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The Stability Robustness Determination of State Space 
Models with Real Unstructured Perturbations* 

L. Q i u t  and  E. J. Dav i sony  

Abstract. This paper considers the robust stability of a linear time-invariant state 
space model subject to real parameter perturbations. The problem is to find the 
distance of a given stable matrix from the set of unstable matrices. A new method, 
based on the properties of the Kroneeker sum and two other composite matrices, 
is developed to study this problem; this new method makes it possible to distinguish 
real perturbations from complex ones. Although a procedure to find the exact value 
of the distance is still not available, some explicit lower bounds on the distance are 
obtained. The bounds are applicable only for the case of real plant perturbations, 
and are easy to compute numerically; if the matrix is large in size, an iterative 
procedure is given to compute the bounds. Various examples including a 46th- 
order spacecraft system are given to illustrate the results obtained. The examples 
show that the new bounds obtained can have an arbitrary degree of improvement 
over previously reported ones. 

Key words. Robust stability, Real unstructured perturbations, Stability radius, 
Composite matrices, State space models. 

1. Introduction 

In the past  decade a great  deal  of research has been done  on the robus t  s tabi l i ty  
problem.  However ,  most  of  the results ob t a ined  are based  on the transfer  function 
represen ta t ion  of a system and  use f r equency-domain  arguments .  Some at tent ion,  
however,  has been paid  to the t ime-domain  a p p r o a c h  of  the robus t  s tabi l i ty  p rob-  
lem, e.g., [BG] ,  I-HM], [ H P ] ,  I L l ,  [ P T ] ,  [ Q D 1 ] ,  [M3] ,  IV] ,  and  I-Y]. Two ma jo r  
me thods  are used in these papers .  One  is based  on Ly a punov ' s  s tabi l i ty  theory  FPT], 
[Yl ;  the o ther  uses basical ly the f requency-domain  s tabi l i ty  cr i ter ion I B G ] ,  [ H M ] ,  

[ H P ] ,  I L l ,  [ Q D I ] ,  I M 3 ] ,  [V].  
This  paper  develops a new me thod  for the s tabi l i ty  robus tness  analysis  of a state 

space mode l  subject to real pe r tu rba t ions .  Specifically, it is desired to de te rmine  the 
d is tance  of a given stable mat r ix  A �9 R *X" from the set of  all uns table  matr ices  in 
~" ~*, where the distance in R" ~ ~ is defined by the spectra l  norm.  This  p rob lem has 
been previously studied, e.g., [BG] ,  [ H M ] ,  [ H P ] ,  [L] ,  [ P T ] ,  [ Q D I ] ,  [M3] ,  and 
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l'V], and some lower bounds on the distance have been obtained. These bounds are 
derived without assuming that the matrix space is real; therefore they are applicable 
for both real and complex perturbations. If only real perturbations are present, 
however, the bounds obtained are conservative. In this paper lower bounds are 
obtained assuming that only real perturbations are present. The approach used is 
based on some properties of the Kronecker sum and two other composite matrices. 
The new bounds are easy to compute numerically if ,4 is modest in size and the 
computations required are numerically well defined. If the size of A is large, the new 
bounds can be computed using an iterative procedure with no excessive complexity 
required. Examples show that the new bounds obtained are less conservative than 
previously reported ones. 

The structure of this paper is as follows. Section 2 formally defines the stability 
robustness measure to be studied and summarizes some existing results on this 
measure. Section 3 contains some preliminary results on properties of the Kronecker 
product and sum. A new lower bound on the robustness measure is given in Section 
4 in terms of the singular values of the Kronecker sum. Section 5 discusses various 
special cases; it is shown that the new bound becomes exact in certain cases. Section 
6 relates the Kronecker product and sum of matrices to operators in a matrix space, 
which leads to some useful properties of the Kronecker sum used in Section 4. Two 
additional composite matrices are defined in Section 7, and their properties are 
described. In Section 8 two new lower bounds on the stability robustness measure 
are obtained in terms of the composite matrices defined in Section 7. Computational 
aspects of the problem, when the dimension of the matrix is large, are considered 
in Section 9. Some numerical examples are given in Section 10. 

The following notation is used throughout this paper. For an m x n matrix A, A' 
is the transpose of A and A* is the conjugate transpose of A. o~(A), i -- I, 2 ..... 
rain(m, n), denotes the Ith singular value of A with order o1(A) ~ o2(A) > "'" > 
Omi,(,,.,)(A); in particular, cr1(A ) and ~mj,(,,.,)(A) are denoted by ~(A) and o(A), 
respectively. IIAI[, denotes the spectral norm of A and [IA IIF denotes the Frobenius 
norm of A, so that 

[m'~'n' 2 "]I/2 
I I a L  = ~(/i),  [IAIIF = o~ ( A ) j  . 

If A is square, the trace and spectrum of A are denoted by tr(A) and sp(A), respec- 
tively, and the [th eigenvalue of A is denoted by ~t(A) with no specific order imposed. 

2. Development 

Let ~: be the field R or C. Let C= be the open left half of the complex plane, i.e., 
C= B {s e C, Re(s) < 0}. A matrix A e 0:'"' is said to be stable if sp(A) ~ C-;  
if this is not the case A is said to be unstable. It is desired to find the distance of a 
given stable matrix A e 0 T M  from the set of all unstable matrices in F "~', which is 
defined by 

pF(A) := inf{l[AAJ[.: AA �9 y..n and sp(A + AA) r C-}. (2.1) 



Stability Robustness Determination of State Space Models 249 

The focus of this paper is on #a(A) for A �9 R "x", while #c(A) is introduced for 
comparison purposes. 

Let the boundary of C- be denoted by OC-, i.e., 0C- = {rio: co �9 R}. Then simple 
continuity arguments show that 

#~(A) = inf{llAA II,: AA e ~:"~" and sp(A + AA) n 0C- ~ •}, (2.2) 

An immediate consequence of (2.1)-(2.2) is that #a(A) > #c(A) if A e R """. Some 
other facts and previously obtained results about #~(A) are summarized in the 
following theorem: 

Theorem 2.1. I f  A e IF" x, and sp(A) e- C-, then 

(a) #~(A) < min{-Re  21(A), i = 1, 2 . . . . .  n}, 
(b) u~(A) < ~r(A), 
(c) ~F(A*) = uF(A), 
(d) ~(aA) = a/~F(A) for any :c > O, 
(e) I~F(A) = I~F(U*AU) for any U e ff:"x" with U*U = I, 
(f) #~(A) > 1/e(P), where P satisfies the Lyapunov equation A*P + PA = -21 ,  
(g) #c(A) = inf,~E a g( jml  - A) and #n(A) > inf, o, n g(joM - A), 
(h) i rA  is normal, #F(A) = min{-Re  2~(A), i = 1, 2 . . . . .  n). 

