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The Stability Robustness of Generalized
Eigenvalues

L. Qiu and E. J. Davison

Abstract—This note generalizes the concept of stability radius to
matrix pair.. A matrix pair is said to be stable if its generalized
eigenvalues are located in the open left half of the complex plane. The
stability radius of a matrix pair (A, B) is defined to be the norm of the
smallest perturbation A 4 such that (A + AA, B) is unstable. Qur
purpose is to estimate the stability radius of a given matrix pair.
Depending on whether the matrices under ¢ ation are plex or
real, the problem can be classified into two cases. The complex case is
easy and a complete solution is provided. The real case is more difficult
and only a partial solution is given.

I. INTRODUCTION

In the stability robustness analysis of state-space models, one of
the important problems studied is to estimate the distance of a stable
matrix to the set of all unstable matrices. Here a matrix is said to be
stable if all of its eigenvalues are contained in the open left half of
the complex plane. Since this problem was first considered in [14],
it has been intensively studied; see [10], [11], [6], [13], [2], [16],
[19]. Different methods have been used and various results have
been obtained. It appears, however, that no effort has been made to
extend the available results to the generalized eigenvalue problem.
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Denote the real and complex fields by R and @, respectively, and
let 7 be either R or @. For a pair of matrices (A, B), where
A, BER"*", the generalized eigenvalues of ( A, B) are the roots
of the following polynomial in \:

det (A — AB).

The matrix pair (A4, B) is said to be stable if al] of its generalized
eigenvalues are located in the open left half of the complex plane. A
pathological case occurs when det (A — AB) vanishes identically. If
this is the case, (A4, B) is said to be singular and every point in the
complex plane is a generalized eigenvalue of (A, B). This case will
not be excluded from our discussion. Instead, it is treated as a
special case of unstable matrix pairs.

Let A, BER"™" be matrices. By carrying out a singular value
decomposition of B, there exist unitary matrices U, Ve 8"*" such
that

R, R
A=URp*=y| " "2y« (1)
RZI R22
B=USV* = U[S” OJV*
0 0

where S, is a diagonal matrix with positive diagonal elements.

No assumption on matrix B has been made so far, but emphasis
will be given to the case when B is singular. Assume that B is
singular and the matrix pair ( A, B) is stable. Let

0 0
U[

*
AB 0 ASDJV .

It

Then
det[ 4 - N(B + AB)]

I

(—1)"det(UV*)det(S”)
“det (ASy )N+ -+ +det (A).

It is clear that a matrix ASy, with arbitrary small norm can be
chosen such that the coefficients of the first term and the last term of
the polynomial det[ 4 — N(B + A B)] have opposite signs. If this is
done, the polynomial has roots in the right half of the complex
plane. This means that the stability of (A, B) has zero tolerance
to the unstructured uncertainty on matrix B. Consequently, we
assume in the following that B is always fixed and is not subject to
uncertainty. It is noted that in many applications, the matrix B is a
‘‘structure’’ matrix rather than a ‘‘parameter’’ matrix, i.e., the
elements of B contain only structural information regarding
the problem considered, and hence are not subject to variation.
On the other hand, in the case when the elements of B do contain
uncertain parameters and when such uncertainty does not alter the
rank of matrix B, then the perturbed matrix B + A B must admit a
singular value decomposition

B+AB=(U+ AU)[S“ +0AS“ g](V+ AV)*
where U, V, S, are given as in (1). If AB is small, the matrices
AU, AV, and AS,, can be chosen to be small. Since in this case the
generalized eigenvalues of (A + AA, B+ AB) are the same as
the generalized eigenvalues of

(U+aU)*(A+a4)(V+av)

[ as o [1o])
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the problem with both uncertain A and B can be transformed to a
problem with uncertain A only. Therefore, the assumption that B
is fixed imposes little limitation in applications.

