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Abstract 
This paper considers the stability robustness of the gener- 

alized eigenvalues of matrix pairs with real perturbations. The 
problem is to estimate the norm of the smallest destabilizing 
perturbation on a stable matrix pair. The method used is an ex- 
tension of the one used in [12], which is based on the properties 
of eome composite matrices. Sufficient conditions on the norm of 
the perturbations are given which guarantee the stability of the 
perturbed matrix pair. The results obtained can be applied to 
the stability robustness analysis of singularly perturbed system 
and descriptor systems, and to a new kind of problem called the 
"the minimum phase robustness problem". 

1 Introduction 

In the stability robustness analysis of state space models, one of the 
important problems studied is to  estimate the distance of a stable 
matrix to  the set of all unstable matrices. Here a matrix is said t o  be 
stable if all its eigenvalues are contained in the open left half of the 
complex plane. Since this problem was first considered in [ll] , it has 
been intensively studied (see [12] and the references therein). Different 
methods have been used and various results have been obtained. It 
appears, however, that no effort has been made to  extend the available 
results to  the generalized eigenvalue problem. For a pair of matrices 
(A,B), where A, E are square and have the same size, the generalized 
eigenvalues of (A, E )  are the roots of the following polynomial in A: 

det(A - AB). (1) 

The matrix pair (A,B) is said to be stable if all its generalized 
eigenvalues are located in the open left half of the complex plane. A 
pathological case occurs when det(A - AB) vanishes identically. If 
this is the case, (A, B) is said to  be degenerate and every point in the 
complex plane is a generalized eigenvalue of (A, B). This case will not 
be excluded from our discussion. Instead, it is treated as a special 
case of unstable matrix pairs. In this paper, we will consider how far a 
stable pair (A,B) is from unstable pairs. We will emphasize the case 
when B is singular. In this case, when B is singular, it is possible to  
find an arbitrarily small perturbation A B  on B such that B + A B  is 
nonsingular, and this implies that (A, B + AB) has more generalized 
eigenvalues than ( A , B ) ;  furthermore, A B  can be chosen in such a 
way that some of the extra generalized eigenvalues of (A, B + AB) are 
located in the closed right half of the complex plane. This means that 
the stability of (A, B) has zero tolerance to  the perturbation of matrix 
E. Hence we assume in this paper that B is always fixed and is not 
subject to  perturbation. 

The problem considered in this paper is to  estimate the small- 
est possible spectral norm of AA such that (A + AA, B) is unstable 
for a given stable matrix pair (A, B). This paper considers only real 
matrices. The method used is a generalization of the one given in 
[12], which is based on the properties of some composite matrices. 
Although the exact value of the norm of such AA is not in general 
obtained, the bounds obtained are tight. Some possible applications 
of the results obtained are in the stability robustness analysis of sin- 
gularly perturbed systems [lo] and descriptor systems [l] [2], and in a 
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new kind of problem called the "minimum phase robustness problem", 
which deals with the robustness of the minimum phase property of 
systems [4]. Note that for the generalized eigenvalue problems involved 
in singularly perturbed systems and in the minimum phase robustness 
problem, the matrix B is always fixed. Due to the space limit, not all 
of the results are proved in this paper. Readers are referred t o  [13] for 
the missing proofs. 

The following notation will be used throughout this paper. Let R 
and C be the fields of real numbers and complex numbers respectively. 
The real part of A E C is written as R(A) and the imaginary part 
S(A). Denote the sets {A E C : %(A) < 0) and {A E C : %(A) 2 
0) by C- and C+ respectively. Let F be either R or C. For A E 

, A' is the transpose of A and A* is the conjugate transpose Fmxn 

of A. The rank and the nullity of A are denoted by p(A) and v(A) 
respectively; a well-known relation between them is p(A) + v(A) = n. 
o,(A), i = 1,2, .  . . , min(m, n), denotes the i-th singular value of A with 
ordering ol(A) 2 oz(A) 2 . . 2 u,,,~,,(~,,,)(A); in particular, ul(A) and 
ud,,(,,,+)(A) are denoted by F(A) and g(A) respectively. The spectral 
norm of A is denoted by IIAll., which has the property that llAll. = 
iF(A). For square matrices A, B E FnXn, the i-th generalized eigenvalue 
of (A, B) is denoted by &(A, B) with no specific ordering imposed: the 
set of all A;(A, B) is denoted by A(A, E )  and the number of elements 
in A(A, B) (including multiplicities) is denoted by lA(A,B)l. If (A, B) 
is degenerate, we write A(A, B) = C and lA(A, B)I = 00. 