The proof of (a)-(e) is trivial. (a) and (b) provides two trivial upper bounds for 
/aF(A). (f) is proved in I'PT'I for the case ~: = R; the case 0= = C is similar. For the 
proof of(g) and (h), see [HPI, [HM], [L], [QD1], [M3], and I'V]. It is also shown 
in IM3] that the infima in (g) can be taken from the subset IoJI < ~(A) + _~(A) of 
R. Since (g) gives the exact expression for #c(A) but (f) gives only a lower bound for 
#c(A), the bound in (g) is tighter than the bound in (f) for both the complex and 
real ease. This is proved in [QD1] and [BG] using another approach. It is also 
shown in [BG] that the bound in (g) is applicable to nonlinear time-varying 
perturbations if the perturbation AA is considered as a nonlinear operator on ~:" 
and its norm is defined properly. It is shown in I'PT] that the bound in (f) is 
applicable to linear time-varying perturbations but not to nonlinear perturbations. 
Therefore the bound given in (g) is in general superior to the bound given in (f). The 
only advantage of (f) over (g) is that the former is easier to compute than the latter. 
The existing techniques to compute info,, a g ( j o a l -  A) involve some numerical 
difficulties ['B3]. We also note that some lower bounds for/~(A) which are only 
applicable for special classes of stable matrices are obtained in [PT'i, [L], and [Y] 
by using the diagonal form, polar decomposition, and symmetric part of A, respec- 
tively. An interesting fact is that in the case when A is normal all of these lower 
bounds coincide with the exact value of/~(A) given in (h). 

The exact expression for # a(A) for general real matrices has not yet been obtained. 
The lower bounds given in Theorem 2.1(f) and (g) share a disadvantage in that they 
cannot distinguish between real and complex perturbations; this is because the 
methods used to derive them are not able to make the distinction. In order to reduce 
this conservatism, a new method which can make the distinction has to be devel- 
oped. In this paper such a method is established using the properties of the Kronecker 
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sum and other matr ix  compositions. Lower bounds of p~(A) are found. The new 
bounds are applicable only to the real matrix space and linear time-invariant 
perturbations; hence it is expected that they would be less conservative to apply 
than the ones in Theorem 2.1(f) and (g). Examples show that the new bounds 
obtained for #R(A) can have an arbitrary degree of improvement over the ones given 
by Theorem 2.1 (f) and (g). 

3. Preliminaries 

Let A = [au] ~ II~ TM, B = [bii ] ~ R TM. Then the Kronecker product of A and B, 
denoted by A @ B, is defined as follows: 

a l l B  ... a l . B  

A | B = i ~ ff:.,p x .q. 

La,.1B "" a., B 

(3.1) 

Ifm = n and p = q, the Kronecker sum of A and B, denoted by A �9 B, is defined by 

A ~ B = A @ Ip + I,, @ B 6 ~z,,p ~ ,,p (3.2) 

The following proposition gives a list of properties of the Kronecker product and 
sum, which is used in the development. 

Proposition 3.1 [G].  

(a) I f  ~, fl ~ U z, then 

A | (~B +/~C) = ~(A | B) + ~(A | C), 

(~A + ,BB) | C = ~(A | C) +/3(B | C). 

(b) (A | B)* = A* | B*. 
(c) (A | B)(D | C) = AD @ BC. 
(d) (A | B) -x = A -1 | B -1, i f  A, B are nonsingular. 
(e) I f  A ~ ~:m • m, B ~ ff:n x n, sp(A ~ B) = {).,(A) + 2/(B), i = 1, 2 . . . .  , m, j = 1, 2 . . . . .  n}. 

The following result can be easily developed from Proposition 3.1. 

Proposition 3.2. 

(a) I f  U, V ~ ~:,x, are unitary matrices, then so is U | V. 
(b) I f  A, B ~ ~:" • have singular value decompositions A = U 1 Sx VI* and B = 

U2S 2 V~', then A | B has a singular value decomposition 

A |  = (U1 | U2)($1 | S:)(V1 | I/2)*. (3.3) 

(c) IIa |  = IIAIIslIBII~. 

The norm equality in Proposition 3.2(c) is actually a special case of the general 
theory of norms of tensor products [LF].  
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4. A Robustness Bound 

In what follows, it is always assumed that A ~ I~ "• and that A is stable, i.e., 
sp(A) = C- .  Since only real matrix spaces are considered,-we write #(A) for/~n(A). 
To rule out trivial situations, it is assumed that n > 2. 

It is desired to find 

Let 

#(A) := inf{HAA[ls: AA ~ I~ "X", sp(A + AA)n 3 C -  4: ~ } .  (4.1) 

/aa(A) := inf{llSAIl,: AA ~ R "• 0 ~ sp(A + AA)}, (4.2) 

/.t~(A) := inf{ IIAAlls: aA ~ R "x", sp(A + AA)c~ (0C-  ,-~ {0}) # ~} ,  (4.3) 

where " ,~" means the difference of two sets. Then it is clear that 

/~(A) = min{/~,(A),/a2(A)}. (4.4) 

/~1 (A) can be easily obtained as 

/~, (A) = _a(A). (4.5) 

The following analysis will therefore focus on/~2(A). Two lemmas are required. 

Lemma 4.1. Given a real matrix B e •"• assume sp(B) ~ (OC- ~ {0}) 4: ~ ,  then 
rank(B ~ B) _< n 2 - 2. 