The problem considered in this note is to estimate the smallest
possible spectral norm of A4 € F"*” such that (A + A A, B) is
unstable for given A, BeF”>". The problem can be classified into
two cases depending on whether F = © or [F = R. The complex
case is relatively simple and admits a complete solution. The
method used is a generalization of the one used in [11], [6], [13],
[2]. The real case is more difficult and only partial solutions are
given. The method used is a generalization of the one given in [16],
which is based on the properties of tensor products (or, in other
words, composite matrices). Possible applications of the results
obtained include the stability robustness analysis of singularly per-
turbed systems [8], descriptor systems [3], and the robustness of the
minimum phase property of a system [4], [9]. Note that for the
generalized eigenvalue problems involved in singularly perturbed
systems and in the minimum phase robustness problem, the matrix
B is always fixed.

The following notation will be used throughout this note. The real
part of Ae @ is written as # (M) and the imaginary part £ (N).
Denote the sets {Ae@: Z(N <0}, {\e@G: Z(N =0}, and
{Ae®: #(N >0} by @, @° and 8%, respectively. Let A e
F"”*". The rank and the nullity of A are denoted by rank( 4) and
null( A), respectively; a well-known relation between them is
rank( A) + null( A) = n. 0,(A), i = 1,2,: -+, min(m, n), denotes
the ith singular value of A with order 0,(A4) = 0,(A) = -+ =
Ormin(m. m{( A); in particular, 0,( A) and Gy (. ny( A) are denoted by
G(A) and g( A), respectively. The norm of A, denoted by || 4|,
is assumed to be the spectral norm, i.e., || A|| = 6(A). For square
matrices A, BeF"*", the set of all generalized eigenvalues of
(A, B) is denoted by A(A, B) and the number of elements in
A(A, B) (including multiplicities) is denoted by |A(A, B)|. If
(A, B) is nonsingular, we have | A(A, B)| < rank(B). If (A4, B)
is singular, we write A(A, B) = 8 and |A(A, B)| = o.

. DEVELOPMENT

For A, BeF"*" with (A, B) stable, we define the stability
radius of (A, B) by

r:(A,B) =inf{|]AA|: AAeF"™" and
A(A+AA4,B)¢ 8 }. (2)
A trivial case occurs when (A, B) is stable but |A(A, B)| <
rank(B) = /. Using the same notation as in (1), we have
det (A — AB) = (—1)"det (UV*)det (S,,) det (Ryy)N + -+
+ det(A).
It is apparent that | A(A, B)| </ if and only if det(R,,) = 0. In

the case when |A(A, B)| </, an arbitrarily small matrix A A
of the form

0 0

_ *
AA = U[O ARzz]V

can be found such that det(R,, + AR,,) is nonzero and the signs
of det(A + A A) and (— 1)/ det (UV*)det (S,,)det (R, + AR,)
are opposite. In this case the polynomial

det (A + AA —\B) = (—1) det (UV*)det (S,,) det( R,
+AR,IN + -+ +det(A + AA)

has / roots and at least one of them is in ©€*. This shows that if
| ACA, B)| < rank(B) then r.(A, B) = 0. As a consequence, we
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always assume in the following development that |A(A, B)| =
rank( B).

Let (A, B) be a stable matrix pair with | A(A, B)| = rank(B)
and assume that (A + A A, B) is unstable for some A 4. Intu-
itively, the behavior of the generalized eigenvalues of (A +
aA A, B) when o sweeps continuously from O to 1 will, in the
ideal case, have three possibilities: 1) a generalized eigenvalue of
(A + aA A, B) shifts from €~ to 87U ©° across the origin; 2) a
generalized eigenvalue of (A + aA A, B) shifts from €~ to YU
©° across the imaginary axis; 3) one of the generalized eigenvalues
of (A + alA A, B) disappears at infinity and then appears in G *U
©°. However, the actual situation may be more complicated since it
is possible that for some a € (0, 1], (A + aA A, B) becomes sin-
gular. Nevertheless, let us define the following three quantities:

rs(A,B) =inf{|AA[:AA4eF"" and
det(A+AA4)=0} (3)

r.

