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Abstract 

In this paper, we study'the controllable region of a gen- 
eral unstable continuous-time LTI system with input 
saturation and we also study the stabilization of such 
a system by a saturated linear state feedback. We give 
simple exact descriptions of the controllable regions for 
certain classes of unstable systems. The study on sta- 
bilization is quite preliminary. We only deal with anti- 
stable planar systems. We conjecture that for such a 
system its asymptotic stability region (domain of at- 
traction) under a saturated linear state feedback can 
be easily obtained from a stable limit cycle of its time- 
reversed system. We conjecture with convincing argu- 
ments that for such a system a saturated linear state 
feedback can be designed so that the asymptotic stabil- 
ity region is arbitrarily close to its controllable region. 

1 Introduction 

Recently there is a renewed interest in the control of 
systems with bounded inputs. Great progress has been 
made in the past few years. In the continuous-time 
setting, most of the existing work deals with systems 
that have no poles on the open right half of the complex 
plane. (We will call such systems semistable systems.) 
It is well-known, see for example [6, 10, 111, that a 
semistable LTI system controllable in the usual sense 
is globally controllable with bounded inputs. Based 
on this fact, extensive literature is devoted to the con- 
trol of semistable systems using bounded control. In 
[12] and [13], nonlinear globally asymptotically stabi- 
lizing feedback laws were designed. Later, linear satu- 
rated state feedback laws were constructed so that the 
closed-loop system is asymptotically stable within any 
prescribed bounded region, see, e.g., [4, 5, 91. In these 
papers, the feedback gains are kept small so that within 
a prescribed region of state, the control signal will not 
exceed the saturation level. It was also recognized that 
if the feedback is designed by the LQ method, then the 
feedback can be amplified by any positive gain without 
affecting the stability region. This positive gain is then 
utilized to improve other performance of the system, 
see [3, 91. In [7], a nonlinear feedback is designed to 
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guarantee globally asymptotic stability and Cz BIB0 
stability. 
For strictly unstable systems that have poles on the 
open right half of the complex plane, however, the ex- 
isting results are quite limited. It is known that such 
systems are not globaly controllable and hence cannot 
be globally stabilized in any way. Just as the control- 
lability result of [6, 10, 111 paved the way for the devel- 
opment of stabilization theory for semistable systems 
with bounded inputs, the control of strictly unstable 
systems requires the exact descriptions of their control- 
lable region. It is shown in [2] that there exists a nice 
seperation result concerning the controllable region of 
a strictly unstable system. Suppose a strictly unsta- 
ble system is decomposed into the sum of a semistable 
subsystem and an anti-stable subsystem, then the con- 
trollable region of the whole system is the Cartesian 
product of the controllable region of the semistable sub- 
system, which is the whole state space of this subsys- 
tem, and that of the anti-stable subsystem, which is a 
bounded convex open set. Because of this, it suffices 
to study the controllability of anti-stable systems. 

The stabilization of a strictly unstable system is a much 
harder issue. Even the analysis problem of decribing 
the asymptotic stability region (domain of contraction) 
of a closed loop system is not sufficiently addressed. 
Although a stability region of the closed-loop system 
can be estimated, even some performance can be guar- 
anteed within this region, it is not clear whether this 
region is too conservative or not, nor is it clear how to 
enlarge this region or to make it meet the performance 
requirements. 

In this paper, we first study the controllable region 
of a continuous time anti-stable system with saturated 
inputs, i.e., the input bound is given by an w-norm 
bound. For anti-stable systems with only real poles and 
second order anti-stable systems with complex eigen- 
values, simple formulas for the boundaries of the con- 
trollable regions are obtained. These formulas provides 
interesting geometric insigts which are useful in the 
study of stabilization of such systems. 
The study of stabilization in this paper focuses on pla- 
nar anti-stable systems. The reason for this is the sym- 
plicity of such systems. More general systems are left 
for future study. For planar anti-stable systems, we 
conjecture that the asymptotic stability region under a 
saturated linear state feedback can be easily obtained. 
We also conjecture that a saturated linear state feed- 
back can be designed so that the asymptotic stability 
region of the closed-loop system is arbitrarily close to 
the controllable region of the open loop system. 
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2 Preliminaries and Notat ion If we restrict ourselves to the compact subsets of R", 
then the Hausdorff distance is a metric, Under this 
metric, we clearly have IimT,, C(T) = C ,  the closure 
of C, and limT,,dC(T) = dC. Here we use ''8' to 
denote the boundary ad a set. In Section 3, we will 
derive methods for generating the boundary of c. 
If B = [ bl b, ] and the controllable region 
of the system ( A ,  b j ) ,  :i = 1, ... , m, is C j ,  then c = Czl C j .  Hence in the study of the controllable regions 
we can further without loss of generality that 
m =  1. 