Proof. Since B is real, i f sp (B)n  (0C- ~ {0)) 4= ~ ,  this implies that B must have 
at least one pair of imaginary eigenvalues _-_+jco for some o~ ~ ~ ~ {0}. By Proposi- 
tion 3.1(e), B @ B has two eigenvalues at the origin. Let v t, v2 be eigenvectors of B 
corresponding to eigenvalues jco and -jog, respectively; then v~, v2 are linearly 
independent and it follows easily that vt | v2 and v2 | v~ are linearly independent 
eigenvectors of B ~ B corresponding to the two eigenvalues at the origin. �9 

Lemma 4.2 [HJ]. I f  B e R" x,, then, for  any nonnegative integer r <_ n, 

min{HABlls: A B e  R "• rank(B + AB) < r} = a,+l(B ). 

A lower bound on g2(A) can then be obtained. 

Theorem 4.1. Given a stable matrix A e R "• then 

(A O A). (4.6) #2(A) >_ ~a.2_ 1 

Proof. If IIAAlls < �89 ~ A), then 

[IAA ~ zXall~ = IIAA | I + I | zXZ II~ < IIAA | Ills + Ill | AAII, 

= 211AA[I~ < a,~_~(A ~ h). 

From Lemma 4.2, we know that 

rank [(A + AA) @ (A + AA)] -- rank [(A @ A) + (AA ~ AA)] > n 2 -- 2. 
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It follows from Lemma 4.1, therefore, that A + AA has no imaginary eigenvalues. 
Therefore, if sp(A + AA)n  (tgC- ,-, {0}) # ~ ,  IIAAII. is greater than or equal to 
�89 ~ A). �9 

The following theorem, an immediate consequence of (4.4)-(4.6), gives the first 
bound on the stability robustness of real matrices in this paper. 

Theorem 4.2. Given a stable matrix A E R "~", then 

It(A) > min{g(A), �89 ~ A)}. (4.7) 

The bound (4.7) takes a simple form that can be easily computed using standard 
software. Experience shows that for a matrix A of moderate size, computing (4.7) is 
in fact faster than computing the previous bounds given by Theorem 2.1(f) and (g), 
and for a large number of examples (4.7) is tighter as well. In the next section we 
show that the bound (4.7) is exact in some special cases, in particular, for the case 
when A a R 2 x 2; it is to be noted that the previous bounds given by Theorem 2.1(f) 
and (g) are in general not exact for arbitrary 2 x 2 real matrices. 

5. Discussion of  Special Cases 

A question which naturally arises is whether or not the bound given by Theorem 
4.2 is exact, i.e., whether or not the inequality in (4.7) is actually an equality. The 
answer to this question is negative for arbitrary stable matrices, and an even tighter 
lower bound is obtained in Section 8. However, the bound (4.7) is exact for some 
special classes of matrices. 

From Theorem 2.1(b) and Theorem 4.2, it is observed that/z(A) = __a(A) if tr(A) < 
�89 ~ A); in this case, p(A) is obtained exactly. The exact p~(A) can also be 
obtained in some other cases. 

Theorem 5.1. If  A E R "x" is a stable normal matrix, then 

#(A) = min{tr(A), �89 ~ A)} 

= m i n { - R e  21(A), i = 1, 2 . . . . .  n}. (5.1) 

Proof. Let U be a unitary matrix such that U*AU = diag(21, 22 . . . . .  2,), where 
;ti = 2~(A), i = 1, 2 . . . .  , n, with Re(21) > Re(A2) > ' "  > Re(2,). Since U | U is also a 
unitary matrix, A @ A has the same singular values as (U | U) -1 (A ~ A)(U | U) = 
diag(2t, 22 . . . .  ,2n) ~ diag(2,, 2 2 . . . . .  ~,n). Thus the singular values of A ~ A are 
{ [2~ + 2jI, i, j = 1, 2 . . . . .  n}. If 2 t is real, then a(A) = [2 t I and �89 tr,2_ x (A ~) A) > 12 ~ I. 
If 21 is not real, then _~(A) >_ -Re(21)  and �89 a,~-t (A @ A) = -Re(21).  In both cases, 
min {_a(A), �89 a,2-t (A @ A)} = - Re(21). By applying Theorem 2.1(a) and Theorem 
4.2, we obtain 

/~(A) < m i n { - R e  2t(A ), i --- 1, 2 . . . . .  n} --- - R e ( 2 t )  

= min{__a(A), �89 ~ A)} < p(A). 

This ends the proof. �9 
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Although the exact value of/~(A) for a normal matrix A has been previously 
obtained as stated in Theorem 2.1(h), this theorem shows that the new bound (4.7) 
also is exact if A is normal. 

Theorem 5.2. I f  A is a 2 x 2 real stable matrix, then 

and 

a3(A ~ A) -- - t r (A)  

p(A) = min{g(A), -�89 

(5.2) 

(5.3) 

Proof. The proof of(5.2) involves an elementary but tedious calculation. It is given 
in [QD2] and is omitted here. If (5.2)is true, then/~(A) > min{g(A), -�89 On 
the other hand, if AA = -�89 then A + AA is unstable and [IAA II = -�89 
This together with Theorem 2.1 (b) implies #(A) < rain {__a(A), -- �89 tr(A)}. This proves 
(5.3). �9 

The 2 x 2 case has also been studied in [HM] where it has been shown that 
/~(A) = min{g(A), -�89 but no previous general bounds, when applied to the 
2 x 2 case, give the exact answer. 

6. Some Properties of Matrices A | A and A ~ A 

The bound developed in Section 4 requires the singular values of the matrix A q) A 
to be determined. Such a calculation may be difficult to carry out if the size of A is 
large. Two possible directions can be pursued to reduce the computational com- 
plexity. One method is to find other operations on matrices which can be used to 
analyze #(A) and which have smaller dimension than A ~ A. The other method is 
to compute the singular values ofA ~ A without actually constructing A ~ A. This 
is the theme of the coming sections. This section gives some background knowledge. 

Let A ~ IF" ~". Consider A | A and A ~ A as linear operators on the Hilbert space 
F "2, mapping x e IFn2 to (A | A)x and (A ~ A)x ~ IF,,2, respectively. The inner pro- 
duct on IFn~ is defined in the usual way, i.e., (x, y)  = x'y,  for all x, y e IFn2. The norm 
induced by this inner product is the 2-norm I1" IIz. 

