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1 I n t r o d u c t i o n  

The last 20 years have seen remarkable progress in the evolution of optimization- 
based control theory and design techniques. The new theories, apart from their 
theoretic elegance, have proven effective in various applications. However, the 
solutions of control optimization problems, in most cases in terms of numeri- 
cal algorithms, do not provide a clear picture on the relationship between the 
optimal performance of the controlled system and the characteristics of the 
plant to be controlled, nor do they provide a clear idea on the effect on opti- 
mal performance attainable, due to changes in plant parameters, allocation of 
actuators and sensors, and choice of control structures. 

On the other hand, control practice has long furnished heuristic as well 
as empirical understanding of the difficulty in feedback control due to plant 
characteristics, given in terms of rules-of-thumb largely applicable to scalar 
systems. For example, it is known that nonminimum phase systems are dif- 
ficult to control, and that unstable poles close to nonminimum phase zeros 
pose additional difficulty. There has been effort to quantify such rules-of- 
thumb and to extend them to multivariable systems, and the subject itself has 
matured into a fruitful research area. Good results, mostly in the frequency 
domain, have been obtained to quantify, and to explain various design lim- 
itations and tradeoffs in multivariable feedback control. See [7, 15] and the 
references therein for the state-of-the-art. 

In this paper, we survey some recent results which discuss fundamental 
limitations in achieving time-domain performance objectives. In particular, 
we consider the limitations in achieving small mean-square errors which are 
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to occur in tracking and in regulation. The materials are mainly based on 
[3, 16] but  we put  them in a more unified framework. Our purpose is to show 
a fundamental  relationship between certain performance measures defined in 
the t ime domain, and such simple plant characteristics as poles and zeros. The 
results will complement those quantified in the frequency domain, obtained 
elsewhere previously. We present these results for both  continuous-t ime and 
discrete-time systems, with an emphasis on the continuous-time case. The  
discrete-time case is included since, apar t  from its own interest, it is essential 
for the s tudy of sampled-data systems. 

Finally a note on the notation: A signal in the time domain is denoted by a 
lower case letter, such as r,  and a system, viewed as an inpu t /ou tpu t  operator ,  
is denoted by a capital letter, such as F .  The  t ime domain to frequency domain 
t ransform (Laplace transform in the continuous t ime case and A-transform in 
the discrete t ime case) is denoted by a hat  " ^ ", i.e., ~ is the Laplace or A- 
transform of r. If F is LTI, F represents the transfer function of F .  For any 
two nonzero vectors u and v with the same dimension, an angular measure is 
provided by 

Z(u, v) = lu*vl 
Ilull llvll2" 

2 P r e l i m i n a r i e s  

Let F be the real rational matr ix transfer function of a continuous t ime FDLTI  
system F.  Assume that  F is right invertible. The poles and zeros of F ,  
including multiplicity, are defined according to its Smith-McMillan form. F is 
said to be minimum phase if all its zeros have a nonpositive real part;  otherwise, 
it is said to be nonminimum phase. Moreover, l ~ is said to be semistable if all 
its poles have a nonpositive real part ,  and otherwise strictly unstable. A pole 
is said to be antistable if it has a positive real part .  

Suppose that  F is stable and z is a nonminimum phase zero of F .  Then,  
there exists a uni tary vector y such that  

= o. 

We call y a (left or output)  zero vector corresponding to the zero z. Let the 
nonminimum phase zeros of if" be ordered as as zl ,  z 2 , . . . ,  z~. Let also ~/1 be a 
zero vector corresponding to zl. Define 

jW 0 "[- Z~ 8 - -  Z l  

jwo - z1 8 -{- z~  

(s) = 1 yl*, 

1 
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where Wo G^[0, oo] and V1 is a uni tary  mat r ix  with the first column equal to ~/1. 
Note tha t  F1 is so constructed tha t  it is inner, has only one zero a t  zl with th 
as a zero vector, and additionally, F1 (jwo) = I .  Note also tha t  the choice of 
other  columns in VI is immaterial .  Now F1--I # has zeros z2, z a , . . . ,  zv. Find a 

zero. vector ~ corresponding to the zero z2 of F I - I F ,  and define 

= v2  

jwo + z~ s - z2 

jw0 - z2 s + z~ 

1 

where similarly, V2 is a uni tary  mat r ix  with the first column equal to  3 -  
I t  follows tha t  Fu--1F~IF has zeros z3, z 4 , . . . ,  z~. Continue this process until 