Consider LTI system 

(l) i ( t )  = Az(t)  + B u ( t )  

where z ( t )  E R" is the state and u(t)  E R, is the 
control. A control signal U is said to be admissible if 
llu(t)ll, 5 1 for all t 2 0. In this Paper, we are inter- 
ested in the control of system (1) by using admissible 
controls. Our first concern is the set of states that can 
be steered to the origin by an admissible control. 

. . . 

Definition 1 Consider system (1). 
(a) A state xo is said to be controllable at a given 

time T if there exists an admissible control U such 
that the state trajectory x of the system satisfies 
z(0) = $0 and z (T)  = 0.  The set of all states 
controllable at  T is called the controllable region 
of the system at  T and is denoted by C(T). 

(b) A state xo is said to be controllable i f  it is control- 
lable at  some T < CO. The set of all controllable 
states is called the controllable region of the sys- 
tem and is denoted by C .  

Let (AIB) be the controllable subspace of the pair 
( A ,  B) .  Since the controllable region of (1) has to be 
a subset of (AIB), it can be given by that of its con- 
trollable subsystem. Hence we assume in the following, 
without loss of generality, that ( A ,  B )  is controllable. 

In summary, we will assume in the following that ( A ,  B )  
is controllable, A is anti-stable, and m = 1. 

In Section 4, we study the stabilization of a system 
with input saturation. Our ultimate purpose is to show 
that a satuarted linear feedback can be designed so that 
the stability region (domain of attraction) of the closed 
loop system is arbitrarily close to the controllable re- 
gion of the systems. Pie will in Section 4 start with 
the stabilization of anti-stable systems since the sta- 
bilization of semistable systems has become a rather 
mature topic [4, 5, 7, 9, 12, 131. For technical reasons, 
we further restrict our study to second order anti-stable 
systems. The results in Section 4 are preliminary and 
in some cases speculatory. Further study is underway. 

In many situations, it may be more convenient to study 
the controllability of a system through the reachability 
of its time-reversed system. For a nonlinear system 

Proposition 1 Assume that ( A ,  B )  is controllable. x = f ( r , u )  (2) 

set containing the origin. 2 =.. -f(%, v )  (3) 

(a) If A is semi-stable, then C = R". 
(b) If A is anti-stable, then C is a bounded convex open 

(,-) I f A  = [ 2 ] with Al E R n i X " 1  being anti- 

stable and A2 E Rnaxna being semi-stable, and 

B is partitioned as [ i: ] 
c1 X Rna where c1 is the a"h-lable region of 
the anti-stable system (AI, B1). 

Statement (a) is well-known [6, 10, 111. Statements 
(b) and (C) are Proved in [21. Because of this ProPO- 
sition, we can concentrate on the study of controllable 
regions of anti-stable systems. For such systems C can 
be approximated by C(T) for sufficiently large T .  To 
make this formal let us introduce the Hausdorff dis- 
tance between bounded subsets of R". Let SI, Sa be 
two bounded subsets of R". Then their Hausdorff dis- 
tance is defined as: 

d(S1,Sz) := max{4S1,Sz),4Sz,S1)) 

its time reversed system is 

It iS easy to See that Z(t) Solves (2) with x ( 0 )  = 
zo,t(tl) = 2 1 ,  and certain U if and only if z ( t )  = 
z(t1 - t )  solves (3) with z (0 )  = XI, z(t1) = 20, and 
v( t )  = u(t1 - t ) .  The two systems have the same curves 

Consider the time revecsed system of (1): 
then = as trajectories, but traversed in opposite directions. 