The n x n matrix space IF, x, is also an n2-dimensional vector space over IF. It 
becomes a Hilbert space, if we define an inner product on it by (X, Y) = tr(X* Y), 
for all X, Y e IF,• The norm in IFnx, induced by this inner product is the Frobenius 
norm I1" IIF. Now define a linear operator Vec: ~ x "  --* IF ~ by 

F X 1 1 X 1 2  ' ' '  X l n l  

Vec/X~1 x.22 "'" x 2 ~ / = [ x , l  ... x,1 x12 ... x,2 ... x~+]' .  (6.1) 

/ ! 
L xn 1 Xn2 "'" Xnn _] 

We need two properties of Vec to proceed. 
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Lemma 6.1 [G]. Let X ,  Y, Z e F "X", then 

(a) tr(X* Y) = [Vec(X)]* Vec(Y), 
(b) V e c ( X Y Z )  = (Z' | X)  Vec(Y). 

Lemma 6.1(a) implies Vec is an isometric isomorphism from the Hilbert space 
0:" x, onto the Hilbert space D :"~. Under this isomorphism the operator A | A on 0 :"~ 
becomes the operator K mapping X E IF "X" to K ( X ) =  AXA' .  Similarly, under 
isomorphism Vec, the operator A ~ A on 0 :"2 becomes the operator L mapping 
X ~ ~:"x" to L(X)  = A X  + XA' .  The operator L is usually called the Lyapunov 
transformation. 

Let $1 c ~r,• be the subspace of all symmetric matrices, and let $2 ~ 0 T M  be 
the subspace of all skew-symmetric matrices; S: = {X e 0:"x": X = X} and S2 = 
{X ~ IF'x~: X' = - X } .  The following two easily proved propositions are required 
in the later development. 

Proposition 6.1. 
Sz-l-S2 and S 1-i-S 2=0:" • 

Proposition 6.1 states that S1 and S 2 are orthogonal complements to each other. 

Proposition 6.2. 
K(S1) c S1, 

K(S2) ~ S 2, 

L(S1) c $1, 

L(S2) c S 2. 

Proposition 6.2 states that S1 and $2 are reducing subspaces of 0 T M  for the 
operators K and L. 

Since the operator Vec is an isomorphism from 0 T M  to ~:"2, and since A | A and 
A ~ A are the induced operators of K and L under Vec, respectively, the following 
two corollaries can be easily obtained. 

Corollary 6.1. 

Vec(S1) _1_ Vec(S2) and Vec(S1) -i- Vec(S2) = IF "2. 

Corollary 6.2. 
(A | A) Vec(S1) c Vec(S1), 

(A | A) Vec(S2) c Vec(S2), 

(A @ A) Vec(S1) c Vec(S1), 

(A ~) A) Vec(S2) c Vec(S2). 
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7. Two Other Composite Matrices 

The Kronecker product can be considered as a composition of two matrices. Two 
other compositions of matrices are now introduced. These compositions have 
similar properties as the Kronecker product, but have smaller dimension, and 
stability robustness bounds can be obtained in terms of these compositions. 

Let A = [a0] ~ 0 :"• B = [b0] E 0 TM, n _> 2. Let (i~, i2) be the ith pair ofintegers 
in the sequence 

(1, 1), (1, 2) . . . . .  (1, n), (2, 2) . . . . .  (2, n), (3, 3) . . . . .  (n - 1, n), (n, n). (7.1) 

Definition 7.1. 

where 

I altjt bqj~ 
J �89 + a u ~ b ~ s  , + a~2s, b~,~ ~ + a~j~bi , s , )  r 
I 

Let (r~, r2) be the rth pair of integers in the sequence 

(1, 2), (l, 3) . . . . .  (1, n), (2, 3) . . . . .  (2, n), (3, 4) . . . . .  (n - 1, n). 

A ~) B := [cls] ~ [F(m)"<"+l)"~m)"("+l), 

if i 1 = i  2 and J l = J z ,  

if i I : ~ i  2 and Jl ~J2 ,  

otherwise. 

(7.2) 

(7.3) 

Definition 7.2. 
A ~  B := [drs] ~ ~(l/21.(.-1)x(x/2).t.-1), 

where 
drs:= �89 . . . .  b,.2s 2 - a . . . .  b,2s, - a . . . .  b,. ~ + a,.2~ b,. ~,). (7.4) 

The operations Q and @ are studied in two categories of literature. One category 
involves multilinear algebra [M2] in which A ~ B and A ~ B are considered as 
operators on the symmetric and skew-symmetric tensor product spaces, respec- 
tively. This point of view is theoretically elegant and provides a clear and complete 
picture on the relationship among the Kronecker product and operations ~ and 
~ ,  but it needs mathematical tools which are not commonly used in control 
iterature. The other category [B1], [F], [J2], [M1], [$2] studies these operations 
from a pure matrix point of view which is easier to follow but is tedious and 
incomplete. In the following the properties of ~ and Q are studied using an 
alternative method which we believe to be a tradeoff between the methods used in 
the two categories of literature. 

The corresponding sum operations of @ and @ can be defined as follows: 

Definition 7.3. 

A ~ B := A ~) I. + I, ~) B ~ D :(1/2}'*~215176 

A ~ B := A @ I. + I, ~ B ~ IF (m)"~"-l)x~m)'~"-l). 

(7.5) 

(7.6) 
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Unlike the Kronecker product and sum, operations @, {~, ~ ,  and {~ are defined 
only for square matrices with the same size. From Definitions 7.1-7.3, it is easy to 
see that | @, ~ ,  and {~ are commutative, So A ~ B can also be written as 
(,4__+ B ) ~  I or I {~ (A + B) and A ~} B can also be written as (A + B ) ~  I or 
I |  + B). 

The operations r and ~ are closely related to the Kronecker product operation. 
Recall from the last section that the space 0 ="~ with inner product <x, y)  = x ' y ,  and 
the space 0=" x, with inner product <X, Y) = tr(X* Y), are isomorphic to each other 
with the isomorphism Vec: 0 ="x"--, 0 ="~ defined as in (6.1). Subspaces St and $2 are 
defined as S, = {X ~ 0="x": X' = X}, $2 = {X E IF"x": X' = - X } .  

Define Eo ~ 0 T M  to be a matrix with 1 in the (i, j) th entry and 0 elsewhere. 
Let (it, i2) be the ith pair of integers in the sequence (7.1) and let 

f Eqq if& = i2, 

U~= x/~ (7.7) 

L T(E~, ,~  + E,~q) otherwise. 