2 Development 

Given A, B E RnX" with p(B)  = r ,  define the distance of (A, B) from 
instability by 

p(A, B) = inf{l(AAl(, : AA E Rnxn and A(A + AA, B) (f! C-}. (2) 

The purpose of this paper is to  study the properties of p(A,B) 
and t o  obtain bounds on p(A,B). To keep the notation consistent 
with that used in [12], we write p(A,I)  as p(A). Let a singular value 
decomposition of B be given as follows: 

B = USV' = [U1 UZ] [ ; ] [V1 VZ]', (3) 

where U,V E RnX" are orthogonal matrices and 5'11 E R"' is a di- 
agonal matrix with positive diagonal elements. This singular value 
decomposition will be used frequently, and for the sake of convenience, 
the notation used in (3) is assumed to  hold throughout this paper. 

If (A, B) itself is unstable, then obviously p(A, B) = 0. Another 
trivial case occurs when (A, B) is stable but IA(A, B)I < T .  Let U and 
V be given by (3) and let 

R = U'AV = [Ul U2]'A[Vl Vz] = R1l R1z [ Rzi R z z ] '  

Then 

det(A - AB) = det(U)det(R- AS)det(V) 
= *[(-l)'det(Rzz)A'+. ..+ det(R)]. 
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It is apparent that IA(A,B)I < T if and only if det(R2z) = 0. In this 
case, when lA(A,B)I < r ,  an arbitrarily small perturbation ARzz on 
submatrix Rzz can be found such that det(R2z + ARzz) is nonzero and 
sign[(-l)'det(Rzz + ARzz)] = -sign[det(R)]. Let 

Then (A + AA,B) has r generalized eigenvalues and at least one of 
them is in C+. This shows that p(A,B) = 0 if JA(A,B)J < T .  As 
a consequence, we always assume in the following development that 
(A,B) is stable and IA(A,B)I = r.  

Theorem 1 Given A, B E RnXn such that p(B) = T ,  (A,B) is stable 
and IA(A,B)I = r ,  then 

The following theorem gives some quick facts about p(A, B). 

( 4  P(A,B) > 0; 
(b) p(aA, PB)  = ap(A,  B) for any a > 0, P > 0; 

(c) ~ ( W ~ A W Z , W ~ S W Z )  = p(A,B) for any orthogonal matrices Wl, 
Wz E RnX"; 

(d) A A ,  8) 5 4 A ) ;  
(e )  A A ,  B )  I ~(UiAvz) .  

PROOF 

(a) If AA is sufficiently small, det(A+AA-AB) will have the same de- 
gree as det(A - AB); continuity arguments then show p[A, B) > 
0. 

(b) (aA + aAA,PB) has a generalized eigenvalue A; if and only if 
(A + AA, B )  has a generalized eigenvalue :A,. So the stability 
of ( a A + a A A , P B )  is equivalent to the stabilityof (A+AA,B).  
The result follows if we note that llaAAlls = allAAll.. 

(c) The result becomes obvious if we notice that det(A+ AA - AB) = 
det ( WI A WZ +WI AAWz - AW1 B WZ ) and I I A A 11 = I I W1 A A Wz I I .. 

(d) Let AA be chosen such that llAAllS = c(A) and det(A+AA) = 0; 
then [A + AA, B)  is unstable. This shows p[A, B) 5 IlAAl). = 
4 A ) .  

proof is omitted here. 0 
( e )  This inequality will become clear a t  the end of this section. The 

Let (A, B) be stable and (A + AA, B) be unstable for some AA. 
Intuitively, the behavior of the generalized eigenvalues of (A+aAA, B) 
when a sweeps continuously from 0 to  1 will, in the ideal case, have 
three possibilities: (i) one generalized eigenvalue of (A+aAA, B) shifts 
from C- to  C+ across the origin; (ii) a pair of generalized eigenvalues of 
(A + aAA,  B) shift from C -  to C+ across the imaginary axis; (iii) one 
of the generalized eigenvalues of (A + aAA, B) disappears at infinity 
and then appears in C+. However, the actual situation may be more 
complicated since possibly for some a E (0,1], (A + aAA, B) becomes 
degenerate. Nevertheless let us define the following three quantities: 

p1(A, B) = inf{llAAlls : AA E Rnxn and det(A + AA) = 0) (4) 
p2(A,B) = inf{llAAlls : AA E RnX", lA(A + AA,B)I = r ,  

and A(A + AA, B )  n (8C- \ (0)) # 0) ( 5 )  

p3(A,B) = inf{)lAA)), : AA E RnX" and JA(A + AA,B)) < T I S )  
where 8C- = { j w  : w E R). 