7

(A,B) =inf{|AA|l: AAeF"™", |A(A+ AA,B)]

i

rank(B) and A(A +AA,B)

n(s"~ {o}) + &} (4)
re (A, B) =inf{||[AA]: AA€F"*"and |[A(A + A A, B)|
<rank(B)}. (5)

The following proposition simplifies the analysis of rz(A4, B).
Proposition 1: Let A, BeF"*" be matrices with ( A, B) stable
and |A(A, B)| = rank(B). Then

rz(A, B) = min{r, (A, B),rs (A,B),r; (A, B)}. (6)

Proof: It is clear that r.(A, B) < min {rL,O(A, B),
rg (A, B), r; (A, B)}. Now assume that for some A AefF"*",
(A + A A, B) is unstable. Fix this A 4, and consider the matrix
pair (A + aA A, B) for a €(0, 1] in the following three possible
cases.

1) (A + aA A, B) is singular for some « € (0, 1].

For such an o, A + oA A is singular. This implies that ||[A A| =
|aa Al = rz (A, B).

2) (A+aA A, B) is nonsingular for all a € (0, 1], butj A(A4 +
aA A, B)| < rank(B) for some « € (0, 1].

Choose an « € (0, 1] such that |A(A + aA A, B)| < rank(B);
then by the definition of r; (A, B), we have |aAA| =
rg (A, B). This implies |A A| = ry (A, B).

3) (A + aA A, B) is nonsingular and |A(A + aA A, B)| =
|A(A, B)| for all a€(0,1].

In this case, det(A + oA A — AB) has the same degree as
det (A — AB) for all a (0, 1], and its coefficients are continuous
functions of «. Since all the roots of det (A4 — AB) are contained in
©~ and at least one of the roots of det(A + AA — AB) is
in 87U 8, there must be an « € (0, 1] such that at least one of the
roots of det (A + oA A — AB) is in ©°. If this root is at the origin,
then |AA| = [aAA| = ry (A, B); otherwise [AA| =
lar A] = rs: (A, B).

For each of the three cases, we have ||A A|| =z min {rg (A, B),

r: (A, B), rz (A, B)}. Therefore, rz(A, B) =
min{r, (A, B), rp (A, B), rp (A, B)}.
This completes the proof. O
r FO(A, B) can be easily obtained as
re,(A; B) = a(4). (7

Introduce a decomposition of matrices A4, B of the form of (1)
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and let

AR,

ARy |,
AA_U[AR2, }V .

AR,,

Then |A(A + AA, B)| < rank(B) if and only if det(R,, +
AR») =0.If AA satisfies [A(A+44,B) < rank(B), then
IAA| = [[AR, |l = g(R,,). This shows that rs (A, B) =
9(Ry,). On the other hand, let

0 o],
0 ARZZJV

and AR,, be a matrix with ARl = ¢(R,,) and det(R,, +
ARy) =0. Then |[AA| = ¢(R,,) and |A(A +AA, B <
rank(B). This shows that re (A, B) < g(R,,). As a result, we
conclude that

2=y

"L?.,(A’B) =9(R22)~ (8)

However, r; (A, B) cannot be so easily obtained for general
matrices. ¢

Before ending this section, we
r=(A,B).

Proposition 2: Let A, Bepnxn be
stable and | A(A, B)| = rank(B). Then

a) rz(A, B) > 0,

b) rz(aA, BB) = arg(A, B) forall @ >0, 8 > 0,

o) reg(W,AW,, W BW,) = rz(A, B) for all unitary matrices
W, W,eR">",

d) re(A4, B) < g(A),

e) re(A, B) < 9(R,,), where R,, is given by (1).

give some quick facts about

matrices with (A, B)

. CoMPLEX STABILITY RADIUS

Theorem 1: Let A, Be@"*" be matrices with (A, B) stable

and [A(A, B)| = rank(B). Then
re(A, B) = infg(A - jwB). 9)

wef
Proof: For each we R \ {0}, there exists A 4 € @"*" such
that |AA|l = g(A4 — joB)and A + A A — JwB is singular, i.e.,
(A+AA,B) has a generalized eigenvalue at Jw. There-
fore, rg (A, B) < (A — jwB) for each w €R \ {0} or, equiva-

lently, rg (A, B) < inf,epy- 10y 0(A — jwB).