7h,. �9 �9 ~/~ and F1,- -- ,  F~ are obtained. Then we have one vector  corresponding 
to each nonminimum zero, and the procedure yields a factorization of F in the  
form of 

P = 

where F0 has no nonminimum phase zeros and 

jwo + z* s - zi 

jwo - zi s + z~ 

= Yi 1 V S � 9  

1 

Since Fi is inner, has the only zero at  zi, and has th as a zero vector  corre- 
sponding to zl, it will be called a mat r ix  Blaschke factor. Accordingly, the 
product  

will be called a mat r ix  Blaschke product .  The  vectors t h , . . . ,  ~/~ will be  called 
Blaschke vectors of F a t  frequency Wo. Keep in mind tha t  these vectors de- 
pend on the order of the nonminimum zeros, and on Wo. I t  can be shown 
tha t  for a real rat ional  F the Blaschke vectors corresponding to  two complex 
conjugate zeros can be chosen as a complex conjugate  pair  provided t ha t  the  
two conjugate zeros are ordered consecutively. 

For an unstable F ,  there exist stable real rat ional  mat r ix  functions 

X - Y  M I )" 
~_ ~ , ^ 

- N  M /~ X 

such tha t  
^ - - 1  ^ 

P =  N, -I = N 



400 Q i u  a n d  Chela 

and 
X - Y  .17I I;" 

- N  M N 2 = I .  

This is called a doubly coprime factorization of F.  Note that  the nonminimum 
phase zeros of F are the nonminimum phase zeros of N and the antistable poles 
of F are the nonminimum phase zeros of 37I. If we order the nonminimum phase 
zeros of F as zl,  z2,. �9 �9 z~ and the antistable poles of F as p l ,p2, .  �9 �9 ,p~, then 

and M can be factorized as 

= ~1  . . .  5 r / t o ,  

= M I " ' M . M o ,  

with 

5r , ( s )  = 

M~(s) = U~ 

jw~ + z 7 s - z i  

j w z  - zi  s + z7 

jwp + p~ s - Pi 

jwp - Pi s + p ~  

1 

1 

1 

1 

V~', 

Here No and JP/0 have no nonminimum phase zeros, and wz need not be equal 
to wp; i.e.,/~r and J~/may be factorized at different frequencies. Consequently, 
for any real rational matrix F with nonminimum phase zeros Zx, z 2 , . . . ,  z~ and 
strictly unstable poles p I ,PZ, . . . , p~ ,  it can always be factorized to 

where 

~ = ~ P o P ;  1 , 

P~(s) = [ I v i  
i = 1  

p~(s) _- I I u ,  
i = 1  

jw~ + z~' s - zi 
jw~ - zi  s + z 7 

jwp+p~ s--pi 
jwp - Pi s + p [  

1 

1 

Yi* ' 

v;, 
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and Fo is a real rational matr ix with neither nonminimum phase zero nor 
strictly unstable pole. 

The relationship between zero vectors and zero Blaschke vectors is some- 
what  analogous to tha t  between eigenvectors and Schur vectors of a square 
matrix.  The eigenvectors are not in general completely defined in the sense 
that  one may not find an eigenvector corresponding to each eigenvalue (with 
multiplicity counted) with desired property, say linear independence. How- 
ever, a complete set of or thonormal  Schur vectors exist as long as an order 
of eigenvalues is specified. Likewise, it is difficult to define a complete set of 
zero vectors corresponding to each nonminimum phase zero, and it is not clear 
what  the desired property should be. Nevertheless, each Blaschke vector bears 
a natural  correspondence to each nonminimum phase zero. The  nice properties 
of the Blaschke vectors will become evident shortly. 

The above factorization can be extended to transfer function matrices of 
discrete-time systems with much similarity and some differences. Consider 
a real rational transfer function matr ix F of a discrete time FDLTI  system 
under A-transform (A = l / z ) .  Let us assume that  F is right invertible, and its 
poles and zeros with multiplicity included are defined according to its Smith- 
MacMillan form. Then F is said to be minimum phase if all its zeros have 
an absolute value no less than one, and otherwise nonminimum phase. It  is 
said to be semistable if all its poles have an absolute value no less than  one; 
otherwise, it is said to be strictly unstable. A pole is said to be antistable if it 
has an absolute value less than one. 

