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Abstract
One of the methods recently utilized in the stability

robustness analysis uses various matrix compositions.
This paper gives an overview of this method using a ten-
sor product theoretic perspective. The applications of
this method to the stability robustness of matrices with
unstructured uncertainties, one-parameter uncertainties
or double-parameter uncertainties are then discussed.

1 Introduction
The problem of quantitative stability robustness analysis con-
cerns the amount of uncertainties a stable object (matrix, poly-
nomial, real rational matrix, etc.) can tolerate in order to
maintain stability. This problem has attracted a considerable
amount of research in recent years. Since the stability robust-
ness study of a variety of objects, e.g. matrices, polynomials,
real rational matrices is desired, and since the uncertainties
may enter the objects in different ways, different mathemati-
cal tools have been employed for different objects/uncertainty
models. In the stability robustness study of real matrices un-
der real uncertainties, one of the methods recently utilized uses
properties of matrix compositions (Kronecker product, bialter-
nate product, etc.), e.g. see Fu and Barmish [6], Genesio and
Tesi [10], Qiu and Davison [17, 18, 19], Saydy, Tits and Abed
[20], Tesi and Vicino [21]. In these papers it is shown that this
method can be used to treat several class of matrix uncertainty
models. The purpose of this paper is to give an overview of the
mathematical tools used in this method, and to discuss some
applications of the method.

The Kronecker product of matrices is a familiar matrix
composition. It appears in many standard linear algebra ref-
erences. A dedicated treatment is given in Graham [8]. Some
of its applications to circuit and system theory is discussed in
Brewer [5]. Its application in matrix stability problems can be
found in Barnett and Storey [3] and Fuller [7]. The so-called
"bialternate product" of matrices is not commonly seen in the
literature; its definition and properties may be traced to a pa-
per by Stephanos [22] published early this century. Further
discussion can be found in Bellman [4], Fuller [7], Jury [12]
and MacDuffee [14]. This product is used in [7] and [12] to
study the matrix stability problem. Another matrix composi-
tion, called the "Lyapunov matrix", was originally defined in
Lyapunov [13]. Further discussion of this matrix can be found
in Barnett and Storey [3], Fuller [7], Jury [12] and MacFar-
lane [14]. It is used in [3], [12], [14] in solving the Lyapunov
equation and is used in [7] to analyze matrix stability. All of
the above literature introduces these matrix compositions as
separate entities, and the relationship between them has not
been emphasized.

In this paper, we will give the definition, and some of the
properties, of a class of matrix compositions, whch includes
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the ones mentioned above, in the frame-work of modern multi-
linear algebra, see, e.g. Marcus [14], Greub [9]. It will be seen
that the matrix compositions mentioned above are related to
various tensor products of linear spaces and maps; the rela-
tionship between them will then become clear and the proofs
of many of their properties can then be simplified.

The multilinear algebra is rooted in the tensor product of
linear spaces. It is of interest to note however that the def-
inition of the tensor product of spaces varies in different ref-
erences. The different definitions which have been made may
be represented by the following group of references: i)Greub
[9], Marcus [14]; ii)Atkison [2], Halmos [11], Waerden [23];
iii)Jacobson [12]; iv)Akivis and Goldberg [1]. We adopt the
definition in [2]. Multilinear algebra is a mature branch of
mathematics, but its application in control theory has been
scare. This paper may provide some perspective for potential
future research.

The structure of this paper is as follows. Section 2 rigor-
ously gives the theory of tensor products needed in the stability
robustness analysis. The material is obtained mainly from [2],
[14]. Section 3 shows how the tensor product enters into the
stability robustness analysis. It is shown that the key role
which is played by the tensor product is that it can be used
to reduce a robust stability problem to a singularity problem,
which leads to a significant simplification. Section 4 studies the
stability robustness of matrices with unstructured uncertain-
ties for both the continuous time case and the discrete time
case. In the continuous time case, we study additive uncer-
tainties; the results given are directly obtained from [17]. In
the discrete time case, we study multiplicative uncertainties;
the results obtained are new. Section 5 considers the stabil-
ity robustness of matrices with one-parameter uncertainties.
The results are obtained from [10], [20], [21]. Section 6 con-
siders the stability robustness of matrices with two-parameter
uncertainties; it is shown that the problem can be reduced to
a problem involving the solution of a set of two polynomial
equations in two variables, and that tensor products can be
used to solve the set of equations.