Now assume that for some A A € 8", there exists & eR \ {0}
such that det(A + AA4 -~ joB) = 0. Then laAl =004 -
J@B). This shows r@w(A, B) = infwem\(o}(A ~ JwB). Since
w = d(A — jwB) is a continuous function, it follows that:

re (A4, B) = inf (A - juB).
s weR

Assume that 4, B admit a decomposition as in (1). Then by
Proposition 1,

re(4, B) =min{g(A),3g}g(A - joB). o(Ry)}.
It is trivial to see
‘:rel;f?(A - JjwB) <g(4A).
The proof will be completed if we can show
:,2{? (A -juB) < 9(Ry).
We do this by showing
Jim (A -jeB) = lim o(4-juB) = (Ry).

This can be done in many ways; we proceed by using the concept of
the transfer matrix of a generalized system. Assume that (A4, B)

admits a decomposition in the form of (1). Then

9(A - joB) = ¢(R - juS) = 5~ '[(R - jwS)™']

- 5! [Rll_jwsll R, -
Ry Ry '
The matrix
R -1
Rn‘!“’sn Ry,
R, Ry,

is the frequency response of the following generalized system:
Sy 0% _ | Ru Ry|[x I 0f]u,
0 0fx%] [Ry Ryl|lx, 0 Ilju,
Il T 0f[x
y| |0 1 x|

Its equivalent ordinary system has a state-space realization

) ~ ~ _fu
X = S5'(Ry, - RlzRglezl)xl + [‘I Rlszzl][u;

| I o+ 0 0 Jfy
Y2 ‘R{21R21 ' 0 Ry'||u |

The two systems must have the same frequency response, therefore,
. -1
[Rn —JjwS;; Ry,
Ry Ry
- 1 ; -1 -1 -1
= | —rair, [Jol - $7(R,, - R, R;, Ry )]

_ 0 0 u,
=1 Rufi] +[0 R:‘z‘”uz}'

It now becomes obvious that
lim ¢(A4 - jwB) = lim (A - jwB)
w— oo W™ — oo

= ‘7-](R2_2‘) = Q(Rzz)-
O
A straightforward method to compute rg(A, B) is to use a
“‘brute force”” search to find the infimum on the right-hand side of
(9). Potential difficulties exist, however, due to the facts that
w = g(A - jwB) is nonconvex and that the infimum is taken over
an infinite interval. On noticing that

2o = {14 o]

and (A - sB) 'isa proper stable real rational matrix, the method
given in [1] for the computation of the #, norm of a stable real
rational matrix can be used to compute the left-hand side of ).

IV. REAL STABILITY RADIUS OF MATRIX PAIRS

A lower bound of the real stability radius of a matrix pair is given
by its complex stability radius. .

Corollary 1: Let A, Be R"*" be matrices with ( A, B) stable
and |A(A, B)| = rank(B). Then

ra(A, B) = inf g(A - jwB). (10)
WER
The purpose of this section is to develop lower bounds of the real
stability radius which, at least in some cases, improve the lower
bound given in Corollary 1.
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By Proposition 1
ra(A, B) = min {r, (A, B), ra(A,B),ry (A, B)}

where r'g(A, B) and ra (A, B) are given by (7) and (8). The
difficulty of analysis lies in determining rga (A4, B).

For a real matrix pair (A, B) with rank(B) = 1, it is impossible
to have a real A4 such that (4 + A A4, B) is nonsingular and has
imaginary eigenvalues. So in this case rp (A, B) = o and

rqe(A, B) = min{rmD(A,B), re (A, B)}

= min{g(A),g(Rzz)}. (11)
It is of interest to note that if 4, Be R"*" and rank(B) = 1, then
inf g(A - jwB) = min {a(A),0(Ry)}.
weR

This means that the inequality (10) becomes an equality when
rank(B) = 1.

In this note we are unable to obtain a formula which gives the
exact value of ry(A, B) for general real (A, B) pairs. Instead,
some lower bounds on ra( A, B) are obtained by using tensor
products. In the following, we use ®, V, and A to denote the
tensor product, the symmetric tensor product, and the skew-sym-
metric tensor product, respectively. A good reference in the basic
concepts of tensor product is [12]. Readers who are not familiar
with tensor products can follow the development in [16] which is
based on pure matrix arguments. (In {16], the symmetric tensor
product and the skew-symmetric tensor product are denoted by ®
and ® instead of V and AL

In the remaining part of this section, we use m to denote null( B).
The following three lemmas are stated without proof. Their proofs
can be found in [15].