The following theorem simplifies the analysis of p(A, B): 

Theorem 2 Given A, B E Rnxn such that p[B) = T ,  (A, E )  is stable 
and IA(A,B)( = r ,  then 

B )  = m i n h ( A ,  B),pz(A, B ) ,  p3(A, B)) .  (7) 

PROOF It isclearthat p ( A , B )  5 m i n { p 1 ( A , B ) , p z ( A , B ) , p 3 ( A , E ) } .  
Now assume that for some AA E Rnxn, (A + AA, B) is unstable. Fix 
this AA and consider the matrix pair (A + aAA,  B )  for a E (0 , l )  in 
the following three possible cases: 

(i) (A + aAA, B) is degenerate for some a E (0,1]. 

For such an a, A + a A A  is singular. This implies IlAAll. 2 
II@AAII. 2 Pl(A, B).  

( i i )  (A + @AA, B) is non-degenerate for all a E (0,1], but IA(A + 
aAA,  B)I < T for some a E (0,1]. 

Choose an a E (0,1] such that IA[A + aAA,B)I < r; then by 
the definition of ps(A, B), we have llaAAlls 2 p3(A, B) .  This implies 
IlAAlls L p3(A, B). 

(i i i)  (A+aAA, B) is non-degenerate and IA(A+aAA, B)I = (A[A, B ) J  
for all a E (0,1]. 

In this case, det(A+aAA-AB) has the same degree as det(A-AB) 
for all a E ( O , l ] ,  and its coefficients are continuous functions of a. 
Since all the roots of det(A - AB) are contained in C- and a t  least 
one of the roots of det(A + AA - AB) is in Cf, there must be an 
a E [0,1] such that a t  least one ofthe roots ofdet[A+aAA-AB) is in 
a C - .  If this root is at the origin, then IlAAll. 2 IIaAAIIS 2 p1(A, B); 
otherwise IlAAll. 2 llaAAllS 2 pz(A, B). 

For any of the three possible cases, we have 

P[A, B )  2 min{pi(A, E ) ,  pz(A, B) ,  p3(A, B)) .  

This completes the proof. 
p1(A, B )  can be easily obtained as 

0 

It has already been shown that IA(A + AA, B)I < r if and only if 
U;(A+AA)Vz is singular, where U2 and Vz are given by (3). Let AA be 
such a matrix that IA(A + AA, B)I < r ;  then llAAll. 1 IlUiAAVzll. 2 
- u(UiAV2). This shows pg(A,B) 2 g(UiAV2). On the other hand, it 
is known that there exists a matrix =such that llnAlllr = g((UiAV2) 

and UiAVz + is singular. Let AA = U [ A] V'. Then 

llAAllJ = IlaAll. = ~ ( U i A v z )  and Ui(A + AA)& = UiAV2 + = 
which implies IA(A + AA,B)I < T .  This shows p3(A,B) I ~(UiAvz) .  
As a consequence, we conclude that 

(9) 

The inequality given by Theorem l(e) now directly follows Theo- 
rem 2 and equation (9). 

It will now be shown that p(A,B) can be obtained for a special 
class of matrix pairs. Consider a matrix pair (A,B) with p(B) = 1. 
Then (A t AA,E)  has at most one generalized eigenvalue for any 
perturbation AA, so it is impossible t o  have A(A + AA, B) n (8C- \ 
(0)) # 0 for real AA. This means pz(A,B) = CO. Consequently, for 
A, B E Rnxn with p(B) = IA(A,B)I = 1 and [A,B) is stable, we have 

The following analysis will be focused on p2(A, B )  for general ma- 
trix pairs with p ( B )  = (A(A,B)( > l. The exact value of pz(A,B) is 
not obtained in this paper. Instead, some lower bounds on pz(A,B) 
is obtained. These lower bounds are based on the properties of some 
composite matrices and are easy to  compute. 