2( t )  = -Az(t )  - Bv( t ) .  (4) 

Definition 2 Consider system (4). 
(a) A zT a's said I fo  be at a given time 

T i f  there exists an admissible control v such 
that the state trajlectory z of system (4) satisfies 
z(0)  = 0 and z ( T )  = z ~ .  The set of all states 
reachable at T is called the reachable region of 
system (4)  at  T aind is denoted by R(T) .  

(b) A state z is said to be reachable i f  it is reachable 
at some T < CO. The set of all reachable states 
is called the reachable region of system (4) and is 
denoted by R. where 

4 ~ 1 , ~ ~ )  = sup inf l i t 1  - ~ 2 1 1 .  
Z ~ E S ~  ZaESa 

Here the vector norm used is arbitrary. With the Haus- 
dorff distance, we have 

lim d(C(T),C) = 0. 

It is a known result that C(T) and C of (1) are the same 
as R(T) and R of (4), see for example [6]. To avoid 
confusion, we will reserve the notation 2, U ,  C(T), and 
C for the original system ( l ) ,  and reserve z ,  v ,  R(T),  
and R for the time-reversed system (4). T-+W 
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3 Controllable Regions 

3.1 Description of the controllable region via 
extrema1 control 
In this section, we consider the controllable regions 
C(T) and C of system (1) via the study of the reachable 
regions R(T)  and R of system (4). Here we assume A 
is anti-stable, (A, B )  is controllable, and m = 1. Since 
B is now a column vector, we rename it as b for conve- 
nience. 

Definition 3 A control v is said to be extremal on 
[O,T] if the response z ( t )  of system (4) lies on aR(t) 
for all t E [o, TI. 

Lemma 1 Let ZT E aR(T) ,  and v be a control that 
steers the state from the origin to ZT at  time T ,  then v 
is extrema1 on [0, T'j. 

0 5 t i  5 t2 5 . . .  5 tn-1 5 T . 1 

I 

Here we allow ti = ti.+l and tn-l  = T .  Hence E(T) 
consists of all bang-bang controls on [ O , T ]  with n - 1 
or less switches. 

For v E E(T), with switches 0 5 t i  5 t2 5 . * .  5 tn-1 5 
T ,  the state of system (4) at T is, 

Z ( T )  =f e-AT + 2 C(-l)ie-A(T-ta) 

This shows that 

+ (-l)nI A-lb. 
n-1 

[ i=l 

I 
0 5 t i  5 t 2  <_ * - e  5 t,-l 5 T I .  

Lemma 2 ([6, p. 621) A control v is extremal on [ O , q  
for system (4) if and only i f  there is a nonzero vector 
c E R" such that v(t)  = sgn(c'eAtb) f o r t  E [0, TI. If we let ri = T - t i ,  i = 1,. . ., n - 1, then OR(T) can 

be rewritten as 

A-'b : 
From Lemma 2,  the set of extremal controls can be 
written as: 

E(T) := {v(t) = sgn(c'eAtb),t E [ O , T ]  : llcll2 = 1.). 

Combining Lemmas 1 and 2 gives 

By letting T go to infinity, we get the following theo- 
rem. aR(T) = { - lTe -A(T- ' )b  sgn(c'eA'b)dr : llcll2 = 1 } . 
Theorem 1 

This shows that dR(T) can be determined from the 
surface of a unit ball in R". In the following two 
sections, we will further simplify this for some special 
cases. 

3.2 Systems with only real eigenvalues 
It follows from e.g. [6], that if A has only real eigen- 
values and c # 0, then c'eAtb has at  most n - 1 zeros. 
This implies that an extremal control can have at  most 
n - 1 switches. We will show that the converse is also 
true. That is, for system (4), any bang-bang control 
with n - 1 or less switches is an extremal control. In 
this way, aR(T) and OR can be described in a simple 
manner. 