Lemma 1: Let A, BER™ " be matrices with |ACA, B)| =
rank(B) and 0 ¢ {\, + AN, N;€A(A, B)}. Then

a) muil(A®B+BR®A) =m?,

b) mll(AVB+ BVA) = tm(m+ 1),

© null(AAB+ BAA) = 1m(m - 1).

Lemma 2: Let A, BeR"*" be matrices with (A, B) nonsingu-
lar and A(A, B) N (@° \ {0}) # &. Then

a) muil(A®B+B®A)=m?+2,

b) mll(AVB + BVA)y= tm(m+ 1) + 1,

) mll(AAB+BAA) = im(m - 1) + 1.

Lemma 3: For each A, Be @"*",

1
21 8] Otntn+n-imm+(AVB + BV A) < g(A4) (12)

1

ma%n(n~l)—%m(m—l)(‘4 AB + BAA) SQ(RZZ) (13)

where R,, is given by (1).

The main result of this section which gives the lower bounds of
ra( A, B) is as follows.

Theorem 2: Let A, BeR"*" be matrices with (A, B) stable
and |A(A, B)| = rank(B). Then

ra( A, B) = min {g(A), Op_mr_(A®B

2|1 8]

+B®A),g(Rzz)} (14)

1
lm(m+1)(“1 VB

re(A, B) = min 1 _1
LR( ) {2”3” Olntn+1)-4

+BVA),g(R22)} (15)

889

. 1
rm(A,B) = min Q(A)’m%n(n—l)—;‘m(m—l)("l ANB
+B/\A)} (16)

where R, is given by (1).
Proof: If we can prove the following inequalities:

ra(A,B) = : ((A®B+B®A) (17)

0,2,
28| "

1
ra (A, B) = 21B] Tinn+1y=tmm+1,( AV B + BV A) (18)

1
ra(A4,B) = ma%n(n‘”‘_;m(m_,)(A AB+BAA) (19)

then inequalities ( 14)-(16) follow immediately from Proposition 1,
Lemma 3, and identities (7) and (8).

Assume [|AA| < 1/2||B)o,_ 2 (AR B + B ® A). Then
1A A ®B+B®AA|| <2[aAl | B

<0z m_ (A®B+BQ®A).
This implies that the nullity of
(A+AA)®B+B®(A+AA) =A®B+B®A

+AAQ®B+B®AA
is less than m? + 2. By Lemma 2, A(A + A A, B) has no element
in €° \ {0}. Therefore, if A(A + A A, B) N {8°\ {0}} # &,
[AA] must be greater than or equal to 1/Q2 | BlDog_ e,
(A® B+ B® A). This proves (17). Similar arguments can be
used to prove (18) and (19). O

Compared to lower bound (10), the lower bounds (14)-(16) may
produce better or worse results. This will be shown by examples in
the next section.

It is of interest to give a comparison between the three lower
bounds given in Theorem 2, i.e., it is desired to determine
which bound is the best and which is the worst. We know that the
tensor product space can be decomposed as the direct sum of the
mutually orthogonal symmetric tensor space and skew-symmetric
tensor space, and under this decomposition, we have the following
representation:

A®B+B®A=[AVB+BVA 0
0 AANB+BAA|

It is known that if (A, B) is stable and | A(A, B)| = rank(B),
then Otnnt 1) imm+y(AV B + BV A) and O dntn—1)= tm(m—1)
(A AB + BA A) are the smallest nonzero singular values of (A4 v
B+ BVvA) and (AAB + BA A), respectively, and that
92_m2_ (A ® B+ B® A) is the second smallest nonzero singu-
lar value of A ® B + B ® A. Thus, O m2_1(A QB+ B® A)
must lie between Ointn+ - tmmsy(A VB + BV A) and
Cntn-1-imm-1(A A B + B A A). Examples show that
both %intn+ 1)~ tmm+ 1 (AV B + BV A) and T 3ntn—-1)— im(m-1)
(AAB+ BAA) can in fact be equal to the smallest nonzero
singular value of 4 ® B+ B ® A. The conclusion is that among
the three bounds (14)-(16), both bound (15) or bound (16) can be
the best or the worst, and bound (14) always lies between bounds
(15) and (16).

