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Abstract: In this paper, we consider state estimation over a network subject to limited sensor
communications. A sensor needs to decide when to send its local state estimate to a remote
estimator in order to minimize the average estimation error at the estimator subject to that
the total communication time is no more than a pre-specified value. We propose a novel sensor
schedule that combines conventional time and event-based methods and demonstrate that the
estimator performance is improved compared with the optimal time-based schedule and the
computation complexity is reduced compared with the optimal event-based schedule. Thus the
proposed schedule provides a tradeoff between the two classic approaches.

1. INTRODUCTION

The last decade has seen a growing interest in the area
of networked control systems (Hespanha et al. [2007]),
which, thanks to the recent advances in network infras-
tructure, communication architecture and computer tech-
nology, have a broad range of applications including trans-
portation, health care systems, agriculture, smart home
and smart grid, etc. New issues, however, arise when the
control loop is closed over a network. For example, network
induced delays and data packet drops may severely de-
grade system performance and may even cause instability.
Shared resources often imply no dedicated communication
paths between key components of the closed-loop control
system. Consequently sensor measurement data may not
be sent to the controller and control data may not arrive
at actuator at each time. If the resource is severely limited,
system performance will again be degraded and cannot be
guaranteed.

This paper focuses on the analysis and design of a net-
worked state estimator subject to limited communication
resources. Specifically, we consider the scenario when a
sensor can only communicate with a remote state estima-
tor m times within a time-horizon T ≫ m. Before we
present the main result of this paper, we briefly review
some related works in literature.

⋆ The work by L. Shi is supported in part by HKUST Direct
Allocation Grant DAG08/09.EG06. The work by K. H. Johansson is
supported by the Knut and Alice Wallenberg Foundation. The work
by L. Qiu is supported by HK RGC under project GRF619209.

Savage and Scala [2009] studied a special class of scalar
systems and proposed a solution to when should the sensor
send its measurement data so that the terminal error
covariance at the estimator is minimized. Mo et al. [2009]
considered when should the sensor send its measurement
data so that the average error covariance at the estimator
is minimized. By using convex relaxation techniques, a
suboptimal sensor schedule is given. A stochastic sensor
scheduling scheme was proposed in (Gupta et al. [2006])
and these authors provided the optimal probability distri-
bution over the sensors to be selected so that the expected
error covariance is minimized. Sandberg et al. [2008] con-
sidered estimation over a heterogeneous sensor network.
Two types of sensors were investigated: the first type has
low-quality measurement but small processing delay, while
the second type has high-quality measurement but large
processing delay. Using a time-periodic Kalman filter, they
showed how to find an optimal schedule of the sensor
communication.

The aforementioned work can be classified as finding
the optimal time-based sensor schedules. In other words,
the sensor schedules are computed before the system is
run and only depend on the running time. There is yet
another important class of schedules known as event-based
schedules. That is the time for the sensor to communicate
with the estimator depends on whether a pre-defined
event happens or not, e.g., the predicted estimation error
grows beyond a certain threshold. By properly designing
the event-triggering mechanism, the performance of the
estimator is often superior compared to using time-based
schedules.
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Åström and Bernhardsson [2002] considered a simple first
order stochastic system. They showed that for the same
average sampling rate, the event-based approach leads to
smaller state variance. A constant factor approximation
algorithm for event-based sampling was proposed by Cogill
et al. [2007]. The resulting sensor communication schedule
showed a tradeoff between communication rate and esti-
mation error. Real-time scheduling of stabilizing control
tasks was revisited in (Tabuada [2007]) and an event-
based approach was proposed which leads to guaranteed
performance while relaxing the traditional periodic exe-
cution requirements. Rabi et al. [2008] presented a novel
event-triggered sensing and actuation strategy for a class
of networked control systems where, within a given time
interval, the control signal can change values no more than
a prescribed number of times. In simple situations, the
authors were able to analytically derive the optimal time-
varying event detector. Ramesh et al. [2009] proposed a
novel architecture for control over wireless networks by
integrating the design of the media access control proto-
col. Different random access methods were classified and
an adaptive random access one using an event-triggering
mechanism for determining channel access was identified.
In (Li et al. [2010]) an event-triggered approach was used
to trigger the data transmission from a sensor to a re-
mote observer. The event-triggering rule was designed
to compute the minimum mean squared error (MMSE)
of the state estimate at the remote observer subject to
a constraint on how frequently the information can be
transmitted. Computing the optimal event-trigger rule was
shown to be computationally intractable when the state
dimension exceeds two or when the time-horizon is large,
in which cases, suboptimal rules were computed instead.
A related problem was considered by Imer and Basar Imer
and Basar [2010] where one observer agent needs to com-
municate its data with an estimator agent to minimize the
estimation error at the estimator subject to the constraint
that a limited number of communications is allowed in
between the observer and the estimator.