Although we are primarily interested in the stability ro-
bustness analysis of matrices, the results obtained will be stated
more conveniently, if we consider matrices as linear maps be-
tween finite-dimensional linear spaces. We denote by F the
fields of real numbers R or the field of complex numbers C; we
use script letters X, Y, ... to denote finite-dimensional linear
spaces over F. The set of all linear maps on X is denoted by
L(X). If A E L(X), the set of all eigenvalues of A (including
multiplicities) is denoted by A(A). The trace and the deter-
minant of A, tr(A) and det(A), are the smm and the product
of all eigenvalues of A respectively. In the case when X is an
inner product space with dim(X) = n and when A E L(X),
aj(A), i = 1, 2, ... in, denotes the i-th singular value of A with
ordering al(A) > a2(A) . ... . O-n(A); in particular, al(A)
and an(A) are denoted by W(A) and Z(A) respectively. The
spectral norm of A is denoted by j1AJI, which has the prop-
erty that IhAIl8 = A)
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2 Tensor Products
Let A, Y be finite-dimensional linear spaces over F with
dim(X) = n and dim(Y) = m. A function 4 : X x Y -+ F
is called a bilinear form on X x Y if it is linear in each of its
arguments when the other is held fixed, i.e.

0(a1Zx +a2X2,y) = a1)(X,y))+a20(X2,y)
4(X, a(IYI + Ct2Y2) = a14(x, Yi) + a20(X, Y2),

for all x, xi E X, y, yEY and ai E F for i = 1, 2. The set of
all bilinear forms on X x Y is a linear space with the addition
and multiplication by scalars defined in the obvious way. It is
easy to see that the dimension of this linear space is nm, the
product of the dimensions of X and Y.

Let X', Y be the dual space of X, Y respectively. The
tensor product of the space X and Y, denoted by X0 Y, is the
linear space of all bilinear forms on xA x Y3. Since XA and X
have the same dimensions, we have dim(X 0 Y) = nm.

One type of element in X 0 Y is of particular interest. Let
x E X and y E Y'. Assig for any f E XA and g E 3" the
scalar f(x)g(y). This is obviously a bilinear form on XA and
Y' and hence an element in X 0 Y. This element is denoted
by x e y. Elements of X e Y which can be written as x Xoy
for some x C X and y E Y are called decomposable tensors. It
can be shown that the set of all decomposable tensors spans
the whole X 0 Y.

Let A e L(X) and B E L(Y). The tensor product of A
and B, denoted by A 0 B, is an element in L(X 0 Y) and
is defined to be the linear extension of the following map of
decomposable tensors

(A B)(zX y) = Axr By. (1)

Since the decomposable tensors in X 0 Y span X 0g Y, the
extension is uniquely determined.

Furthermore, let C E L(X) and D E L(Y). It is easy to
see from (1) that

(CO D)(A 0 B) = CA 0DB.

The following theorem, regarding the eigenvalues of a com-
bination of tensor products of linear maps, is a key result in
our development.

Theorem I Let A E L(X), B E L(Y) and let A(A) = {As:
i = 1, 2,**,n}, A(B)={p1: j=1,2, .., m}. Then

A( 7hkAhO Bk)

- {Z E7hk44*:i=1l, 2,1...,n; j =1,2,...,m}.
h,k=O

Now let us restrict our attention to bilinear forms on X x
X. A bilinear form 4) on X x X is said to be symmetric if
4)(X1,x2) = O(x2,XI) for all :lx,X2 E X. It is said to be skew-
symmetric if 4)(r1,X2) = -4)(X2,X) for all xl,x2 E X. The
set of all symmetric bilinear forms on XA x X' is called the
symmetric tensor product of X with itself and is denoted by
X V X. The set of all skew-symmetric bilinear forms on X' x '

is called the skew-symmetric tensor product of X with itself
and is denoted by X AAX. Apparently, X V X and X A X are
subspaces of X 0 X. Let 4 E X 0 X. Define bilinear forms
41,4)2 on XA x X' by

4) (f,g) = 2)(f,g) +4(g, f)A

02-(f, 9) = [(f, g) - (g, f)]