Then { U~, U2 . . . . .  U,/2),~,+t}} is an orthonormal basis of St. 
Let (ra, r2) be the rth pair of integers in the sequence (7.3) and let 

x/~ E E,: ,) .  v,=T( ' , '2- -  
(7.8) 

Then { Va, V2 . . . . .  V.a).{._l) } is an orthonormal basis of S2. 
Let ut = Vet(U3, i = 1, 2 . . . . .  �89 + 1), and vl = Vet(V3, i = 1, 2 . . . .  ,�89 - 1). 

Then {ul,u2 . . . .  ,u./2).{.+t)} is an orthonormal basis of Vet(S1), and 
{vl, v2 . . . . .  v(m).{._t} } is an orthonormal basis of Vet(S2). 

Define 
Ta := jut u2 "'" u{v2).(.+t) ] ~ F "2xct/2)"("+x), (7.9) 

T 2 : =  I v  I V 2 " "  t)tl/2)ntn_i)'] E ~ n2x(l/2)n(n-1) (7.10) 

It can be verified that [Tt T2] is a real orthogonal matrix. 

Proposition 7.1. Let A, B e ~:,x,. Then 

A ~ B ffi T[(A | B)Tt, (7.11) 

A ~ B = T~(A | B)T2. (7.12) 

Proof. See Appendix 1. �9 

From Corollaries 6.1 and 6.2, the following proposition easily follows: 

Proposition 7.2. Let A ~ ~.x. .  T~en 

T;(A @ A)T, = O, 

T~(A | A)T, -- 0, 

T;(A ~ A)T~ = 0, 

T~(A �9 A)T, = o .  
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Let T = [Ta 

and 

T2]. Propositions 7.1 and 7.2 imply that 

T' (A|  A~AO ] (7.13) 

T ' ( A ~ A ) T = I A ~ o A  A~AO j .  (7.14) 

Various properties of the | ~-product  and ~ ,  ~ - sum can now be obtained. 
The properties which are used in our development are listed in Proposition 7.3. 
Although they can be proved directly from Definitions 7.1 and 7.2, the proof is easier 
to obtain by using Propositions 7.1 and 7.2. 

Proposition 7.3. Let A, B, C, D �9 ~=.x,; a, fl �9 F. Then 

(a) A ~ (aft + tiC) = a(A ~ B) + fl(A ~ C), 
(aA + #B) ~ C = a(A ~ C) + ~(B ~ C), 
A ~ (aB + tiC) = a(A ~ B) + fl(A ~ C), 
(aA + 13B) ~ C = a(A ~ C) + [~(B ~ C), 

(b) IIA ~ BIt, < IIAII,IIBtI,, IIA ~ BII, < [IAII,IIBIIs, 
(c) sp(A ~ A) = {2t(A ) + 2j(A), i = 1, 2 . . . . .  n, j > i}, 

sp(A ~ A) = {A,(A) + A~(A), i = 1, 2 . . . . .  n - 1, j > i}. 

Proof. See Appendix 2. �9 

8. Additional Robustness Bounds 

In this section the composite matrices introduced in the last section are used to 
obtain robustness bounds for stable matrices. We again assume throughout the 
section that A �9 R -x', n > 2, and A is stable. Let #(A),/zl(A ), and/~2(A) be defined 
as in (4.1)-(4.3). 

If sp(A + AA) n 0C-  -r ~ ,  (A + AA) ~ (A + AA) is singular by Proposition 
7.3(c); this leads to the second lower bound on #(A) in this paper. 

Theorem 8.1. Given a stable matrix A �9 R "x", then 

#(A) > �89 ~ A). (8.1) 

Proof. If [IAAI[, < �89 ~ A), 

I[AA ~ AAH, = IIAA ~ I + I ~ AA[[, < IIAA @ Ill, + ill ~ AAII, _ 211AAI[, 

< o'(A ~ A). 

Thus A (~ A + AA ~ AA -- (A + AA) ~ (A + AA) is nonsingular, which implies 
that 

sp(A + AA)c~ 0C-  = ~ .  �9 
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By Proposition 7.3(c), (A + AA)~)(A + AA) is singular if sp(A + AA)c~ 
(OC- ~ {0}) :~ ~ .  This leads to a lower bound on p2(A). 

Theorem 8.2. Given a stable matrix  A ~ ff~• ~, then 

/~2(A) _> �89 ~) A). (8.2) 

The proof of Theorem 8.2 is similar to the proof of Theorem 8.1, so it is omitted. 
The following main result on the stability robustness of real matrices is then 
obtained as an immediate consequence of Theorem 8.2 and (4.4)-(4.5). 

Theorem 8.3. Given a stable matrix  A e R ~• then 

/~(A) >_ min{a(A), �89 ~) A)}. (8.3) 

It can be shown by using the same technique as the proof of Theorem 5.1 that if 
A is normal, then 

�89 ~) A) = min{a(A), �89 ~) A)} = m i n { - R e  2,(A), i = 1, 2 . . . . .  n}, (8.4) 

so the bounds (8.1) and (8.3) result in the exact value of/t(A) irA is a normal matrix. 
IrA ~ 1~2 x 2, the definition ofA ~) A gives that A ~ A = tr(A); thus bound (8.3) also 
gives the exact value of/~(A) in the 2 x 2 case. However, bound (8.1) does not give 
the exact value of #(A) for general 2 x 2 matrices. 

It is of interest to compare the three lower bounds (4.7), (8.1), and (8.3) obtained 
in this paper. Since A ~) A and A ~) A have smaller dimensions than A ~) A, bounds 
(8.1) and (8.3) are easier to compute_Equation (7.14) shows that the singular values 
of A ~ A together with those of A ~)A are just the singular values of A ~)A; thus 
either g(A ~ A) or _tr(A ~) A) must be equal to g(A ~ A). A conjecture, drawn from 
a large number ofexamples, is that__a(A ~9 A) = __a(A @ A) for any matrix A. Theorem 
5.2 shows that this conjecture is true if A is a 2 x 2 matrix. Equation (8.4) implies 
that it is also true if A is normal. However, a proof of this conjecture for general 
matrices is not available yet. The following proposition provides some information 
on the relationship between bounds (4.7), (8.1), and (8.3). 