At this point, we would like to emphasize that  if z-transform is used for the 
transfer function instead, then the zeros at infinity should be considered non- 
minimum phase zeros. For example, transfer functions z -1 and ~ represent 
nonminimum phase systems. This viewpoint is also more consistent with the 
definition of an outer function, i.e., a stable transfer function is outer  iff it is 
minimum phase. Ambiguity often arises in this situation since in the contin- 
uous t ime case zeros at  infinity are not considered nonminimum phase zeros. 
The  reason is that  in the continuous time case infinity is on the boundary  of 
the stability region, whereas in the discrete time case when the z-transform is 
used, infinity is an interior point of the instability region and therefore should 
be considered the same as any other point in the same region. On the other  
hand, if A-transform is used, the zeros at infinity are mapped to the origin, 
and so no confusion is likely to arise. 

Based upon transfer functions under A-transform, and using an analogous 
procedure, we may factorize F with nonminimum phase zeros Zl ,Z2 , . . .  ,z,, 
and antistable poles Pl, P2 , . . . , P~  as 

= 1 , 
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where 

Pz( ) = V, 
i = l  

i = l  

1 - z ~ e  ~176 A - z i  

~ " "  - z i  1 - z~  )~ 

1 - p * d  '~ )~ - Pi  

~,o~ _ p i  1 - p~ ~ 
1 

1 y m, 

1 

1 

and F0 is a real rational matrix with no nonminimum phase zero or anti- 
stable pole. It thus becomes clear that any FDLTI system F,  whether it is 
a continuous-time or discrete-time system, can be factorized into the cascade 
interconnection shown in Figure 1. In this factorization, Fo is a minimum 

Figure 1: Cascade factorization 

phase and semistable system, Fzi and Fpi are matrix Blaschke factors with 
certain special properties. 

3 Frequency domain characterizations 

+ '  K 
U Z 

Figure 2: Unity feedback 

Consider the unity feedback system shown in Figure 2. Assume that K and 
G are SISO LTI systems with real rational transfer functions/~ and G respec- 
tively. The loop gain is defined as L = G/~. The sensitivity and complemen- 
tary sensitivity functions are defines as 

~' ---- (1 + L) - I  and T = ]_,(1 + L) -1 
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respectively. Assume that  L has antistable poles pi,/92,...,p~,, and nonmini- 
mum phase zeros Zl, z2 , . . . ,  zv. Then, L has the factorization 

L = L ,LoL;  1, 

with L0 being a real rational function of poles and zeros only in the closed left 
half plane, and L,  and Lp being the Blaschke products associated with the 
nonminimum phase zeros and the antistable poles, respectively: 

L ~  ( s )  = z A - 8_ p~ - s z* + s and Lp(s) = . 
i=1 i=1 Pi "~ 8" 

Suppose that  L is proper (L(oo) is finite), and that  the feedback system is 
internally stable. Then we have 

�9 Bode S-integral 
^ 

f0 ~ s(j~) . 8[~(8) - ~(o~)] " log dw = 7r E Pi, IS(~176 I li~m~176 ~( - -~  + i = 1  

�9 Bode T-integral 

f0 ~176 dw _ 7r lim 7~(s) - 7~(0) 1 
log T(0) w 2 2 8~0 sT(0) + Ei=l --'zi 

�9 Poisson S-integrals 

f_,o = ~l~ IL;l(z~)l, = 1 ,2 , . . . ,v ,  
Rezi 

o~ log IS0w)l" [j~-- ~12 dw i 

�9 Poisson T-integrals 

f ?  Repi log [7~(jw)] [j w _ Pi[2 dw = r log [L~ -1 (pi)[, i = 1, 2 , . . . ,  #. 
oo 

In the discrete time case, L can be factorized similarly as 

L = LzLoL;  1, 

(1) 

(2) 

(3) 

(4) 

with Lo being a real rational function with no poles and zeros inside the unit 
circle, and Lz and Lp being the Blaschke products associated with the strictly 
nonminimum phase zeros and the strictly unstable poles, respectively: 

l~I A - z i  I I  A - P /  L~(A) = z-~- - -1 and Lp(A) = p~.*A ---1" 
i = 1  i = 1  