When A4, B are in R"*", the matrix representations of 4 ®
B+B®A, AVB+BVA,and AAB+ BAA are of n x
. gn(n + 1) X in(n + 1), and n(n — 1) x in(n - 1),
respectively. If n is small, the singular values of these matrix
representations can be computed easily. If n is large, the iteration
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method developed in [17] for the singular valuesof A ® I + I ® A,
AVI+IVA,and ANT+ IAA can be easily extended to com-
pute the required singular values of A ® B+ B® A, AVB + B
VA,and ANB+ BAA.

V. EXAMPLES

The first example shows that the lower bound of the real stability
radius obtained by using the tensor product can have an arbitrary
degree of improvement over the lower bound obtained from the
complex stability radius.

Example 1: Let

-1 kK 0 1 0 O

A=|-1 -1 0f B=|0o 1 0 where k = 1.
0 0 5 0 0 O

Corollary 1 gives

-1 —jw k 0

r.(A,B) = infg -1 —1-jw O
weR

0 0 5

- inf -1 - jw k
et -1 —1-je

inf -1 —jw k
mbell —1 S1-je

()
=g .
- -1 -1 -jw wm ViTT

(L+ k) = V(1 + k) - 16k }

where

2

which goes to zero as k = .
It is easy to verify that

g(A)=9([:i —kl])

34 k2= V(K2 + 1) -8k +4
2

that R,,, given by the decomposition (1), is equal to 5, and that
1 1
507(,4 ®B+BRA) = 505(14 AB+ BAA) =1

for all k = 1. Therefore, inequalities (14) and (16) in Theorem 2
give that

ra(A,B)=1.

This shows that the lower bounds (14) and (16) can have an
arbitrary degree of improvement over the lower bound (10).

The second example gives an application of the stability robust-
ness analysis of matrix pairs, and also shows that the lower bound
(10) can be better than the lower bounds (14)-(16).

Example 2 (Application to Singularly Perturbed Systems): A
homogeneous singularly perturbed system is described by a state-

space equation in the form [8]
Ay Apl|lx
Ayl z

x
ez |4y
zeR™, and A i,j= 1,2 are matrices of

(20)

where xeR™, i
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compatible sizes. Let

A= All
A21

A, I 0

s E= .
Ay 0 0
It is known that if A,, is stable and (A, E) is stable, then there
exists e* > 0 such that for all € € [0, €*], system (20) is asymptoti-
cally stable. Now suppose that matrix A is subject to an unstruc-
tured real parameter perturbation A A. Then the perturbed system is

given by
[Exz] = (A+ AA)[:].

Hence, we can see that the perturbed system has the previous
stability property for all A A with ||A A|| < 6 if and only if

d=min{r (Ayn.I).ry(A, E)}.

Here we include a numerical example to illustrate the bounds
obtained in this note. The following singularly perturbed system
represents a voltage regulator controlled by a so-called corrected
near-optimal state feedback law [8]:

-0.2 0.5 0 0 0
% 0 -0.5 1.6 0 0
[62] = 0 0 ~1.429 8.571 0
0 0 0 =25 7.5
-2.754 -0.57 -0.033 -0.114 -1.0861

’ [ Z]
where x € J! N ZeR". Corollaly 1 y1elds

ro(Ay, I) = jr;l;g(Azz — jwI) = 0.1094

and it follows from Theorem 2 that

\

1
ra( Az, I) = min {Q(Aﬂ)’508(A22®1+]®A22)}

min {0.1094,0.2282} =0.1094

1
ra(An. 1) 2 50(An VI + 1V Ay)=0012

v

1
ra( A, 1) = min {Q(Azz)’ 59(A22A1+ [/\Azz)}

min {0.1094,0.2282} = 0.1094.

In this case, lower bounds (10), (14), and (16) produce the same
result, namely that rp(A,,, I) = 0.1094. Since r (Ay,I) =
0(Ay) =0.1094 by Proposition 2d), we actually have that
ry( Ay, I) = 0.1094.