Then <Al is symmetric, '2 is skew-symmetric and 4 = 4<) + ¢2.
This shows that

(X V X)+(XAX) =X X.
On the other hand, if 4 E (X V X) n (x A x), then 0(f,g) =
0(g, f) = -O(f,g) for any f,g E X', which means 0(f,g) = 0
for all f, g E X'. This shows that

(x v x) n (x A X) = 0.
Therefore X 0 A is the direct sum of X V X and X A X. The
following two projections can then be defined: Pv X 0 X
XVAX is the projection on XVX alongAX'AA and PAXAX
X A X is the projection on X A X along X V X. Since X 09 X
is spanned by the decomposable tensors, it is of interest to
determine the effects ofPv and PA on the decomposable tensor.
A moment's thought leads to

PV(Xt0 X2) = 2(XIz@ 2 +X2 XI)

PA(x10z2) = 2(XI X2-z20 X1).
The tensors of the above forms are caled decomposable

symmetric tensors and decomposable skew-symmetric tenors
respectively, and are denoted by xlVX2 and 1 Ax2 respectively.

Let A, B E L(X). The symmetric tensor product of A and
B, denoted by A vB, is defined to be Pv(A 0 B)jXV X. The
skew-symmetric tensor product of A and B, denoted by A A B,
is defined to by PA(A ® B)fX A X.

Another key result, regarding the eigenvalues of a combi-
nation of symmetric and skew-symmetric tensor products of
linear maps, is given in the following.
Theorem 2 Let A e L(X) and let A(A) = {Ai: i = 1, ... , n}-
Then

A(E7I AA V A"S) - 2Z+ A )

h,k=O h,k7O
i = 17¢,-; + 1..,n}.

The set of coefficients {->k}*O is said to be symmetric
ifyh =-khafor all 0< h k < 1. It is of interest to note that
in the case when {h}$,,o is symmetric, the direct union of
A(El k_,-hkA" V Ak) and A(2'ok, yh,Ah A Ak) is exactly
equal to A(2h,1=o'hkAh 0 Ak). This fact is a consequence of
the following more general result.
Theorem 3 If {7hk}1,k0 is a set of symrnmetric coefficients,
then XVX and XAX are reducing subspaces ofEh,ko YhkAhX
BkB"
Theorem 3 implies that ifXXX is decomposed as the direct

sum of X VX and X A X, then the map Z1UykkA"0 Bk
has the following "diagonal" structure:

I EytkAh VBk
Eh lkAh X Bk = h,k=O

h,k=O O

0

1
.

YhkAh A Bk

h,k=O

Now suppose that X and Y' are inner product spaces. Then
X X3Y becomes an inner product space if we let the inner
product in XOX be the sesquilinear extension of the following
inner product of decomposable tensors

(X1 0 Y1,2 0 Yt2) = (TI. 2)(Yl,Y2)-
With this inner product structure, we can talk about singular
values of linear maps.
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Theorem 4 Let X, Y be inner product spaces and A E L(X)
and B E L(y). Then the set of singular values of A® B is
{cri(A)crj(B): i=1, 2, .., n; j= 1, 2, .. ., m}.

This theorem implies that W(A®B) = W(A)9(B) and p(A®
B) = (A)B)-

Let X1,X2,x3,X4 XA'. Then

(XI V 12,13 A X4)

= ( D(Xi®x2+X2 XzI)4X3(z9X4-T403))

4((h 1X3)(X2, 4) - (Xl, X4) (X 2,3)
+(2, X3)(XI,T4)- (X2, X4)(XI, z3))

- 0.

Since the decomposable tensors span X 0 X, the symmetric
and skew-symmetric decomposable tensors span X V X and
X A X respectively. Therefore X V X and X A X are orthogo-
nal complements of each other and PV and PA are orthogonal
projections. By the fact that %(Pv) = 1 and 7(PA) = 1, we
obtain F(A V B) < F(A)ff(B) and WFA A B) F(A)7(B) for
any A, B E L(X).