Under the condition that L is proper (L(0) is finite), and that  the feedback 
system is internally stable, we have 
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�9 Bode S-integral 

fo~ log ,.~(ei') ] dw 

�9 Bode T-integral 

f0 " ~5(ei~) dw 
log 

T(1) l - c o s w  

Poisson S-integrals 

/_~logj,~(ei,o)l ~12 - -1  dw 
eJ - pd 2 

�9 Poisson T-integrals 

f . f  Ipll 2 - 1 log I (eJ ')l leJ" - pd 

= ,  lim log JS(A)I + ~r Z log ~ ,  (5) 
X---40 i=l 

~r lira ~(A) - T(1) ~ 1 + zi 
T(1) x-~l ~ ~- + 7r 1 -- zi  i=l 

= 27r log IL~ -1 (zi)l, 

(6) 

dw = 2r log IL; 1 (pi)J, 

i = 1 ,2 , . . . ,v ,  (7) 

i---- 1 ,2 , . . . , # .  (8) 

The performance limitations characterized by the above integral relations 
(except (5) and (6)) exhibit an interesting symmetry between sensitivity func- 
tion and complementary sensitivity function, poles and zeros, etc.; see [9] for 
more details. These frequency domain characterizations have the following 
features, which may be undesirable in certain applications. The performance 
limitations characterized by the above integral relations (except (5) and (6)) 
exhibit an interesting symmetry between sensitivity function and complemen- 
tary sensitivity function, poles and zeros, etc.; see [9] for more details. These 
frequency domain characterizations have the following features, which may be 
undesirable in certain applications. 

�9 Sometimes it may not be desirable to characterize performance of a feed- 
back system in terms of logarithmic integrals of S and/or T, or pointwise 
in frequency; such is the case, for example, when the minimal 7/~ norm 
is sought after. Under this circumstance, the integral formulas give only 
indirect quantifications of the performance limitations and their interpre- 
tations must be carefully and delicately done. Nevertheless, one should 
note that the logarithmic integrals can be weakened to yield bounds on 
the performance. 

�9 Since L contains both the plant G and the controller/s the limitations 
expressed by the logarithmic integrals depend on both the plant and con- 
troller. While this may be advantageous in some cases, often one also 
desires to know the a priori ,  intrinsic performance achievable by design- 
ing the best controller possible. The latter, therefore, should depend on 
the plant only. Again, it should be pointed out that the integrals can 
also be weakened to lead to inequality versions depending upon solely 
on the plant. 
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It is not clear from the integrals, even conceptually, what should be the 
time-varying and nonlinear generalizations of the limitations. (See [14] 
for an attempt.) 

The limitations are insensitive to controller used. For example, if the 
plant G is given with certain zero and pole pattern, then the integrals 
have the same values no matter what stabilizing controller K is used, 
as long as it does not introduce additional nonminimum phase zeros or 
antistable poles. Therefore, the Bode and Poisson integrals above may 
be more appropriately called performance invariances. 

4 M i n i m u m  error tracking  

We first consider a minimum error tracking problem. Let an FDLTI plant 

P be given with /5 = /.~ , where G has output z and H has output y. 

Assume that we wish to design a feedback controller K in the structure shown 
in Figure 3 so that the closed loop system is internally stable (in any reasonable 
sense) and the output of the control system z tracks a vector step signal r with 
r(t) = v when t > 0. 

Figure 3: A general two-parameter control structure 

In order for the problem to be solvable, we assume that/5,  G,/~ have the same 
unstable poles, and that 0(0) has full row rank. 

Let the tracking performance be measured by the energy of the tracking 
error 

J(v) = Hr(t) - z(t)H2dt. 

This performance depends on v. A performance measure free of v can be 
obtained by averaging J(v) over a reasonable set of v: 

Ja = E { J ( v )  : E(v)  = O, E(vv ' )  = I} .  

Here E is the expectation operator. The best tracking performance achievable 
by designing K is then given, in the two cases, respectively by 

J*(v) = inf g(v) 
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and 

J* = inf J . ,  

where K is chosen among all internally stabilizing (possibly nonlinear time- 
varying) controllers. 