Proposition 8.1. For any A ~ R ~• 

�89 ~ A) _ _~(A). (8.5) 

Proof. Choose AA ~ R "• such that [IAAI[s = a_(A) and A + AA is singular. Then 
(A + AA) @ (A + AA) = A ~9 A + AA @ AA is singular by Proposition 7.3(c). This 
can happen only if Ilna ~ Aalls >_ ,r(a ~ h). So _~(Z ~ A) ___ IIAA ~ AAII~ _< 
211AA IIs = 2__a(A). �9 

Proposition 8.1 implies that if the conjecture __a(A ~ A) = tr(A ~) A) is true, then 

�89 ~) A) < min{__a(A), �89 ~) A)} < min {__a(A), �89 ~ A)}, (8.6) 

so that of the three bounds (4.7), (8.1), and (8.3) obtained in this paper, bound (8.3) 
produces the best result and bound (8.1) the worst. 
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9. Computational Aspects for Large Matrices 

If matrix A is modest in size, the computation required to obtain lower bounds (4.7), 
(8.1), and (8.3) is simple and numerically well defined. However, computational 
difficulties will arise if the n x n matrix A has a large size, because the composite 
matrices A ~ A, A ~) A, and A ~) A have dimensions n 2, �89 + i), and �89 - 1), 
respectively. Therefore it is desired to have an alternative way to determine the 
required singular values without constructing the composite matrices explicitly. In 
this section we show this is possible to do. Before presenting the algorithm, some 
preliminary results must be established. 

In Section 6 we have seen that the Hilbert space 0 :"2 with inner product (x, y )  = 
x ' y ,  for all x, y ~ ~:"2, and the Hilbert space ~:"• with inner product (X, Y) = 
tr(X*Y), for all X, Y e 0 TM, are isomorphic with isomorphism Vec: 0:"~" ~ F "~ 
defined in (6.1). If L is the Lyapunov transformation L ( X )  = A X  + XA ' ,  for all 
X e ~:"• Lemma 6.1 (b) implies that the following diagram commutes: 

L 
0: .x .  , Uz .•  

0:"2 a~a~ [Fn2 

Let S~ c 0 :"X" be the subspace of all symmetric matrices, and let $2 c IF "• be the 
subspace of all skew-symmetric matrices. It is shown in Section 6 that Sx and $2 are 
orthogonal complements to each other, and S~ and $2 are reducing subspaces of 
~:, x, for operator L. Denote the restrictions of L to Sx, $2 by L IS~, L IS2, respectively�9 
Equation (7�9 implies that A ~) A is a matrix representation of LIS~ under an 
orthonormal basis of S~ and A ~ A is a matrix presentation of LIS2 under an 
orthonormal basis of $2. This fact is made more explicit in the following: 

Define two linear operators O: S~ --, D :t~/2)"~"+~) and ~ :  $2 -* I1 :~z/2)"~"-~ by 

I 
XI1 X12 "�9 . X ln  q 

L X l n  X2n """ X n 

. . .  . . .  (9.1) 

and 

l o ... 1 - x 1 2  0 "'" . 

- - X l n  - - X 2 n  � 9  

(9.2) 

Two lemmas can now be obtained. 
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Lemma 9.1. Let X,  Y ~ S 1 and A e F" x,, then 

(a) tr(X'Y)= [O(X)]'~(Y), 
(b) @(AX + XA') = (A ~ A)@(X). 

Proof. Let T a be defined as in (7.9). It is easy to check that Vec(X) = T, ~(X), for 
all X ~ S,. Then 

(a) tr(X' Y) = [Vec(X)]' Vet(Y) (by Lemma 6.1 (a)) 

= [ @ ( X ) ] ' T / T  10(Y) 

= [ep(X)]'@(Y) (since TI has orthonormal columns). 

(b) e~(AX + XA ' )  = T~ Vec(AX + X A ' )  

= T~(A | I + I | A) Vet(X) (by Lemma 6.1(b)) 

= T;(A | I + I | A) TI ~(X) 

= (A ~ I + I ~ A)~(X)  (by Proposition 7.1) 

= (A ~ A)e~(X). �9 

Lemma 9.2. Let X,  Y ~ $2 and A ~ F" ~", then 

(a) t r (X 'g )=  [~F(X)]'~F(Y), 
(b) V(AX + XA') = (A ~ A)V(X). 

Proof. Let T2 be defined as in (7.10). It is easy to check that Vec(X) = T2~F(X), for 
all e $2. The rest of the proof is similar to the proof of Lemma 9.1. �9 

Lemma 9.1 
commutes: 

Lemma 
commutes: 

implies that �9 

$1 

"1 
~(1/2)n(n+l) 

9.2 implies that ~F is 

is an isomorphism and the following diagram 

LISt 
' 81 

1" 
~(1/2)nln+ l ) 

A ~ A  

an isomorphism and the following diagram 

S2 LIS2 ~ S2 

~(1/21nln-11 ~ ~(I/2)nln-l) 
A~A 

From the commutative diagrams it is noted that although A ~ A, A @ A, and 
A ~ A have large dimensions, it is relatively simple to compute the multiplications 
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of these matrices with column vectors or the multiplications of their inverses (if they 
exist) with column vectors since 

(A (B A)x = Vec' L" Vec-l(x), 

(,4 A)y = L. 

(A A)z = L. + -1  (z), 

(A ~ A)-lx = Vec.L - l ' V e c  -l(x), (9.3) 

(A ~ A)-~y = @" L -~ "@-l(y), (9.4) 

(A ~ A)-lz = W" L -1" ~-1 (z), (9.5) 

for x ~ 0 TM, y e ~:r and z ~ 0 aI/2~"~"-I), where L -I is the inverse Lyapunov 
map which can be computed by solving a Lyapunov equation. Equation (9.3)-(9.5) 
make the iterative methods to compute the singular values of A ~ A, A ~ A, or 
A ~ A more favorable, especially when only a few extreme singular values are 
required. For available iterative methods to compute the singular values of matrices, 
see ]'PI], [GLO],  and [CW1. The power method and the block power method for 
the eigenvalue problem of matrices ['Jl], [P2] can also be adapted to compute the 
singular values of matrices. All of these methods, accompanied by (9.3)-(9.5), can 
be used to find the required singular values ofA @ A, A ~ A, and A ~ A. However, 
in our case, it is unnecessary to transform a vector from column vector form to 
matrix form using Vec,@, or �9 back and forth in every iteration. It is recognized 
from the commutative diagrams that the singular values of matrices A ~ A, A ~ A, 
and A ~ A are the same as the singular values of operators 1 L, L[S1, and LISt, 
respectively, and so an iterative procedure can be built to find the singular values 
of these operators directly. Such an algorithm is given in the following. 