The main contribution of this paper is the introduction of a
novel sensor data scheduling architecture that is both time
and event-based. We first construct the optimal time-based
schedule under some mild assumptions. On top of this
optimal time-based schedule, an event-triggering mecha-
nism is introduced. Although this new schedule seems to
be even more complicated than the time-based or event-
based approach alone, by optimizing this event-triggering
mechanism, it is shown to have better performance than
time-based schedules and are computationally cheaper
than event-based ones. Thus the hybrid schedule provides
a tradeoff between these two classes of schedules.

The rest of the paper is organized as follows. Mathemat-
ical models of the system are given in Section 2. The
optimal time-based schedule is given in Section 3. Based
on this optimal time-based schedule, a hybrid schedule
is constructed in Section 4 and is shown to have better
performance. Some concluding remarks are given in the
end.

Notations: Z is the set of non-negative integers. N is the
set of natural numbers. k ∈ Z is the time index. R

n is
the n dimensional Euclidean space. S

n
+ is the set of n by n

Fig. 1. Proposed hybrid scheduling architecture for remote
estimation.

positive semi-definite matrices. When X ∈ S
n
+, it is written

as X ≥ 0. X ≥ Y if X −Y ∈ S
n
+. E[·] is the expectation of

a random variable and E[·|·] is the conditional expectation.
Pr(·) is the probability of a random event. Tr(·) is the trace
of a matrix. For functions f, f1, f2 : S

n
+ → S

n
+, f1 ◦ f2 is

defined as f1 ◦ f2(X) , f1

(
f2(X)

)
and f t is defined as

f t(X) , f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

t times

(X).

2. PROBLEM SETUP

2.1 System Models

Consider the following discrete linear time-invariant pro-
cess (Fig. 1)

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where xk ∈ R
nx is the process state vector, yk ∈ R

ny is
the observation vector, wk ∈ R

nx and vk ∈ R
ny are zero-

mean Gaussian random vectors with E[wkwj
′] = δkjQ ≥ 0,

E[vkvj
′] = δkjR > 0, E[wkvj

′] = 0 ∀j, k. The initial
state x0 is a zero-mean Gaussian random vector that is
uncorrelated with wk and vk and has covariance Π0 ≥ 0.
The pair (A, C) is assumed to be observable and (A,

√
Q)

is controllable.

Assume the sensor runs a Kalman filter to compute x̂s
k,

the local MMSE estimate of xk in (1). Let es
k and P s

k be
the estimation error and error covariance matrix, i.e.,

es
k , xk − x̂s

k, (3)

P s
k , E[(es

k)(es
k)′|y0, . . . , yk], (4)

which are computed through the following equations:

x̂s
k|k−1 = Ax̂s

k−1, (5)

P s
k|k−1 = AP s

k−1A
′ + Q, (6)

Kk = P s
k|k−1C

′[CP s
k|k−1C

′ + R]−1, (7)

x̂s
k = Ax̂s

k−1 + Kk(yk − CAx̂s
k−1), (8)

P s
k = (I − KkC)P s

k|k−1, (9)

where the recursion starts from x̂s
0 = 0 and P s

0 = Π0.

After x̂s
k is obtained, the sensor decides whether to send

it to the remote estimator. Let γk be the decision variable
at time k , i.e., if γk = 1, then x̂s

k is sent, and if γk = 0,
x̂s

k is not sent. Define a schedule θ as

θ = {γ1, . . . , γT } ∈ {0, 1}T .
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Under a given θ, the remote estimator calculates x̂k and
Pk: its estimate of xk and the associated error covariance.
The procedure of calculating x̂k and Pk depends on θ and
will be introduced in subsequent sections.

Let T ∈ N be the time-horizon, and define J(θ) as the
trace of the average expected estimation error covariance,
i.e.,

J(θ) ,
1

T

T∑

k=1

Tr (E [Pk(θ)]) . (10)

We are interested in finding a schedule θ ∈ {0, 1}T that
solves the following problem.

Problem 2.1.

min
θ

J(θ)

s.t.

T∑

k=1

γk(θ) = m

where m ≪ T denotes the maximum number of times that
the sensor can communicate with the remote estimator.