Lemma 3 : FOT system (d), assume that A has only 
real eigenvalues, then 

By using this theorem, the boundary of the controllable 
region of system (1) can be easily plotted at  least for 
the low dimensional cases. For example, when n = 2, 
we have 

dC = {f(-2e-A' + I)A-'b : 0 5 r 5 CQ} , 
and when n = 3, we have 

dC={f(-2e-A'1+2e-A'a-I)A-1b : 0 5 r2 5 r15 CO}. 

(a) an extremal control has at most n - 1 switches; 
Now we give another interpretation of a C  and which 

Clearly z$ is the equilibrium point of system (4) with 
(b) any bang-bang control With n - 1 O f  less switches will be used later. ~~t Z$ = - ~ - l b  and z,  = ~ - 1 b .  is an extremal control. 

control v(t)  1 and z ,  with v(t)  z -1. Assume that 
the system has initial state 22 and the following bang- 
bang control is applied: 

By Lemma 3, the set of extremal controls on [0, T ]  can 
be described as follows: 

-1 , O < t < t l  
(-1)"l , ti 5 t < ti+1 
(-l),-' , t n - 2 5 t S T  

1, O < t < t l  
(-l)i, ti 5 t  <t i+ l  , 

(-l)n-ll tn-l 5 t 5 T 
4500 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 07:31:30 UTC from IEEE Xplore.  Restrictions apply. 



Then it is easy to verify that the state at  T is 

where t o  = 0. 
Clearly z ( T )  E dC from Theorem 1. On the other hand, 
any element of dC can be reached by applying a bang- 
bang control with n - 2 or less switches to system (4) 
from the initial state z$ or 2;. Thus we see that that 
dC = dR has two branches. The first branch consists 
of trajectories of (4) when the initial state is z$ and the 
input is a bang-bang control with n - 2 or less switch- 
ings. The second branch consists of the trajectories of 
(4) when the initial state is z; and the input is a bang- 
bang control with n-2 or less switchings. In particular, 
if n = 2, then 8C = 8R can be formed by the trajec- 
tory of (4) starting from z: with v ( t )  = -1 and the 
trajectory from z; with v( t )  = 1. The first trajectory 
approaches 2; as t 3 00 and the second trajectory ap- 
proaches z$ as t -+ CO, so the two trajectories form a 
closed curve. If n = 3, then one half of dC = aR can be 
formed by the trajectories of (4) starting from z$ with 
the first control being -1 and one swicth at  any time 
to 1. So the trajectories go toward 2; first and then 
turn back toward z$. The other half is just symmetric 
to the first half. See the example in section 3.4. 

3.3 Second-order systems with complex eigen- 
values 
In this subsection, we consider the special case when A 
is 2 x 2 with a pair of complex antistable eigenvalues. 
In this case, the original system (1) can be assumed, 
without loss of generality, to have the following form 

i ( t )  =Az( t )+bu( t )  = [; L'] .(ti+[ i t  ] u( t )  (5) 

and the corresponding time-reversed system 

i ( t )  = -[ :' ] z ( t )  - [ i: ] v ( t ) .  ( 6 )  

It can be shown that 

= { d G s i n ( @ t  + eleat : e E [o, 27r]}. 

Hence the set of extrema1 controls is 

E(T) = { v ( t )  =sgn[sin(Pt + e)], t E [0, TI : 0 E [0,27r]}. 

Therefore, we get 

= { - l : - A ( T - T ) b  sgn[sin(P.r + 6)ld.r : 6' E [0,27r] 

In the following, we show that BR(T) approaches the 
steady state phase plot of (6) with a square wave input, 
a limit cycle r, as T -+ CO. 

Denote Tp = a, 
z$= - ( I + e - A T p ) - l (  I-e-A*p)A-'b, z ,  = -2: (7) 

and 

= {eWAt,;  - ( I  - eeAt)A-lb : t E [0, T,]} (8) 

I?-= { e - At z, + + ( I  - e-At)A- lb  : t E [O,Tp]} (9) 

Let v* ( t )  = sgn[sin(/?t)], then v* (.) is a bang-bang con- 
trol with the length of each switch being Tp and the 
first control being 1. In  other words, U*(.) is a 2Tp pe- 
riodic square wave starting with l .  Denote z* ( t )  as the 
time response of (6) with initial value z; and control 
U*(-), that is 

z* ( t )  = - e-A(t--T)b sgn[sin(/?r)]d.r. 