Let M be a linear operator on an/-dimensional Hilbert space S. Let M* be the 
conjugate of M. Let the inner product in S be <., �9 > and the induced norm be I1" I1. 
Denote by {al}, {us}, {vi} the singular values and corresponding right and left 
singular vectors of M with r > a2 > "'" > cry. An iterative algorithm for calculating 
the m (m << l) dominant singular values of operator M is given as follows. 

Algorithm. 

Step 1. Randomly choose m initial orthonormal vectors pl ~ e S, i = 1, 2 . . . . .  m. 
Step 2. (i) Let 

~k~ = M[plk~] for i = 1, 2 . . . . .  m, 

orthonormalize {~-~k~} and let the result be {ql~}. 
(ii) Let 

ff~k+l) - ~ .  M,[qlk)] for i = 1, 2 . . . . .  m, 

orthonormalize {p-[h+l~} and let the result be {plk+l~}. 
Continue doing (i) and (ii) for k = 0, 1, 2, . . . ,  until 

is smaller than the error tolerance. 

For the definition and the properties of the singular values and singular vectors of a compact operator 
on a Hilbert space, see ['GK1. 
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Step 3. Let qi = MPl k+l), for i = 1, 2 . . . . .  m, and do the following. 
(i) For  i = 1, 2 . . . . .  m, let 

#<q',, qi>, 
%~ = ~ 0 ,  

0 < j < i  i - I  
q~ = ~ -  ~ % q .  

i < j < m ,  i = l  

qi 
c o .  = Ilqill, qi = - - "  

0)i/ 

(ii) Let f l  = [o9o] ~ R n• and let the singular value decomposition of f~ 
be ~Eq  J', where �9 = [~P0], y~ = [a~j], and �9 = [~bo]. 

Then, for i=  1, 2 . . . . .  m, as ~ a . ,  u~ ... ~j%1 ' tk+l~ ~iiPj , and vi ~. ~,4~1 tPjiqj. 

The detailed derivation of this algorithm is given in [QD3].  The sketch of the 
idea is as follows. An initial m-dimensional trial space is chosen in Step 1. Step 2 
iterates on trial spaces to obtain an approximation of the subspace spanned by the 
m right singular vectors corresponding to the m dominant singular values. Step 3 
calculates the m dominant singular values and corresponding singular vectors from 
the approximate singular space obtained in Step 2. 

To compute the robustness bounds (4.7), (8.1), and (8.3), we need the bottom 
singular values of L, LIS1, and LIS2. They can be obtained as the inverses of the 
dominant singular values of L -1, L-t1S1, and L-11S2 . For  a given Q ~ ~=,x,, p = 
L -~ (Q) can be obtained by solving the Lyapunov equation 

A P  + PA '  = Q 

and P = (L -I)*(Q) can be obtained by solving the Lyapunov equation 

A'P  + P A  = Q. 

Since the Lyapunov equations can be solved more easily if A is a triangular matrix 
and since unitary similarity transformations of A do not affect the robustness bound, 
the Schur form of A instead of A itself can be used in the computation. 

By using the algorithm given in this section, we can compute the robustness 
bounds for large matrices which may not be feasible to do using standard QR 
methods because of the dimensionality problem. 

10. Numerical Examples 

Several examples are presented to demonstrate the new bounds obtained, and to 
compare them with previous bounds. 

Example 1. The matrix considered is as follows: 

I 0 1 A = - 1 0  --1 

- 1  1 - l l O J  



Stability Robustness Determination of State Space Models 263 

Previous bounds (Theorem 2.1(f) and (g)) give/~ R(A) > 0.1626 and la~(A) >/~c(A) = 
0.5093, respectively. The new robustness bounds are as follows: 

bound (4.7): #R(A) > min{__a(A), �89 ~ A)} 

= rain{1.4704, �89 x 1.3342} = 0.6671, 

bound (8.3): p,(A)  > min{__a(A), �89 ~ A)} 

= {1.4704, �89 x 1.3342} = 0.6671. 

The new bounds (4.7) and (8.3) are tighter than the bounds given by Theorem 
2.1(f) and (g). Bound (8.1) gives/~n(A) >_ �89 ~ A) = 0.1894 and the conjecture 
(8.6) is true in this case. 

Example 2. In this example we examine how conservative the value/zc(A) can be 
when used as a lower bound for/~a(A) and how much improvement the new bounds 
possibly have over the previous bounds. The matrix to be considered is 

I A =  1 - 1  ' 

The eigenvalues of A are -- 1 __ jv/rk and 

a3(A @ A) = __a(A ~9 A) = �89 = 1, 

a_(A) [3 + k2 - x/(k2 + l)2 - 8k + 4 1 m  
= > l ,  

2 

and so from Theorem 5.2 or Theorem 8.3, we obtain/~R(A) = 1. However, Theorem 
2.1 (g) gives 

pc(A) = inf a__(jogl - A) < a__(jogl - A)[,o= 
t o ~ R  

2 ' 

which goes to zero as k goes to infinity. This implies that the conservatism of~c(A) 
as a bound of #R(A) can become arbitrarily large. Since bounds (4.7) and (8.3) give 
the exact value of FR(A) when A is 2 x 2, there can be an arbitrary degree of 
improvement over the previous bounds (Theorem 2.1(f) and (g)) when they are 
applied to matrices with any size. 