3 Composite Matrices 

Let F be the field R or C . Let A E Fmx", B E F p x q .  Denote the 
Kronecker product of A and B by A @ B. Among the many nice 
properties of the Kronecker product, those which will be used in our 
development are listed in the following lemma: 

Lemma 1 

(a) If a , B  E F, then 

A @ (aB + PC) = a(A @ B )  + P(A @ C )  

( aA + PB) 8 C = a(A 63 C) t P(B 63 C )  

1903 
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(b) ( A @  B ) ( C @  D) = A C @  B D  
( c )  If  XI,^,. . . , xp E F" are linearly independent and y1, yz, . . . , y, E 

F" are linearly independent, then {xi @ yj : i = 1,2, .  . . ,p,  j = 
1,2, .  . . , q }  are linearly independent. 

(d) llA 8 BIL = ll AllallBlla. 

The Kronecker product can be considered as a matrix compositiob; 
two additional matrix compositions are also important in our context. 
Let A = [aij] E Fnx", B = [bij] E Fnxn. Let ( i 1 , i z )  and (j1,jz) be the 
i-th and j - th  pairs of integers respectively in the sequence 

(1, I),. . .,(1,n),(2,2), . . . ,(2,n),(3,3), . . .,(n - l ,n),(n,n).  (11) 

Definition 1 [12] 

ARB = [eij] E F*"("+')x3"("+1), 

where 

if i l  = iz and jl = jz 

if il # iz and j1 # j z  +aizj1biijz + ai2j2bilj1) (12) 

$(ai,j, bjz j ,  + a~zjzb~, j , )  otherwise. 

Let (r1,rZ) and (s1,sz) be the r-th and s-th pairs of integers re- 

(1,2),(173), . . .,(1,n),(2,3), . . . , (2,n),(3,4), . .  .,(n - 1,n). 

spectively in the sequence 

(13) 

Definition 2 [12] 

A E B  = [d,,] E F$n("-l)Xhn(n-1), 

where 

1 
4 s  = T ( a i l s l b i l s Z  - arlazbrzal - arzslbrlsz + ~ v z s z b r l a j ) .  (14) 

are closely related to the Kronecker prod- 
uct operation @. Given A , B  E FnX", A@B can be considered as a 
linear operator on the space F"'. The space F"' is an nz- dimensional 
Hilbert space if it is equipped with the inner product (x,y) = z*y, 
Vx,y E Fn2. The space FnX" with inner product (X,Y) = tr(X*Y), 
VX, Y E Fnxn is also an n2-dimensional Hilbert space. Now define a 
linear operator Vec: Fnxn + F"' by 

511 212 '. ' xln 

The operations B and 

vet [ '; ' y  .'. zz" 1 = [~11...~,1212'.'~n~...~nn]' . (15) 

Xn1 Xnz ..' Xnn 

We need two properties of Vec to proceed. 

Lemma2 [7] 

(a) tr(X*Y) = [Vec(X)]*Vec(Y) 

(b) (A@B)Vec(X) = Vec(EXA'). 

Under this iso- 
morphism, operator A@B on F"' becomes an operator F mapping 
X E Fnxn to F ( X )  = BXA'. 

Let S1 C FnX" be the subspace of all symmetric matrices, and let 
S2 c FnX" be the subspace of all skew-symmetric matrices. Formally 
S1 = ( X  E FnXn : X' = X} and S2 = {X E FnXn : X' = -X}. It 
is shown in [12] that S i  and S2 are orthogonal complements to each 
other. Since Vec is an isomorphism, Vec(S1) and Vec(S2) are also 
orthogonal compliments to each other on F"'. 

Define Eij E Fnxn t o  be the matrix with 1 in the (i , j)- th entry 
and 0 elsewhere. Let ( i l ,  i z )  be the i-th pair of integers in the sequence 
(11) and let 

Lemma 2 implies that Vec is an isomorphism. 

if il = iz 

$(E;,  iz + Eizil ) otherwise. 

Then {U,, U2,. . ., Uin(n+l)} is an orthonormal basis of SI. 

let 
Let (r1,rZ) be the ?-the pair of integers in the sequence (13) and 

Jz Vv = T(E,, , ,  - E,,,,). 

Then (VI, Vz, . . . , Vin(n-l)} is an orthonormal basis of S2. 

1,2, .  . ., ? p ( n  - 1). Then { u ~ , u z , .  . . , 
sis of Vec(Sl), and {q ,vz , .  
Vec(S2). Define 

Let U, = Vec(U,), i = 1,2, .  .., $n(n + 1) and w, = Vec(V,), i = 
is an orthonormal ba- 

is an orthonormal basis of 

TI = [u1 u2 . . . u+,,(,,+~)] E FnX b'("+') 

TA = [ V I  v 2 . .  .v+,,(,,-~,] E FnX~"("-'). 