Let a doubly coprime factorization of H be 

= ,~/f,/-1 .,~-1 ~ X - Y  M I ~ 
= N, ~_ ~. = I .  (9) 

- g  M N ~7 

Then by the standard stabilization theory [19], the set of all stabilizing con- 
trollers is given by 

0 I ]-1, (10) 
K =  [ Y + M Q  M R  ] X + N Q  N R  

where Q, R are arbitrary causal stable (possibly nonlinear time-varying) con- 
trollers. With this class of controllers applied to the system, the map from r to 
the error e = r - z is given by I -  G M Q .  Let G have nonminimum phase zeros 
zl, z2 , . . . ,  z~ with ~ ,  ~2, - . . ,  ~/~ being the corresponding Blaschke vectors at 
frequency 0. Since P,  G, H have the same unstable poles, G M  is stable and it 
has the factorization 

dM = ~ 1 ~ " "  ~ 0 ,  

where 

~i(s) =Vi 

z i 8 - -  z i  

z i  s + z i 

1 
Vi* = I 

1 

2 Re Z i 8 
Zi 8 q- Z * ~i~*' 

and Go is outer in 7/00. Using the Parseval's identity, we obtain 

J(v)  = II+-G~G2""G:Go~II~ 

= II(G: ~ " G ~ G ~  - I ) '  ~ + ('~ - G o ~ ) l l ~ .  

Here the second equality follows from the fact that  Gi are unitary operators 
in s When r is a step signal, (r . . .  ~ 2 1 ~ - 1  _ I)~ ~ 7/2 -c. Hence J(v)  is 
finite only if ~ - GoQ'r E s Since Q is causal, we must have ~ - GoQ~-r E 7-/2. 
Therefore, 

J(v) = I1(0~ *--. O~xO~ ~ - I)ellg § I1~- Oo~llg ~ I1(0; *..- 0~ ~o~ -~ -/)ellg. 
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On the other hand, since Go has a dense image in 7/2, we can find an LTI 
system Q such that G(0)Q(0) = I and II[I - Go(s)Q(s)]~H~ is arbitrarily 
small. Therefore, 

J*(v) = I1 (0 ;~  . . .  O ~ - ' O ;  -~ - *) ,~lg.  

Straightforward computation then shows that 

J ' ( v )  = H(O~ -1...G~-xOF a - I)#11~ = v* 2 7/r,i~i v 
i=1 

= ~- l l v l l ~ - 1  cos= L(v,,7,). 
i=l  Zi 

Since a nearly optimal Q, i.e., a Q such that I I [ I - G o  (s)Q (s)] ~ 1t2 is vanishingly 
small, can he chosen independently of v, we have 

J~ = i~ f {EJ(v )  : E(v )  = O,E(vv*) = I}  

= { E J * ( v ) :  E(v )  = O,E(vv*) = I}  

1 . 

= 2 -~i" 
i=1 

We have thus established the following theorem. 

T h e o r e m  1 Let 0 have nonminimum phase zeros zx,z2, . . . ,z~ with 
711, ~12,..., 71~ being the corresponding Blaschke vectors at frequency O. Then 

1 
J*(v) = 211vll] ~ - cos ~ / ( v ,m)  

i=l  Zi 

and 

Remarks:  

J:=2Z- 
i = l  z i  

1. The limiting performance does not change if the controller is chosen from 
the set of LTI controllers or the set of nonlinear time-varying controllers, 

2. The limiting performance does not depend on the poles of the plant, 
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3. The limiting performance does not depend on how the measurement is 
taken as long as the measurement does not introduce additional unsta- 
ble poles and the stabilization can be accomplished by the measurement. 
This makes sense since the measurement does not provide any extra infor- 
mation on the behavior of the system when no uncertainty or disturbance 
is present. 

The performance limitation exhibited in Theorem 1 is a fundamental one 
imposed by the plant. Since two-parameter control is the most general control 
structure, no other control scheme can do better. The use of other less gen- 
eral control structure can only introduce additional limitation. For example, 
robustness consideration motivates the use of error feedback in the tracking 
problem. If the one-parameter unity error feedback structure as in Figure 2 is 
used, it is shown in [3] that if the plant P is strictly unstable, then the best 
achievable performance will be worse than that given in Theorem 1. In this 
case, additional limitation on the tracking performance is introduced by the 
control structure. This provides further quantitative support to the observa- 
tion made in [19] that one-parameter controller does not have enough freedom 
to accomplish both stabilization and tracking effectively. To take advantages 
of error feedback and two-parameter control, we may use the control structures 
shown in Figure 4 and Figure 5. 