From Corollary 1, we obtain

ry(A,E) = inf (A - joE) = 0.1094
WER
whereas from the bounds given in Theorem 2, we obtain

1
ru( A4, E) = min {Q(A), Fois(4 ®E+E®A),9(A22)}

It

min {0.5047,0.0919,0.1094} =0.0919

ru(4, E)

[\

1
min{Eog(A \/E+EVA),g(A22)}

min {0.0919,0.1094} =0.0919

v

rq(A, E) min{g(A),%(ﬁ(A ANE + E/\A)}

min {0.5047,0.0120} =0.0120.

Downloaded on April 14,2021 at 06:18:39 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 6, JUNE 1992 ‘ 891

In this case, the result obtained from lower bound (10) is the best.
In fact, since we also have r,(A, E) < o(A,) = 0.1094 by
Proposition 2e), the bound is exact, i.e., ra(A, E) = 0.1094.

We conclude that the uncertain singularly perturbed system main-
tains the desired stability property for all real unstructured perturba-
tions A A with ||[A A| < é if and only if § < 0.1094.
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A Simple Method for Deriving J-Spectral Factors
U. Shaked and I. Yaesh

thod

Abstract—A simpl is pr d for deriving the J-spectral
factor of a transfer function matrix explicitly in terms of the parameters
of this matrix. This method provides closed-form expressions for the
J-spectral factor and its inverse which only require a solution of a single
linear Sylvester equation. This method can be easily applied in the
solution of the H_-optimal regulation problem and it provides a useful
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geometric insight to the structure of the optimal regulator return
difference matrix.

I. INTRODUCTION

J-spectral factorization [1] has been recognized lately [2]-[4] as
an important tool for solving and investigating H,_ -optimization
problems. Similar to the application of the standard spectral factor-
ization in the L,-optimization problem, the J-spectral factor is a
transfer function matrix of a causal system whose inverse is analytic
in the right half plane. It readily yields the return differencc matrix
of the H_-optimal regulator and it can therefore be used in the
derivation of the optimal regulator gain without solving the modified
Riccati equation of {5].

Unlike the standard spectral factorization where the spectral
factor can be found for almost all para-Hermitian transfer function
matrices [6], the J-spectral factor does not always exisi. Its exis-
tence depends on the special structure of the transfer function matrix
to be factorized; in fact, it exists whenever the Hankel norm of a
related transfer function matrix is less than one [1]. In the H_-
optimization problems the latter condition depends on a positive
scalar v that is related to the H_ -norm of the transfer function to be
minimized. For large enough values of y > 0 there always exists a
solution to the H_-optimization problem. As we reduce the value of
Y we arrive at a critical point vy, under which there exists no
solution to the problem.

The problem of J-spectral factorization is closely related to the
BGK Wiener-Hopf factorization theory of [7]. The latter theory can
be applied (see the recent paper [8]) to obtain the J-spectral factor
in terms of the modified Riccati equation of [5] (a closely related
result appears also in {3]). J-spectral factors can be also computed
using the observability and controllability Gramians that can be
computed by solving a couple of Lyapunov equations [1].

In the present note, an alternative method is presented to derive
J-spectral factors. The partial fraction expansion of the transfer
function matrix to be factored is used as a starting point, and then a
solution of a single Sylvester equation is shown to provide the
required J-spectral factor. Our derivation is direct and does not use
the Riccati equation approach of [8]. We explore, however, the
relation of the latter to our method. We also show how our method
copes with the existence problem of the J-spectral factor and what
happens at the critical point of v,.

II. THE J-SPECTRAL FACTORIZATION

We consider the following J-spectral factorization problem. Given
®(s) =J+ G(s)G'(-s) (1)

where G(s) is a strictly proper asymptotically stable (m + /) X g
transfer function matrix and

J = diag {1,,. - I} @)

It is desired to find the (left) J-spectral factor A(s) that satisfies the
following:

A(s)Ia'(=s) = &(s) 3)

where A~1(s) and A(s) are analytic in the RHP.

We denote the minimal state-space realization of ®(s) by S(A,
B, C, J). Since J is nonsingular, we readily find that the state-space
realization of ®~'(s) is S(A — BJC, BJ, — JC, J). We assume
the following.

Assumption 1: ®~'(s) has no eigenvalues on the imaginary
axis.
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