The constraint is motivated by, for example, limited com-
munication energy at the sensor or limited bandwidth of
the network. We consider T sufficiently large so that the
time needed by the Kalman filter at the sensor to enter
steady state is negligible when compared with T . Notice
that this is not such a restrictive assumption as P s

k typi-

cally converges to its steady-state value, P , exponentially
fast. Under this assumption, we may assume Π0 = P . As
a result, one easily obtains

P s
k = P , Kk = K = PC ′R−1, ∀ k ≥ 1. (11)

2.2 Kalman Filtering Preliminaries

Before we state the main results of the paper, we provide
a brief summary of some properties of the Kalman filter.
Define the following functions on S

n
+. First define h : S

n
+ →

S
n
+ as

h(X) , AXA′ + Q. (12)
Applying h to the previous error covariance matrix P s

k−1
corresponds to the time update of the Kalman filter.
Similarly, define the function g̃ : S

n
+ → S

n
+ as

g̃(X) , X − XC ′[CXC ′ + R]−1CX. (13)

Applying g̃ to h(P s
k−1) corresponds to the measurement

update of the Kalman filter. It is straightforward to verify
that the following (e.g., Lemma A.1 in Shi et al. [2010]).

h(X) ≤ h(Y ), g̃(X) ≤ g̃(Y ) , g̃(X) ≤ X, ∀ 0 ≤ X ≤ Y.

Some properties of es
k defined in (3) are summarized in the

next lemma.

Lemma 2.2. The following statements on es
k hold:

(1) es
k is independent of x̂s

k, hence E[(es
k)(x̂s

k)′] = 0.
(2) es

k is independent of wk1
and vk2

for any k1, k2 ∈ N

and k1 ≥ k, k2 ≥ k + 1.
(3) es

k is independent of x̂s
k − Adx̂s

k−d for any d ∈ N.
(4) es

k is zero-mean Gaussian.

Proof : (1) Direct result from the orthogonality princi-
ple (Kailath et al. [2000]). (2) Write es

k as

es
k = (A − KCA)es

k−1 + (I − KC)wk−1 − Kvk. (14)

Thus es
k is a linear function of x0, w0, . . . , wk−1, and

v1, . . . , vk. Since x0, wk’s and vk’s are mutually inde-
pendent, the statement holds. (3) From (14), we see
that es

k is also a linear function of es
k−d, wk−d, . . . , wk−1,

and vk−d+1, . . . , vk. From (8), x̂s
k−d only depends on x0,

w0, . . . , wk−d−1, and v1, . . . , vk−d, thus x̂s
k−d is indepen-

dent of wk−d, . . ., wk−1 and vk−d+1, . . . , vk. From the
first statement, x̂s

k−d is independent of es
k−d. Therefore we

conclude that x̂s
k−d is independent of es

k. Together with the
first statement, we arrive at the fact that es

k is independent
of x̂s

k − Adx̂s
k−d. (4) Since x0, wk’s and vk’s are all zero-

mean Gaussian, from (14), es
k is also zero-mean Gaussian.

�

With some manipulation, P s
k can be shown to satisfy

P s
k = g̃ ◦ h(P s

k−1). Furthermore, the steady-state error

covariance, P , is the unique positive semi-definite solution
of g̃ ◦ h(X) = X (see Anderson and Moore [1979]).

Lemma 2.3. For 0 ≤ t1 ≤ t2, the following inequality
holds:

ht1(P ) ≤ ht2(P ). (15)

In addition, if t1 < t2, then

Tr
(
ht1(P )

)
< Tr

(
ht2(P )

)
. (16)

Proof: First notice that P = g̃ ◦ h(P ) ≤ h(P ). Therefore
by applying h on both sides of the inequality we get
P ≤ h(P ) ≤ h2(P ). Repeating the same procedure, we
obtain

P ≤ h(P ) ≤ · · · ≤ ht−1(P ) ≤ ht(P ), ∀ t ≥ 0.

Next assume P = h(P ). With some manipulation, we ar-
rive at Q = 0, which contradicts with the assumption that
(A,

√
Q) is controllable. Thus P 6= h(P ). Consequently if

t1 < t2, then ht1(P ) 6= ht2(P ). Therefore (16) holds. �

3. OPTIMAL TIME-BASED SENSOR SCHEDULE

In this section, we introduce the optimal time-based sensor
schedule. At the estimator side, it is straightforward to
show that the optimal state estimate and error covariance
evolve as

(x̂k, Pk) =

{
(Ax̂k−1, h(Pk−1)), if γk = 0,
(x̂s

k, P s
k ), if γk = 1.

From (11), Pk is given by

Pk =

{
h(Pk−1), if γk = 0,

P , if γk = 1.

For simplicity, we consider m = 2t − 1 and T = 4qt −
1 for t, q ∈ N. Other forms of T and m can be dealt
similarly. The next proposition states the optimal time-
based schedule.

Proposition 3.1. The optimal time-based schedule θ∗t ∈
{0, 1}T that minimizes J(θt) in (10) is given by:

γ2lq = 1 ∀ l = 1, . . . , 2t − 1, and γk = 0 otherwise.