Figure 4: Separating stabilization and tracking error feedback 

Figure 5: Feedback plus feedforward tracking 

For discrete-time systems, analogous results can be obtained. Consider 
again the feedback controller structure in Figure 3 and a discrete-time FDLTI 

plant P, with/5 = /-t . Assume that we wish to design a feedback controller 
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K so that the closed loop system is internally stable (in any reasonable sense) 
and the output of the control system z tracks a vector step signal r with 
r(k) = v when k _> 0. Define the tracking error by 

J(v) = ~ l i t ( k )  - z(k)ll 2 
k = O  

and the average tracking error by 

Ja = E { J ( v )  : E(v )  = O, E(vv ' )  = I} .  

The best tracking performances achievable by designing K are then given by 

and 

J*(v) = i~f J(v) 

T h e o r e m  2 Let G has nonminimum phase zeros Zl, z 2 , . . . ,  zv with rh, 3 , . . . ,  r/~ 
being the corresponding zero Blaschke vectors at frequency O. Then 

l + z i  
II~ ~ COS2 Z(V, Tli) J*(v) = IIv 1 - 

i = 1  

and 
3 - = ~  l+zi_ 

1 z~ 
i----1 

5 Minimum energy regulation 

Next, we consider a minimum energy regulation problem. Let G be a given 
plant. Assume that we wish to design a feedback controller K in the structure 
shown in Figure 6 so that the closed loop system is stable. Assume that d is 
a vector impulse signal d(t) = v6(t). The input energy is given by 

~0 ~ E(v)  = Ilu(t)ll~dt. 

A normalized average input energy independent of v can be obtained as 

E~ = E { E ( v )  : E(v )  = O, E(vv ' )  = I} .  

3~ = inf J~, 

where K is chosen among all internally stabilizing^(possibly time-varying, non- 
linear) controllers. Similarly, we assume that P,  G, H have the same unstable 
poles, and that 0(1) has full row rank. 
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d 

Figure 6: Feedback plus feedforward regulation 

The minimum energy required in stabilizing the system is then determined as 

E' (v )  = inf E(v) 

and 
E: = i~f Ea, 

respectively, where K is chosen among all internally stabilizing (possibly non- 
linear time-varying) controllers. 

Let a doubly coprime factorization of G be given as that of H in (9), and 
the set of all stabilizing controllers K be as in (10). The map from d to the 
input u is then given by 

M ( Y  - R1V) + M Q  - I. 

Write 
Q = Qo - (Y - RR).  

Then, according to the Parseval's identity, and in light of the fact that the 
map from Qo to Q is bijective over the set of all causal stable systems, we 
have 

E*(v) = inf [[/QQod- d[[~ 
Qo stable 

Let G have antistable poles P l ,P2 , - - . ,P ,  with r r  r being the corre- 
sponding Blaschke vectors at the frequency oo. Then/Q has the factorization 

M = 

where I 8--Zi 
s + z *  

Mi(s) = Ui 1 
... 

and/~lr 0 is outer in 7-/oo. It follows that 

v , ' = i  

1 

2 Re Pi . 

= II(MoQo"-'d - d) + ( I  - M~-~-- .  2 ~ l M f - ~ ) d l l  ~ 
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Since ( I - I Q ~  1.-- ~/~-l)~ E 7/~L, ii~/~od_ Jii 2 is finite only if/QoQood-d e s 

Since Qo is causal, we mush have ~QoQo-'-d - a E 7/2. Therefore, 

E(v) = [l/QoQood-all~ +[I(I-/Q~ ~.../Q21Mll)dII2 2 _) I f ( I - - M ;  I . - -  M l l ) d l [  2. 

On the other hand, since Mo has a dense image in 7/2, we can find an LTI 
system Qo such that I[,~?/oQo - 11t2 is arbitrarily small. Therefore, 

Straightforward computation shows that 

E * ( v ) = v *  2 P i l l  * v = 2 1 1 v  picos2/(v,~i).  
\ i = l  / i = 1  

Since a nearly optimal Qo, i.e., a Qo such that IIMoQ0 - III2 is vanishingly 
small, can be chosen independently of v, we have 

P 

E :  = 2 p, .  
i = 1  

This proves the following theorem. 