(16) 

(17) 

The above construction implies that [TI Tz] is a real orthogonal 

The following lemma gives a relation among operators @, B, 8. 
matrix. 

Lemma S [12] Let A, B 6 Fnx". Then 

A S B  = TI(A@B)TI 

AEB = T:(A@B)T~. 

From Lemma 3, many interesting properties of @ and can be 
established [12]. Lemma 4 states some properties which are useful for 
the development of the main result in the next section. 

Lemma 4 [12] 

(a) If a , P  E F, then 

AS( aB + PC) = Q( ABB) + P( AZC) 
(aA + P B ) g C  = a(ABC) + P(BRC) 
AE(aB + PC) = a ( A g B )  + P(AZC) 
( a A +  P B ) S C  = a ( A 8 C )  + P(B%C). 

(b) IIAWI. s IIAIIaIIBIIs, IIAWIa I I I A I I ~ I I B I I B *  

In the derivation of the lower bounds of p(A,B), the matrices 
A@B + B g A ,  ARB + BRA, ABB + B S A  play important roles. In 
the rest of this section, we will investigate some properties of these 
matrices. 

Consider A@B + B@A as a linear operator on F"'. Then under 
isomorphism Vec, it is equivalent t o  a linear operator M on Fnxn 
mapping X E Fnx" to M ( X )  = AXB' + BXA'. This operator has 
the following nice property. 
Lemma 5 

M ( S 1 )  c S1 and M(S2) C SZ. 

For all XI E SI, we have X i  = XI. Thus PROOF 

[M(Xl)]' = (AXlB'+ BXlA')'= AXiB'+ BXlA' 
= AXlB'+ BXlA'= M(Xl),  

so that M ( S 1 )  c S1 . 
For all Xz E S2, we have X i  = - X Z .  Thus 

[M(Xz)]' = (AXZB'+ BXzA')'= AX;B'+ BXzA' 
= -AXiB' - EX1A' = -M(Xl), 

so that  M(S2) c Sz. 0 
This lemma states that S1 and S2 are reducing subspaces of FnX" 

for operator M. Since Vec is an isomorphism between F"'" and 
F"', Vec(S1) and Vec(S2) are reducing subspaces of F"* for opera- 
tor ABB + B@A. This fact and the orthogonality of Vec(S1) and 
Vec(Sa), along with Lemma 3 imply the following lemma: 
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This mean that ABB + BBA and A z B  + B z A  are the matrix 
representations of the restrictions of A@B + B@A to Vec(S1) and 
Vec(S2) respectively, when the basis { u l ,  U Z ,  . . . , ~i,,(,,+~)} is used for 
Vec(S1) and the basis { V I ,  vz, . . . , t ~ i ~ ( ~ - ~ ) )  is used for Vec(S2). 

4 Main Result 

In this section, the lower bounds of p(A,B) will be derived. These 
bounds are based on the composite matrices developed in the last 
section. Throughout this section, it is assumed that A, E E Rnxn,  and 
IA(A,B)I = p(B)  = T .  To rule out trivial cases, we assume r > 1. 
Denote s = v ( B )  = n - r .  The following lemmas are required in the 
proof of the main result. 

Lemma 7 [13] Assume 0 

(a) v(A@B + B@A) = s2 , 
(b) v(A8E + BBA) = $s(s + 1) , 
(c) v(A3B + BTA) = $s(s - 1) . 

{ X i  + X j  : X i ,  X j  E A(A, B)). Then 

Lemma 8 [13] Assume that A(A, B) n (aC- \ (0)) # 0. Then 

Lower bounds of p1(A, B) can then be obtained as a consequence 
of Lemma 7-8. 

Theorem 3 Given A, B E Rnxn such that (A, B) is stable and s = 
v ( B )  = n - lA(A,B)l, then 

PROOF If IlAAll. < +,,~-.Z-~(A@B + B@A), then 

IIAA@B + B@AAlls 5 2llAAIIsIIBII. < nn2-.1-1(A@B + B@A). 

This implies that the nullity of 

(A + AA)@B + B@(A + AA) = A@B + B@A + AA@B + B@AA 

is less than sz + 2. By Lemma 8, A(A + AA,B) has no element in 
(aC- \ (0)). Therefore, if A(A + AA, B) n {K- \ (0)) # 0, IlAAll. 
must be greater than or equal to  &,,L.L~(A@B + B@A). This 

0 
Let a singular value decomposition of B be given by (3); then the 

proves (19). The proofs of (20) and (21) are similar. 

following lemma is obtained. 