Example 3. This example considers a 46th-order state space model obtained from 
the design of a third-generation spacecraft which has three rigid body modes and 
twenty elastic body modes [S1]. The system has five inputs and five outputs. It is 
stabilized by a static output feedback controller so that the closed-loop poles closest 
to the imaginary axis are given by - 1.0026 x 10 -3 ___ j5.3242 x 10 -I. Denote the 
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closed-loop state matrix by A,. It is desired to obtain an estimate of/~a(A,), the 
distance of Ac to the set of unstable 46 x 46 real matrices. It is clear that/~a(A,) 
1.0026 x 10 -3. On using the algorithm of Section 9, it is determined after seven 
iterations that _~(A, ~ Ao) = 1.9903 x 10 -3. By using the usual QR method, it is 
determined that _~(A,) = 2.0252 x 10 -x. Hence, on using bound (8.3), an estimate 
of/~a(A,) is given by 

0.9952 x 10 -3 <~ ~R(Ac) ~ 1.0026 X 10 -3. 

This estimate is very tight. 
Note that the dimensions ofA ~D A, ,4 ~ A, and A ~ A are 2116 x 2116, 1081 x 

1081, and 1035 x 1035, respectively. 

11. Conclusions 

A new method for the robust stability problem of linear time-invariant state space 
models with real perturbations is considered in this paper. The method is based on 
the properties of the Kronecker sum and two other composite matrices. Explicit 
bounds on the magnitude of unstructured real perturbations which do not de- 
stabilize a linear time-invadant stable system are obtained. These bounds are easy 
to compute, and although the dimensions of the composite matrices required are 
of the order n 2, it is shown that it is possible to compute the required singular values 
of the composite matrices in an efficient way without actually constructing them. 
The new method can also be adopted to analyze the stability robustness of (i) 
systems with structured perturbations [STA], (ii) generalized eigenvalue problems 
[QD4], and (iii) discrete-time systems [QD2]. 

Appendix 1 

Proof of Proposition 7.1. In order to simplify the proof, we derive an equality first. 
Let A, B ~ F" x ~ and E u be defined as in Section 7. Then 

EVec(E(j)T(A | B) Vec(Ekz) = E(A' |  Vec(Ev)]' E(/| B) Vec(E~)] 

= EVec(EuA)]'EVec(BE~,)~ ] = trC(EuA)'BE~,'I 

= tr(A'E~lBEk~) = tr(A'blkEj,) = b,k tr(EuA) = aj, blk. 

Thus r_Vec(Eu)]'(A | B) Vec(Ekl) = ajzbik. 
Let the ith and jth pairs in the sequence (7.1) be (il, iz) and (Jl, Jz). If ix -- i2 and 

Jx -- J2, 

[TI(A | B)T~] U = u;(A | B)uj 

= [Vec(E~,,,)']'(A | B) Vec(E#,#,) 

= a l l j lb l t j t .  
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If i 1 # i 2 and Jl :# J2, 

[T;(A | B) 7"1 ]o = u~(A | B)u~ 

\ z z / A  

= �89 (a~,j, b ~  + a~,j~ bhj , + a~=j, b~,~ + %j~ b~,~,). 

If i 1 = i= and j l  -~ J2, 

[T;(A | B)T~] o = u~(A | B)uj 

= [Vec(e,,,,)]'(A | B)[Vec ( ~  Ej,~2 + ~ Em,)] 

= ff-~(ai,i2bi,j, + ai,i, bi,j 2) 

= .~2 + ai~jbi,j,). (ailjl 

Ifi l  # i2 and J1 = J2, 

[T;(A | B)T1] 0 = u;(A | B)uj 
2 " 

= [Vec(--2--E,,,~ +-~-E,~,t) ] (A | B)[Vec(Ei,i,)] 

_ ~f2 (ai~j, bi,j, + ai,i, bi~j,) 

= --~-(ai~i, bi~h + aid~bu,). 

This proves (7.11). 
Let the rth and sth pairs in the sequence (7.3) be (rl, r2) and (sl, s2). Then 

[T~(A | B) T2],, = v;(A | B)v s 

---- e c  f-~-2E -f-~2E ' |  Iv (=  .,.. = 
--~(a,,,, ,~,~ -- a,,,~b,~,, - a,2,,b,,,, + a , : , ~ b , , , , ) .  

This proves equality (7.12). �9 

Appendix 2 

Proof of Proposition 7.3. (a) This property directly follows Proposition 3.1 (a) and 
Proposition 7.1. 

(b) Since I1%11, = 1 and IIA | BII~ = Ilhll,llnll,, 
II a ~ n II, = II T; (A | B) T~ II, -< II T~' II,II A | nll,II Tt 11, = II h I1,11BII,. 

Similarly, IIa ~ BII, < IIAII,IIBII, due to IIT2II, --- 1. 
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(c) Let P ~ C "x" be a nonsingular matrix such that B := p- lAp is an upper 
triangular matrix. Then 2i(A) = bu. By (7.13) and (7.14), we obtain 

and 

Then 

Therefore, 

and 

[ A@A . 0 ] 
0 A ~ A  =T ' (A~A)T ,  

[ P ~ P  0 ] = P~)P 

(p (~op) - I 0 0 ] ,  
(p e)-i = o 

= [T'(P | P)T]  -~ 

= T'(P | p)-i T (since T is real orthogonal) 

= T'(P -1 | P - 1 ) T  (by Proposition 3.1(d)). 

(P ~ P)-X(A ~ A)(P ~ P) 0 ] 

0 (P ~ P)-t(A ~ A)(P ~ P) ] 
= T'(P -1 | P-1)(A �9 A)(P | P)T 

= T'(P-1Ap ~ P-tAP)T 

0 = IP-IAP ~o P-lAP ~ p - t A p ]  
p - lAp  

B (~ B = P - t A P  ~ P-~AP = (P ~ P)-I(A ~ A)(P ~ P), 

B ~ B = P-'AP ~ P-tAP = (P ~ P)-'(A ~ A)(P @ P). 

This implies that the spectrum of A ~ A is the same as that of B ~ B. From 
Definition 7.1, we can see that B@ B is also an upper triangular matrix and 
the (i, i)th element of B @ B is just bqi ' + bi2i2 = 21,(A) +_2i2(A), where (it, i2) 
is the ith pair in the sequence (7.1). This proves sp(A ~ A ) =  {2i(A)+ 2i(A), 
i = 1, 2 . . . . .  n, j > i}. The proof for sp(A ~ .4) = {2~(A) + 2j(A), i = 1, 2 , . . . , n  -- 1, 
j > i} is similar to the above by__using the fact that the spectrum of A ~ A is 
the same as that of B ~ B, and B ~ B is upper triangular. �9 
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