Let {xz : i = l,,2,...,n} be a basis ofX and {sy : j=
1, 2,.. ., m} be a basis of Y. Let the matrix representations of
A E L(X) and B E L(Y) under these bases be [A] = [aq] and
[B] = [bij] respectively. It is easy to verify that

{si O'y;: i = 1,2,.,,n; j = 1,2,...m}Ml (2)
forms a basis of X 0 Y; by saying this we also mean that the
basis vectors xi 0 ys are ordered lexicographically, i.e. xi, 0
Yn preceeds xi2 0 ys2 if mil + jA < mi2 + j2. The matrix
representation of A 0 B under the basis (2) is given by

[ al[B] .- an[B] ]
[A(& B]= .. .

ani[B] -. ann[B]
This is just the Kronecker product of the matrices [A] and [B].

Now let { i :i = 1, 2,..., n} be a basis of X and let [A]=
[a,J], [B] = [bii] be the matrix representations of A, B E L(X)
respectively. Then a basis of X V X is given by

{Catjxi V xi i = 1, 2, . .., n; j = i, i + 1, ...., n}, (3)
where

=

and a basis of X A X is given by

{zr xi
X3

xi n= 1,2..nlj=i + 1, + 2t... , n}. (4)
Here it is also assumed that the basis vectors in (2) and (3) are
ordered lexicographically. The matrix representation [A V B]
of A V B under basis (2) can be given by the following way:
Let (p,,p2) and (ql,q2) be the p-th and q-th pairs of integers
respectively in the lexicographically ordered sequence {(i,j):
i = 1,2,. ..,n;j = i,i 1,.. .,n}. Then

[A V B] = [cm,] EFC n(n+l)x n(n+

where
( ap,u bpiq, ifp, =p2 and q,= q2
3 j(ap,q,b,q2 + ap, q2b,2q,

CNv =
C

+aP29lbP92 + ap2qbp,q,) if pi # p2 and ql q2

2(ap,q,bpq2 + a,2q2bpq,) otherwise.

The so-called "Lyapunov matrix" is the matrix representa-
tion of A V I + I V A under a different basis of X V X.

The matrix representation of A A B under basis (4) is given
by the following way: Let (r1, r2) and (a1, s2) be the r-th and s-
th pairs of integers respectively in the lexicographically ordered
sequence {(i, j):i = 1, 2,.. ., n-1; j= i+1, i+2, ..,n}. Then

[A A B] = [dr7s] e 2 2

where

dra = 2 (ar1slbr252-arl7 2 r2sl -ar23 b7292 + a3123b713). (6)

This is the "bialternate product" of matrices [A] and [B].
Note that if X, y are inner product spaces and {Ixi, {yj}

are orthonormal bases of X, y respectively, then (2), (3), (4)
are orthonormal bases of X 0 Y, X V Y, X A X respectively.
This property is important regarding singular values.

To complete this section, we outline the idea of the proof
of the key results Theorems 1-2. It is known that for any
A E L(X), there exists a basis {zJi such that [A] is an upper
triangular matrix. Such a basis is called a triangular basis for
A and under this basis the eigenvalues of A are just the diago-
nal elements of [A]. Similarly, for any B E L(y), there exists a
triangular basis {yJ) of Y for B such that [B] is an upper trian-
gular matrix with the eigenvalues of B as its diagonal elements.
It is easy to check that the basis (2) ofXY formed from the
triangular basis of X for A and that of Y for B is a triangular
basis for the map k=-o yhkAh ® Bk. Therefore the diagonal
elements of [Zk,k=o 7hkAh' 0 Bk], which are h,k=0 'YkhA>,4,
are the eigenvalues of EL =o 7yhkA 0 Bk. Similarly, the bases
(3) and (4) of X V X and X A X formed from the triangular
basis of X for A are triangular bases for E2lk- 7hkAh V A
and XIh,k=o 7hkAh A Al respectively. Therefore the diagonal el-
ements of [E1,k7yhkAh V A*], which are 2 £k,k=ooahk(A,A +

are the elgenvalues of r k-_07hkAh V Ak and the diag-
onal elements of [E1,w=o 'YhAh A Ak], which are r h,k-o -yAk
(AOAk + A\Ah), are the eigenvalues of rh' k=0 7hkAh A A".