Then it is easy to verify that z* ( t )  starts from z;, goes 
along I?+, reaches 2: at t = Tp, then goes along I?- 
and returns z; at t =: 2Tp. This process is repeated 
with periodic 2Tp. This shows that I' = I'+ U I?- forms 
a closed curve. To be exact, 

0 I?={z*(T + t )  : t E [0, ;!Tp]}= z*(T + -) : e E [0,27r] 

for any T 2 0. 
Since the zero input response of system ( 6 )  is exponen- 
tially stable, it follows that for any initial state, under 
control v( t )  = sgn[sin(/?t)], the time response z ( t )  ap- 
proaches z*( t )  as t + 00. Hence I' is in fact the peri- 
odic orbit generated by applying a periodic bang-bang 
control with period 2TP to system (6). 

{ P  

Theorem 2 : 8C = aR = r 

3.4 An example 
A third-order system is described by (1) with 

A = [ :  0.2 0.2 1 i ] ,  .= [ ! I  0 0.4 

%$ = - A - ~ B  = [ :i ] , z ,  = -z$.  In Figure 1, the 

solid curves are trajectories of the time-reversed system 
starting from z$ by applying a bang-bang control with 
one switch and the fir!3t control is negative. The tra- 
jectories leave z$ and ,go toward z; at first, then turn 
back toward z$, The dashed curves are symmetric to 
the solid curves. The boundary of the controllable re- 
gion, dC is formed by these trajectories. 

The controllable regions for some second-order systems 
are plotted in the next section as a comparation to the 
stability regions. 

-2 
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stability region of (11). In [l], it was shown that the 
boundary of S,  denoted by dS,  is a closed orbit, but no 
method to find this closed orbit is provided. Generally, 
only a subset of S lying between fz = 1 and fx = -1 
is detected from some Lyapunov function, see [3] for 
example. Here, we will show that dS is a limit cycle of 
(11). This limit cycle can be easily detected from the 
time reversed-system of (1 1). 

Consider the time-reversed system of (11): 

i ( t )  = -Az( t )  - b ~ [ f ~ ( t ) ]  (12) 

-10 -30 Since (12) has only one equilibrium point [l], all the 
limit cycles of (12) are totally ordered by enclosement. 
Let P be a positive matrix such that ( A  + bf)’P + 
P ( A  + bf) is negative definite and since { z  E R2 : 
-1 < fz < 1) is an open neighborhood of the origin, 

Qo := { z  E R2 : z’Pz 5 T O }  

Figure 1: dC of a third-order system 

4 Stabilization with saturated linear feedbacks it must contain 

For an LTI d a n t  controlled bv a linear state feedback. 
local stability implies global stability. However, this is 
usually not the case in the presence of input saturation. 
Consider the open loop system 

for To , o. Denote the state transition map of 
(12) by $J : ( t ,  zo) t+ Z ( t ) .  

i ( t )  = Az(t)  + bu(t)  (10) 

with admissible control Iu(t)l 5 1. A saturated linear 
state feedback is given by U = ~ ( f z ) ,  where f E Rlxn 
is the feedback gain and U(.) is the saturation function 

Theorem 3 Consider system (12). 
(a) For every zo # 0 ,  $( t ,  2 0 )  converges to a limit cycle 

a s t + c a .  
(b) There exists a smallest limat cycle rm and a largest 

limit cycle rM with rm C R2 \ &O and rM C C. 
1 , s T 1  

O ( S )  = s , Is12 1 
This theorem shows that rm is stable from inside and 
rM is stable from outside. The original system (11) has 

For (ll), however, rm is unstable from inside and J?M 
the same limit cycles as the time-reversed system (12). 

is unstable from outside. Because of Theorem 3 (a), we 
have dS = rm. 
Of all the examples that have been tested, it holds that 
r M  = rm. This leads to the following conjecture. 