Lemma 9 [13] 

The main result of this paper which gives the lower bounds of 
p ( A ,  B) is then obtained as an immediate consequence of Theorem 3, 
Lemma 9 and equation (7)-(9). 

Theorem 4 Given A, B E Rnxn such that (A, B) is stable and s = 
v ( B )  = n - IA(A,B)I, then 

Theorem 4 actually provides a sufficient condition for the robust 
stability of a matrix pair, i.e. if llAAllS is less than any one of the 
quantities on the left hand sides of (24)-(26), (A + AA, B )  is always 
stable. 

It is of interest to have certain knowledge on how tight the bounds 
given in Theorem 4 are. For general matrix pairs, it is very hard to  
estimate the conservatism of the lower bounds obtained. However, 
this can be done for some special classes of matrix pairs. A matrix is 
called a partial isometry if all its singular values are either one or zero. 
The spectral norm of a nonzero partial isometry is one. Two matrices 
C, D E Cnxn are said to  be simultaneously diagonalizable by unitary 
transformations if there exist unitary matrices P,Q E Cnxn such that 
P'CQ and P*DQ are diagonal matrices. 

Theorem 5 Given A , B  E RnXn such that (A,B) is stable and s = 
v ( B )  = n - lA(A,B)l, assume that B is a nonzero partial isometry 
and that A, B are simultaneously diagonalizable by unitary transfor- 
mations; then 

p(A,B) I min{c(U;AV2), -%(Xi) : A, E A(A,B)) (27) 

and 

The proof of Theorem 5 is given in [13]. This theorem implies 
that in the case when B is a partial isometry and A, B are simulta- 
neously diagonalizable by unitary transformations, the conservatism 
of the lower bounds (24)-(26) are a t  worst SO%, i.e. the differences 
yf p(A,B) and its lower bounds are at worst 50% of p(A,B). If 
&U;AVz) 2 min(-%(A,): A; E A(A,B)}, theexact valueofp(A,B) 
is obtained as min(-%(A,) : A, E A(A,B)}. 

In many applications, such as the singularly perturbed system 
problem and the minimum phase problem, the matrix B is always a 
partial isometry. Let a singular value decomposition of B be given by 
(3). Then since a necessary and sufficient condition for A,  B E CnXn 
to  be simultaneously diagonalizable by unitary transformations is that 
AB' and B'A are both normal [8], it can be shown that when B is 
a nonzero partial isometry, the necessary and sufficient condition for 
A, B to  be simultaneously diagonalizable by unitary transformations 
is that UiAV1 is normal, (UiAVz = 0 and UiAV1 = 0. 

Theorem 4 gives three lower bounds on p(A,B). It is of inter- 
est to  give a comparison between them, i.e. it is desired to  know 
which bound is the best and which is the worst. From Lemma 5 ,  
it can be seen that the singular values of ABB + B@A are just the 
singular values of ABB + B g A  together with the singular values 
of ABB + BBA. It is known that U + ~ ( ~ + ~ ) - ~ + + ~ ) ( A B B  + BBA) 

and uin(n-l)-ia(.-l)(A~B + BFA)  are the smallest nonzero singu- 
lar values of (ABB + BRA) and (AEB + BEA) respectively, and 
that a,,~-a2-1(A@B + B@A) are the second smallest nonzero singular 
value of A@B + B@A. Thus O , ~ - , ~ - ~ ( A @ B  + B@A) must lie - be- 
tween ~ i ~ ( ~ + l ) - i ~ ( ~ + l ) ( A g B  + BG'A) and "in(n-1)-+3(S-1)(AgB + 
&A). Examples show that both U+~(, ,+~)-+++~)(ABB + BBA) and 

O+,,(n-l)-+.(s-l)(AgB + BFA)  can in fact be equal to  the smallest 
singular value of A@B + B@A. The conclusion is that amongst the 
three bounds (24)-(26), either bound (25) or bound (26) can be the 
best or the worst, and bound (24) always lies between bound (25) and 
(26). 
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5 Applications and Examples 
There are a number of problems in control theory which involves the 
stability of the generalized eigenvalues. We will show how the results 
developed in the previous sections can be used to  analyze the stability 
robustness of such problems. 

I Singularly perturbed systems 

A singularly perturbed system (with zero inputs) is described by a 
state space equation in the following form [IO] . 