3 Preliminary Stability Robustness Re-
sults

The main purpose of this paper is to use the tensor prod-
uct concept as a tool to study the stability robustness of real
matrices. To make what follows conform with the concept in-
troduced in last section, we can consider a matrix in FhXn as a
map on F'. We will study the stability of matrices both with
respect to continuous time systems and with respect to dis-
crete time systems. A matrix A E RnXn is stable with respect
to continuous time systems if all of its eigenvalues are contained
in the open left half of the complex plane. The set of all such
stable matrices is denoted by S. A matrix A E RnXn is stable
with respect to discrete time systems if all its eigenvalues are
contained in the open unit disk of the complex plane. The set
of all such stable matrices is denoted by Sd. A basic problem
considered in the stability robustness of matrices is as follows.
Given a connectedl set of matrices in RnX n, determine if all the
elements in this set are stable. The remaining sections of this
paper simply consider this problem for different forms of sets.
The following fundamental results serve as the starting point
of the study of all of the problems in the remaining sections.

Theorem 5 Let U be a connected subset of Rnxn. Assume
that U n S. is not empty. Then the following statements are
equivalent.

(a) U c S.
' The connectedness is a topological concept. Here we assume that the

topology in R"5n is the usual finite-dimensional linear space topology.
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(b) det(A ®I+ I®g A)$ O for all A E U.
(c) det(A) #O and the rank of A ®I + I Ais greater than

n2-2forallAE U.
(d) det(AV I+IV A) O for all A E U.
(e) det(A) 0O and det(A A I + IA A) $O for all A E U.

Theorem 6 Let V be a connected subset of R"Xn. Assume
that V n Sd is not empty. Then the following statements are
equivalent.

(a) v C Sd.
(b) det(I- A@A) 76 0 for all A E V.
(c) det(I - A) ¢ 0, det(I + A) # 0 and the rank of det(I -

A®A)$ 0 is greater than n2 -2forallA E V.
(d) det(I - A V A) $O for all A EV.
(e) det(I-A)$60, det(I + A)$6O and det(I - A A A)$ 0

for all A E V.

The proofs of Theorem 5-6 can be constructed by using
simple continuity arguments and Theorems 1-2 in the last sec-
tion.

4 Unstructured Uncertainties
In this section, we study the stability robustness of matrices
under unstructured uncertainties. In the continuous time case,
we consider mcertainties of the form A + AA; such a form of
uncertainty is caled an additive uncertainty. In the discrete
time case, we consider uncertainties of the form A(I + AA);
such a form of uncertainty is caled a multiplicative uncertainty.

I Continuous time case

Let A E RCXx be a stable matrix in Sc. Define the (real)
stability radius of A by

rc(A) = inffllAAll,: AA E RnXn and A + AA SJ}. (7)
It is desired to have a method to compute rc(A). Unfortu-

nately, such a method is not available for general matrices in
Sc. The following theorem gives some lower bounds on r0(A).
Theorem 7 Suppose that A E Rnxn is a stable matrix. Then

rc(A) > min{f(A), 2r,,2_(A @ I + I® A))

r:(A) > 2a(AVI+IVA)

rc(A) > minr{g(A), 2(A A I+ IA A)}.
In some special cases, the inequalities in Theorem 7 be-

comes equalities.
Theorem 8 Suppose that A E Rnxn is a stable normal matrix.
Then

r0(A) = min{g.(A), cr2a.1(A ® I + I0 A)}
= .o(AVI+IVA)

= mirn{g{A),Si(AA I+ IA A)}
- min{-Rt( ) Aj E sp(A)}.

Theorem 9 Suppose that A E R2X2 is a stable matrix. Then

arn2_(A ®I + I® A) =gA A I + I A A) = -tr(A)
and

rc(A) = min{a(A), -4tr(A)}.

The proof of Theorems 7-9 are given in [171.

II Discrete time case

Let A E RnXn be a stable matrix in Sd. Define the (real)
stability radius of A by

rd(A) = inf{fIIAAII AA E RlXxn and A(I+ AA) 9 Sd}. (8)

As similar to the continuous time case, a method to com-
pute rd(A) is not available for general matrices in Sd. The
following theorem gives some lower bounds on rd(A).

Theorem 10 Suppose that A is a stable matrix in Rnxn. Then

rd(A) > min{r11[(I- A)-'AJ, -'[(I+ A)'AJ,

(af1[(I - A® A)-(A 0 A)] + 1) -1}

rd(A) > F-1[(I -A VA)-1(A VA)] +1) 2- 1

rd(A) > mn{F lf[(1 - A)-'A], r-'(I + A)-A],

(a'[(I- AAA)A (AAA)+ 1)I -1}.
In some special cases, the inequalities in Theorem 9 be-

comes equalities.