Conjecture 1 Each of system (11) and system (12) 
has only one limit cycle. 

-1 , si.-1. i 
Such a feedback is said to be stabilizing if A + bf is 
stable. With a saturated linear state feedback applied, 
the closed loop system is 

i ( t )  = A z ( t )  + ba[fz(t)].  (11) 
Denote the state transition map of (11) by 4 : ( t ,  20) I+ 

z ( t ) .  The asymptotic stability region (domain of at- 
traction) S of (11) is defined by 

s = ( 3 0  E ~n : lim 4(t ,zo)  = o}. 
t+m 

Obviously, s must lie within the controllable region c 
of system (10). Therefore, a design problem is to choose 
the state feedback gain so that S is close to C. 
This seemingly simple task is actually quite non-trivial, 
even for semistable systems. In the past few years, ex- 
tensive research has been reported on the stabilization 
of semistable plant using saturated linear feedback, e.g. 
[4, 5, 9, 131. The problem for general unstable systems 
is much harder. In this section, we will only deal with 
antistable planar systems as a starting point. 

The study in this section is not quite conclusive. We 
will present two interesting conjectures and some sup  
porting arguments. 

4.1 The asymptotic stability region under a 
given feedback 
Consider system (10). Assume that A E RZx2 and A is 
antistable. In this section, we analyze the asymptotic 

If this conjecture is true, then this limit cycle is equal 
to the boundary 8s of the asymptotic stability region 
of (1 1). However, the limit cycle is an unstable one of 
system (11). It is difficult to determine it from system 
(11) directly. On the contrary, it is very easy to de- 
termine this limit cycle from the time-reversed system 
(12) since now the limit cycle becomes a stable one. 
The method is as follows: choose any zo # 0, then 
the trajectory $(t ,  zo)  converges to as as t -$ 03. See 
Figure 2, where the solid curve and the dashed curve 
are generated from different initial states. The straight 
lines are fz = 1 and fz = -1. 

We are unable to prove Conjecture 1 at the present 
time. However, the describing function analysis sug- 
gests that it is true. 

4.2 On enlarging the stability region 
It is obvious that the stability region of (11) must lie 
within the controllable region of ( lo) ,  i.e., S c C. By 
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Figure 2: Determine dS from the limit cycle 

comparing their boundary behavior, we can show that 
to make dS close to X, the two straight lines f z  = 1 
and f z  = -1 must be close to each other and be parallel 
to the line between z$ and z,(or z$ and z , ) .  All f 
such that fz = 1 is parallel to the line between z$ and 
,,(or z$ and z; ) can be written as 

As Ikl+ 00, the distance between f z  = 1 and f z  = -1 
will approach to zero. 

Let fo = -b’A’-’ [ 1. It’s now clear that to 

make as close to X’, f must be chosen as f = kfo 
with large Ikl. Now the question becomes if sufficiently 
large k can be chosen so that A + k b f o  is stable. 

0 -1 

Claim 1 There exists k g  > 0, such that A + kbfo  is 
stable for  all k > ko or k < -ko. 

The above argument show that if we let f = 
kb’A’-I [ ] and set k be arbitrarily large, then 

it is possible that S will be arbitrarily close to C. This 
leads to the following conjecture. 

0 -1 

Conjecture 2 For every E > 0, there exists f such 
that d(S,C) < E .  

In the rest of this subsection, we illustrate the idea 
using one example. 

Example 1: Let A = [ ::: io$ ] and b = [ 1. 
Then fo = [ -0.8 4.4 1. In Figure 3, the boundaries 
of the asymptotic stability regions corresponding to dif- 
ferent f = -kfo, k = 0.08,0.1, 0.2,0.4,0.8 are plotted 
from the inner to the outer. The region do become biger 
for greater k .  The outmost dashed curve is aC.  When 
k = 0.8, it can be seen that as is very close to dC. 
This shows that larger k generates larger asymptotic 
stability regions, which is quite different from the view 
that smaller feedback tends to generate larger stability 
region. 

4503 

Figure 3: Stability regions under different feedbacks 
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