(29) 

where z E R"', z E Rnz, and A,; ,  i , j  = 1,2,  are matrices of compatible 

It is known from [IO] that if A22 is stable and (A, E) is stable, then 
there exists c* > 0 such that Vc E [O,c*], system (29) is asymptotically 
stable. Now suppose that matrix A is subject to  an unstructured real 
parameter perturbation AA. Then the perturbed system is given by 

A question arises: under what condition on the norm of A A  is the 
stability property of the perturbed system still maintained? It is clear 
that a sufficient condition is that llAAll. < min{p(A22), p( A, E)}. 
Further investigation shows that this condition is almost necessary 
in the sense that for any 6 > 0, there exists a perturbation A A  with 
IlAAll. 5 6+min{p(Azz),p(A,E)} such that thesystem does not have 
the stability property. 

Example 1 

The following singularly perturbed system represents a voltage reg- 
ulator controlled by a so-called corrected near-optimal state feedback 
law [lo]. 

-0.2 0.5 0 0 0 
0 -0.5 1.6 0 

0 -1.429 8.571 [ 5 1, [ : I=[  0" 0 -2.5 7.5 
-0.918 -0.19 -0.011 -0.038 -1.287 

where z E RZ, t E R3. From the bounds given in [12], we obtain 

1 

= min{0.1094,0.2282} = 0.1094. 

~ ( A z z )  1 min{dAzz), ~ ( A z ~ ~ A z z ) }  

- 
Since ~ ( A z 2 )  < ig (A22gAz~)  in this case, we actually have p(Az2)  = 
0.1094. 

From the bounds given in Theorem 3, we obtain 

1 
P ( A , E )  2 min{~(A), 5015(A@E + E @ A ) ,  ~ A z z ) }  

= min(0.5047, 0.0919, 0.1094) = 0.0919, 
1 

p ( A , E )  1 m i n { p ( A % E  + E%A), ~ ( A z z ) }  

p ( A , E )  2 min{@), + E S A ) }  

= min{0.0919,0.1094} = 0.0919, 
1 

= min(0.5047, 0.0120) = 0.0120. 

From this computed data, we claim that for any perturbation A A  
with IIAAll. < 0.0919, the singularly perturbed system maintains the 
desired stability property. Note that, since p ( A 2 ~ )  = 0.1094, there 
exists a A A  with IlAAl{. = 0.1094 such that the system (29) does not 
have the stability property. Hence the condition I(AAll. < 0.0919 is 
not over conservative. 

I1 Descriptor systems 

Descriptor systems are systems described by the state space equa- 
tions in the following form 

Ei = AX + Bu, (30) 
where E is usually a singular matrix. For any initial condition, the 
homogeneous solution of equation (30) goes to zero asymptotically if 
and only if the matrix pair ( A , E )  is stable [I]. In this case, we say 
system (30) is stable. Hence p(A,  E) provides a reasonable measure to  
the stability robustness of the system. In general, there may also be 
perturbations on the elements of the matrix E; the robustness property 
of system (30) with respect to  these perturbations can not be treated 
in the frame work of this paper. 

Example 2 

feedback design [2]. 
The following descriptor system is obtained in an optimal state 

Since p(B)  = 1, p ( A ,  E) can be obtained exactly by (10). It is easy 
to  compute &((A) = 0.4644. A singular value decomposition of E is 
given by 

E = [ :  ; I [ :  : I [ ;  : I 9  

which then implies g(UiAV2) = 0.3536. From (lo), we then obtain the 
exact bound p ( A ,  E) = 0.3536. 

I11 The minimun phase robustness problem 

Assume a system with equal number of inputs and outputs is de- 
scribed by the following state space model 

5 = A x + B u  

y = C x + D u ,  (31) 
where x E R", U, y E Rm and A, B, C, D are matrices of appropriate 
dimensions. For simplicity system (31) is called system ( A ,  B,C, D )  

in the following. Denote F = [ : ] ; then 

the transmission zeros (41 of system (A,  B ,  C, D )  are defined to  be the 
generalized eigenvalues of the matrix pair (F,G) .  If (F,G) is stable, 
the system (A, B , C ,  D )  is said to  be minimum phase; otherwise i t  
is said to  be non-minimum phase. The requirement that a system 
be minimum phase occurs often in a large number of problems, e.g. 
in the "perfect control problemn[3]. A question which immediately 
arises in this case is as follows: assume a system is minimum phase; 
then what is the largest class of plant perturbations which have the 
property that the perturbed system remains minimum phase? This is 
called the minimum phase robustness problem. 