Theorem 11 Suppose that A is a stable normal matrix in
RnXR. Then

r(A) = min{Vr'((I- A)-'A, r-1[(I+ A)-'A,

(arA[(Iv-'A( A)-'+(A A)] + ) -1

(a-1[(I - A V A)-'(A V A)] t 1) 2 1

mrain { g-T -A)-1A], F-1[(l + A)-'A],

A[(I- A A) -'(AA A)] + 1)2 -4
- min { 1:A E A(A)}.

Theorem 12 Suppose that A E R2X is a stable matrix. Then

a2[(I-A®A)-1(A®&A)] = Z[(I-AAA)'((AAA)] = _ det(A)

and

rd(A) = min{'1[(I-A)'A], r-'[(I+A)-1AJ, det-E(A)-1}
The results for the discrete time case are new. The proofs

of Theorems 10-12 are analogous to the proofs of Theorems
7-9. It is seen that Theorems 10-12 are parallel to Theorems
7-9. The additive uncertainty problem for the discrete time
case is considered in [17], and it is shown there that the results
obtained are not parallel to the continuous time case, e.g. for
2 x 2 stable real matrices, an exact value of the real stability
radius for additive uncertainties is not obtained from the lower
bound. This is the reason why here we consider multiplicative
uncertainties, instead of additive uncertainties, in the discrete
time case.

5 One-Parameter Uncertainties
A matrix A(k) with one-parameter uncertainty is of the form

A(k)- = Ao + kAl + k2A2 + . .q-+ kIA1, (9)
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where Ai, i = 0, 1, . . , 1, are real matrices and k is a real un-
certain parameter. Assume that Ao is stable (either in the
continuous time sense or in the discrete time sense). It is de-
sired to find the largest open interval (k,k), which contains
the origin, such that A(k) is stable for all k E (k, k). This
problem is called the one-parameter stability problem. In the
continuous time case, it follows from Theorem 5 that the one-
parameter stability problem is equivalent to the problem of
finding the largest open interval (k,k) such that any of the
following is satisfied for all k E (k, F).

(a) det[A(k) (® I + I® A(k)3 $ 0;
(b) det[A(k) V I + I V A(k)] # 0;
(c) det[A(k)] $ 0 and det[A(k) A I + I A A(k)] $ 0.

It is easy to verify that all the matrices in (a)-(c) are poly-
nomial matrices of k with degree 1. Similarly, in the discrete
time case, it follows from Theorem 6 that the one-parameter
stability problem is equivalent to the problem of finding the
largest open interval (,k,) such that any of the following is
satisfied for all k E (L,T)
(a') det[I- A(k) ® A(k)] $ 0;
(b) det[I- A(k) V A(k)] $ 0;
(c') det[I - A(k)] $ 0, det[I + A(k)] $ 0 and det[I - A(k) A

A(k)] $ 0.

It is easy to verify that all the matrices in (a')-(c') are polyno-
mial matrices of k with degree I or 21.

Hence, by using Theorems 5-6, one can convert the one-
parameter stability problem into the following one-parameter
singularity problem: Let

B(k)= Bo + kBi + k2B2 + + kmBm, (10)

with Bo nonsingular. Find the largest open interval (4$),
which contains the origin, such that B(k) is nonsingular for all
k E (4,F). This singularity problem can be easily solved via
an ordinary eigenvalue problem.

Formally, we can define

k = sup{k: kc<0 and det[B(k)] = 0}
kc = inffk : k > 0 and det[B(k)] = 0}.

We know that

det(B'1) det[B(k)]
= det(B-1) det(Bo + kB1 + k2B2 + *.. + kmBm)

= det (I

Let

0

M
O

-Bo lBm

6 Double-Parameter Uncertainties
First in this section, we introduce the double-parameter eigen-
value problem and its solution. Then we will see how it can be
used to obtain a solution to the double-parameter uncertainty
stability robustness problem.