T h e o r e m  3 Let G have antistable poles Pl , P2, . . . , P~ with ~1, ~2, . . . , ~,  being 

the corresponding pole Blaschke vectors at the frequency oo. Then,  

I.t  

E'(v) = 211vll ]  ~Z.P, c~ r 
i=l  

and 

E~* -- 2 ~ p i .  
i = 1  

Remarks:  

1. The limiting input energy does not change if the controller is chosen from 
the set of LTI controllers or the set of nonlinear time-varying controllers, 

2. The limiting input energy does not depend on the zeros of the plant, 

. The limiting input energy does not depend on how the measurement is 
taken as long as the stabilization can be accomplished by the measure- 
ment. This makes sense since the measurement does not provide any 
extra information on the behavior of the system when no uncertainty or 
disturbance is present. 
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In practical situations, the excitation (considered as a disturbance) signal 
may not be accessible. A natural question is then if the measurement feed- 
back structure in Figure 7 would lead to the same performance limitation? 
The answer is yes if and only G is minimum phase. Consequently, in order 
to achieve good performance in regulation, measurement variables should be 
selected, whenever possible, in such a way that the input to measurement 
transfer function is minimum phase. This is the case when the measurement 
vector contains all states. 

Figure 7: Measurement feedback regulation 

Finally, for discrete time systems, the same problem can be studied but 
the result takes a different form. Indeed, assume that d is a vector impulse 
signal d(k) = v~(k) and define the input energy measures similarly by 

O O  

E(v) = ~ Ilu(k)ll 2, 
k = l  

and 

Ea = E { E ( v )  : E (v )  = O, E(vv ' )  = I} .  

Furthermore, define the optimal versions of E(v)  and E,, as 

E*(v) = inf E(v)  

and 

E: = inf E, 

respectively. Here K is, likewise, chosen among all internally stabilizing (possi- 
bly time-varying, nonlinear) controllers. It turns out a clean formula for E* (v) 
as in Theorems 1-3 is not available in this context. 

T h e o r e m  4 Let G have antistable poles Pt , /~ ,  . . . ,P~,. Then, 

= 1 -  IIp - 
i = 1  
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6 Concluding remarks 

It is observed (first in [16]) that in the continuous-time case the sum of the 
reciprocal of the nonminimum phase zeros, interestingly, shows up in both the 
Bode T-integral and the expression of the minimum tracking error, and that 
the sum of the antistable poles shows up in both the Bode S-integral and the 
expression of the minimum regulation energy. Notice that in the special case 
when G is stable and the unity feedback in Figure 2 is used, the minimum 
tracking error can also be defined, via the Parseval's identity, in the frequency 
domain as 

inf 1 [ o o  2 dw J; * - -  - Jo IIS(j )IIF - . ( 1 1 )  Kstabilizing 71" 

Furthermore, notice that in the special case when G is minimum phase and 
the feedback control structure in Figure 7 is used, the minimum regulation 
energy can be defined, via the Parseval's identity, in the frequency domain as 

E~ = inf 1 foo [[T(Jw)[[2F dw. (12) 
Kstabilizing 71" J o  

This leads to the speculation that there may be a deep connection between the 
square integrals (11-12) and the Bode type logarithmic integrals. Investigation 
is being undertaken to clarify this issue. 

In the continuous-time case, we again observe a nice symmetry between the 
tracking problem and the regulation problem, which complements the symme- 
try between the Bode type sensitivity and complementary sensitivity integrals. 

In the discrete time case, the asymmetry between the tracking problem 
and the regulation problem (cf. Theorem 2 and Theorem 3) is not an isolated 
phenomenon. A similar asymmetry occurs between (5) and (6). 

Several other extensions of the problems and results in this paper have 
been studied recently or are currently under study, including: 

1. Minimum tracking error for sinusoidal signals [4]. 

2. Minimum tracking error in systems with delays [3]. 

3. Tracking and regulation performance limitation of sampled-data systems. 

4. Time domain performance limitation in filtering and estimation problems 
[17]. 
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