x′Px

)−1

.

This is equivalent to say that

max
x′Px≤x′A′PAx≤r2

Fx = max
x′Px≤k̃r2

Fx,

then F practically stabilizes (A,B) w.r.t. Q(·) if and only
if u0ρ

N ≤ maxx′Px≤k̃r2
Fx. Therefore the maximum ratio

between the upper and lower bounds of the quantization
region is given by

max ρN =
maxx′Px≤k̃r2

Fx

maxx′Px≤r1 Fx
=

√
k̃r2

r1
.

Now we try to find k̃. It’s easy to see that the calculation
formula of k̃ is a generalized Rayleigh quotient. Hence

k̃ =
(

max
x

x′A′PAx

x′Px

)−1

=

(
max

y

y′(P−
1
2 )′A′PAP−

1
2 y

y′y

)−1

=
[
λmax(P−

1
2 A′PAP−

1
2 )

]−1

.

It is shown in Part 3 that the Lyapunov function P is given
by the following ARE

P = A′PA− (1− δ2)A′PB[I + (1− δ2)B′PB]−1B′PA,

so we have

P−
1
2 A′PAP−

1
2 = I + (1− δ2)P−

1
2 A′PB[I +

(1− δ2)B′PB]−1B′PAP−
1
2 .

Note that we are discussing SI systems, hence B′PB is
in fact scalar, and B′PA is a vector. This implies that

P−
1
2 A′PAP−

1
2 = I + zz′,

where z = (1 − δ2)
1
2 P−

1
2 A′PB[I + (1 − δ2)B′PB]−

1
2 is

a column vector. Considering that rank(zz′) = 1, it is not
hard to find that

λmax(I + zz′) = det(I + zz′)

= det(P−
1
2 A′PAP−

1
2 )

= det(A′A) = M(A)2.

Hence k̃ = M(A)−2. Considering the fact that normally
r1 > r2, sup ρN = 1/M(A). Then finally push ρ to its
optimal value and we have

inf N = log M(A)+1
M(A)−1

M(A).

Finally the optimal data rate is given by

inf R = log2

(
2 log M(A)+1

M(A)−1
M(A) + 1

)
,

which finishes the proof.

B. Proof to Theorem 2

We start from the small gain condition first. By bounded
real lemma [1], given (A,B, C), ‖G(z)‖∞ = ‖C(zI −
A)−1B‖∞ < δ−1 if and only if there exists an X such
that X ≥ 0, I − δ2BXB > 0 and

X = A′XA + C ′C + δ2A′XB(I − δ2B′XB)−1B′XA.

Multiply δ2 on both sides and denote P = δ2X , and we can
rewrite the ARE into (1), i.e.

P = A′PA + δ2C ′C + A′PB(I −B′PB)−1B′PA

with P ≥ 0, I −B′PB > 0. Hence the small gain condition
is equivalent to the existence of P .

Now for the other part. Given a P solving (1), set V (x) =
x′Px, and we notice that

V (x(t + 1))− V (x(t))
= (Ax + Bu)′P (Ax + Bu)− x′Px

= x′(A′PA− P )x + u′B′PAx

+ x′A′PBu + u′B′PBu
(1)
= −δ2y′y − x′A′PB(I −B′PB)−1B′PBAx

+ u′B′PAx + x′A′PBu + u′B′PBu

= −δ2‖y‖22 − ‖(I −B′PB)−1/2B′PAx

− (I −B′PB)1/2u‖22 + ‖u‖22
Since ‖u‖2/‖y‖2 ≤ ‖∆‖∞ ≤ δ, we have V (x(t + 1)) −
V (x(t)) < 0 for all x. Therefore V (x(t)) = x′(t)Px(t) is
an appropriate Lyapunov function for (A,B, C) as long as
P exists for (1).

Conversely it is obvious that the (modified) definition of
quadratic stability assures the system stability despite the
uncertainty, which implies robust stability.

Hence the small gain condition is equivalent to quadratic
stability for (A,B, C) w.r.t. δ, with the Lyapunov function
constructed.

C. Proof to Theorem 3

Let’s look into sufficiency first.
By [8], there exists an F such that A + BF is stable and

‖F (zI−A−BF )−1B‖∞ < δ−1 if and only if there exists a
stabilizing solution P to (2) with P ≥ 0 and I−δ2B′PB >
0, and one admissible F = −[I + (1− δ2)B′PB]−1B′PA.
Note that (2) is equivalent to

P = A′PA− (1− δ2)A′PB[I + (1− δ2)B′PB]−1B′PA
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Denote R = I + (1− δ2)B′PB. If the solution to (2) exists
then we can calculate

V (x(t + 1))− V (x(t))
= (Ax + Bv + Bw)′P (Ax + Bv + Bw)− x′Px

= x′(A′PA− P )x + (v + w)′B′PAx

+ x′A′PB(v + w) + (v + w)′B′PB(v + w)
= x′(1− δ2)A′PBR−1B′PAx

+ (v + w)′B′PAx + x′A′PB(v + w)
+ (v + w)′B′PB(v + w)

= x′A′PBR−1B′PAx + v′B′PAx + x′A′PBv

+ v′B′PBv − δ2x′A′PBR−1B′PAx

+ w′B′PAx + x′A′PBw + w′B′PBw

+ v′B′PBw + w′B′PBv

= (R−1B′PAx + v)′R(R−1B′PAx + v)
− (δR−1B′PAx− δ−1w)′R
× (δR−1B′PAx− δ−1w)− v′(I − δ2B′PB)v
+ v′B′PBw + w′B′PBv + δ−2w′(I + B′PB)w

= (R−1B′PAx + v)′R(R−1B′PAx + v)
− (δR−1B′PAx− δ−1w)′R
× (δR−1B′PAx− δ−1w) + δ−2w′w − v′v

+ (δv + δ−1w)′B′PB(δv + δ−1w)
= ‖R−1B′PAx + v‖2R − ‖δR−1B′PAx− δ−1w‖2R

+ ‖δv + δ−1w‖2B′PB + ‖δ−1w‖2 − ‖v‖2

where given vector x and compatible matrix P , ‖x‖2P =
x′Px, ‖x‖2 = ‖x‖2I = x′x. By Theorem 3.7 in [1, pp.
83-84], the optimal control is given by v = Fx =
−R−1B′PAx. If we stick to this controller then we can
further extent the result above

V (x(t + 1))− V (x(t))
= − ‖δR−1B′PAx− δ−1w‖2R

+ ‖ − δR−1B′PAx + δ−1w‖2B′PB

+ ‖δ−1w‖2 − ‖v‖2
= − ‖δR−1B′PAx− δ−1w‖2I−δ2B′PB

+ ‖δ−1w‖2 − ‖v‖2

Since I − δ2B′PB > 0, we know that V (x(t + 1)) −
V (x(t)) < 0, i.e. there exists at least one stabilizing
controller F s.t. (A,B) is quadratically stabilized. Hence
the existence of P , or ‖F (zI − A − BF )−1B‖∞ < δ−1,
implies the quadratic stability of (A,B).

The reverse part again follows from the definition of
quadratic stability.
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