Assume now that (A,  B,C, D) is minimum phase and matrices A, 
B,  C ,  D are subject to  real unstructured parameter perturbations AA, 

AB,  AC,  AD.  This leads to  a perturbation AF = 

on matrix F. If we know nothing about AF except its norm, then 
the system (A + AA, B + AB,C + AC, D + A D )  remains minimum 
phase if llAFll. < p(F, G ) .  On the other hand, there exists AF with 
IlAFII. > p(F ,G) ,  but arbitrarily close to  p(F,G),  such that the sys- 
tem (A+AA, B+AB,C+AC, D+AD) is non-minimum phase. There- 
fore p(F ,G)  gives a measure on the robustness of the minimum phase 
property against unstructured perturbations on system ( A ,  B ,  C, D). 

i ]  a n d G =  [ 

Ac AD [ A A  

Example 3 

an outer function obtained in an H, design [5]. 
The following minimum phase system is a balanced realization of 

-0.2310 -0.2834 -0.2234 0.4193 
A =  -0.2834 -0.4936 -0.8628 ] B = [ 0.33331 [ 0.2234 0.8628 -0.3754 -0.1798 

C = [ 0.4193 0.3333 0.1798 ] D = 0.1. 
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From Theorem 4, the lower bounds of p( F, G) are obtained as [8] R.A. Horn, C.A. Johnson, Matriz Analysis, Cambridge University 
1 Press, Cambridge, 1985. 

P(F, GI 2 m i n M F ) ,  i o l r ( ~ c ~  + GW), E((D)) [9] T. Kailath, Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, 
N.J., 1980. 1 

2 
= min(0.2078, - x 0.2271, 0.1) = 0.1, 

1 

1 lando, 1986. 
2 

[lo] P. Kokotovic, H.K. Khalil, J. O’Reilly, Singular Perturbation 
Method in Control: Analysis and Design, Academic Press, Or- p ( F ,  G) L m i 4  p 4 F S G  + GBF), &( D)} 

= min(- x 0.2271, 0.1) = 0.1, 

1 [ll] R.V. Patel, M. Toda, “Quantitative measures of robustness for 
multivariable systems”, Proc. Joint Automatic Control Confer- P(F, G) L min(dF) ,  p ( F &  + G 8 F ) )  

1 ence, Paper TD8-A, 1980. 
2 

= min(0.2078, - x 0.0868) = 0.0434. 
[12] L. Qiu, E.J. Davison, “A new method for the stability robustness 

determination of state space models wiyh real perturbations”, 
Proc. IEEE Conference on Decision and Control, pp. 538-543, 
1988. 

From Theorem l(d)-(e), two upper bound of p(F ,G)  are obtained 
as 

p(F,G) 5 &(F) = 0.2078, 

p ( F , G )  5 g ( D )  = 0.1. [13] L. Qiu, E.J. Davison, “The stability robustness of generalized 
eigenvalues”, Systems Control Group Report, No. 8911, Dept. of 
Electrical Eng., Univ. of Toronto, 1989. 

On summarizing these inequalities, we then obtain that p(F ,G)  = 
0.1. p(F ,G)  is exactly obtained in this case. 

6 Conclusion 
[14] G.W. Stewart, “On the sensitivity of the eigenvalue problem A z  = 

XBz”, SIAM J. Numer. Anal., vol. 9, no. 4, pp. 669-686, 1972. 

This paper extends some recent results on the stability robustness of 
ordinary state space models to  the stability robustness of the general- 
ized eigenvalue problem. The generalized eigenvalue problem is much 
more complicated than the ordinary eigenvalue problem. This makes 
the extension a nontrivial task. The main achievement of this paper 
is in obtaining some sufficient conditions on the norm of the pertur- 
bation A A  t o  ensure that ( A  + A A , B )  is stable for a given stable 
matrix pair (A, B) . The results obtained can be applied to a number 
of important problems in control theory which involve the general- 
ized eigenvalue problem. Application of the results obtained are given 
for the stability robustness of singularly perturbed systems, descriptor 
systems and for a new problem called the minimum phase robustness 
problem. 

The stability robustness bounds obtained in this paper are given 
in terms of the singular values of some composite matrices which have 
much larger size than the original matrices. This brings a major con- 
cern in the computation of these bounds when large matrix pairs are 
considered. An alternative method is given in [13] to determine the 
required singular values without constructing the composite matrices 
explicitly. 

[I51 G.W. Stewart, ‘‘GershgOrin theory for the generalized 
problem A z  = XBz”, Math. of Comp., vol. 29, no. 130, pp. 600- 
606, 1975. 
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