Let Ao, Al, A2 E L(X) and Bo, Bl, B2 E L(Y). The double-
parameter eigenvalue problem is to find all pairs of real num-
bers (A1,A2) such that

{ det[Ao + AlAl + A2A2] = 0
det[Bo+AiB1+ArB2] = 0. (14)

Obviously, (14) is actually a set of two polynomial equations
in two unknowns. It is not hard to show that any set of two
polynomial equations of two unknowns can be converted to the
form of (14). Conventionally, this set of equations is solved
using resultants, see [21]. Here, we show that it can be solved
using tensor products.

Let Cl,C2, Di, D2 E L(Z). The formal determinant of the
map

Cl C2
E]L( E )

[D i D2

where "@" means the direct sum, is defined as

Det[ Cl C2] - C1D?2 - C2D1 E L(Z).

Consider the set of equations (14). Denote

A== Ai®IEL(X®Y)
Bj = I@B,EL(X@Y)

fori=0,1,2. Let

A=e[ A1 A2]LA1 A2

[A0 A2AD

Bo 112]

A2 ==Det[~ Ao

Then we have the following theorem:

Theorem 13 The set of pairs (A1,A2) which solve the double
parameter eigenvalue problem is contained in the set of pairs
(A1,A2) satisfying

Ker(Al - A1Ao) n Ker(A2 - A2AO) $ 0.

Theorem 13 can be derived from the material in [2]. This
theorem implies that the double-parameter eigenvalue prob-
lem, under a minor condition, can be solved in the follow-
ing way: (step i) find the set A(A1, A0) of generalized eigen-
values of the pair (A1,Ao) and the set A(A2, A0) of all the
generalized eigenvalues of the pair (A2, AO); (step ii) for any
A1 E A(AI,Ao) and A2 E A(A2, AO), check if (Al,A2) is the
solution of (14). It is easy to see that the minor condition
required is that (A1, Ao) and (A2, Ao) are nondegenerate, i. e.
they have only finite number of generalized eigenvalues. Gener-
ically, this is the case. In fact, if only one of (Al, Ao) and
(A2, Ao) is degenerate, we still can solve the problem by find-
ing the generalized eigenvalues of the nondegenerate pair and
then substituting them into (14) to find the other unknown.
The "bad" case happens when both pairs are degenerate. In
this case, this method fails.

(11)
(12)

0 1 I 1
0 0 ; K

I 0

(13)

0 .o. I

-Bo',- -B_ * -Bo Bi

Then the equality det[B(k)] = 0 is equivalent to the fact that
I is an eigenvalue of M. Therefore, the solution of the one-
parameter singularity problem is given as follows.

k = sup{k: k < 0 and k E sp(M)}

k = inf{k: k> 0and k esp(M)}.
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In principle, this technique for the double-parameter eigen-
value problem can be generalized to the multi-parameter-eigen-
value problem in which the number of equations and the num-
ber of unknowns are more that 2, see [2] for details. Generally,
when the number of equations and the number of unknowns
are more than a few, the dimensions of the matrices involved
become excessive, which causes severe numerical problem.

A matrix A(kj, k2) with double-parameter uncertainty is of
the form

I m

A(kl, k2) =EE k1k2Aj'
i=O j=O

(15)

where Ai1, i = 0,1,...,!; j = 0,1,...,m, are real matrices
and kl, k2 are the real uncertain parameters. Assume that
Aoo is stable (either in the continuous time sense or in the
discrete time sense). It is desired to find the largest positive
number rm such that A(kj, k2) is always stable for al (kA, k2)

with k } < r, Equivalently, we want to find r.m which

is defined as

rm=inf{ [ k' j :A(kj,Ak2)uisuntable}.

By using Theorems 5-6, this stability robustness problem can
be converted to the following singularity problem: Find

rm =inI{ [ ]k :det[[B(kA,ck2)] = 0}

where
p q

B(k1,k2) kk-2Bjj,
i=Oj=o

Now sugre that the norm used is the Hblder 2-norm,

i.e. k2 = By using the Lagrange multiplier

method, any pair (kl,k2) satisfying rm = |[ ] has to

satisfy

I [k2 - kik) det[B(kA, k2)] = 0
( det (kci, k2)] = 0°

(16)

(16) is a set of two polynomial equations in two unknowns.
One can convert these equations into the form of (14) and
then solve them using the double parameter eigenvalue prob-
lem technique.

If the norm used is the Hblder oo-norm, the problem also
leads to solving polynomial equations, see [10] and [21] for
details. The double parameter eigenvalue technique can then
again be used.
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