The corresponding minimum J(θt) is given by

J(θ∗t ) =
2t

T

2q−1
∑

i=0

Tr
(
hi(P )

)
− 1

T
Tr

(
P

)
. (17)

Proof: It is straightforward to verify that J(θ∗t ) for the θ∗t
defined in the proposition is indeed given by (17). Next we
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M = A2q − (A − KCA)2q,

Φ1 = KC,

Φi+1 = (A − KCA)Φi + KCAi, i = 1, 2, . . . , 2q − 1,

Ψi = (A − KCA)iK.

From Lemma 2.2, es
2(l−1)q, w2(l−1)q, . . ., w2lq−1, and

v2(l−1)q+1, . . ., v2lq are all mutually independent zero-mean
and Gaussian random variables, hence we conclude that
ε2lq for an odd number l is also zero-mean and Gaussian
and has covariance

E[ε2lqε
′
2lq] = MPM ′ +

2q
∑

i=1

ΦiQΦ′
i +

2q−1
∑

i=0

ΨiRΨ′
i

which does not depend on l. �

Since the distribution of ε2lq is independent of l, ∆δ defined
by

∆δ = E[ε2lqε
′
2lq||ε2lq| ≤ δ] (21)

is also independent of l.

Lemma 4.2. E[es
2lqε

′
2lq] = 0.

Proof: Since ε2lq = x̂s
2lq − A2qx̂s

2(l−1)q, from part (3) of

Lemma 2.2, es
2lq is independent of ε2lq. Therefore

E[es
2lqε

′
2lq] = E[es

2lq]E[ε′2lq] = 0.

�

Lemma 4.3. The error covariance Pk under θh has the
same form as that under θ∗t , i.e.,

Pk =

{
h(Pk−1), if γk = 0,

P , if γk = 1,

except at those time instances k = 2lq when l is odd and
|εk| ≤ δ, in which cases, γ2lq = 0 and Pk is given by

Pk = P + ∆δ. (22)

Proof: We only prove the exceptional case as other cases
are straightforward to see. At the estimator, if no packet
is received at time k = 2lq, then γ2lq = 0, which implies
|ε2lq| ≤ δ. Since x̂2lq = Ax̂2lq−1, we have |x̂s

2lq − x̂2lq| ≤ δ.
Therefore

P2lq = E[(x2lq − x̂2lq)(·)′||ε2lq| ≤ δ]

= E[(x2lq − x̂s
2lq + x̂s

2lq − x̂2lq)(·)′||ε2lq| ≤ δ]

= E[(es
2lq + ε2lq)(e

s
2lq + ε2lq)

′||ε2lq| ≤ δ]

= E[(es
2lq)(e

s
2lq)

′||ε2lq| ≤ δ] + E[ε2lqε
′
2lq||ε2lq| ≤ δ]

= P + ∆δ,

where the second last equality is from Lemma 4.2. �

Lemma 4.4. ∆δ satisfies the following

(1) ∆0 = 0.
(2) ∆δ is strictly increasing in δ.
(3) ∆δ ≤ δ2I.
(4)

lim
δ→∞

∆δ = h2q(P ) − P . (23)

Proof: The first three statements are self-evident. When
δ → ∞, the event |ε2lq| ≤ δ carries no new information,
thus P2lq is the same as that using the time-based schedule

with γ2lq = 0, i.e., P2lq = h2q(P ). On the other hand, we
also have

P2lq = E[(es
2lq)(e

s
2lq)

′||ε2lq| ≤ ∞] + E[ε2lqε
′
2lq||ε2lq| ≤ ∞]

= E[(es
2lq)(e

s
2lq)

′] + E[ε2lqε
′
2lq]

= P + ∆δ.

Therefore (23) holds. �

We now introduce the main result of this section. The the-
orem below provides a sufficient and necessary condition
on δ such that θh outperforms θ∗t .

Theorem 4.5. The following statements hold.

(1) J(θh) ≤ J(θ∗t ) iff δ ∈ [0, δmax] where δmax is the
unique solution to

Tr





2q−1
∑

i=q

hi(P )



 = Tr

[
q−1
∑

i=0

hi(P + ∆δmax
)

]

. (24)

A lower bound of δmax is given by

δmax ≥
√

λmin

(
hq(P ) − P

)
. (25)

(2) If δmax > 0 is the solution of (24), then for any
δ ∈ (0, δmax) and for any realization φ of θh,

J(φ) ≤ J(θ∗t ). (26)

Furthermore there exists a positive probability of φ
such that (26) becomes strict, hence J(θh) < J(θ∗t ).

Proof: (1) First note that for any odd number l,

2(l+1)q−1
∑

k=2(l−1)q

E[Pk(θh)]

=

2q−1
∑

i=0

hi(P ) + Pr (|ε2lq| > δ)

2q−1
∑

i=0

hi(P )

+Pr (|ε2lq| ≤ δ)

[
q−1
∑

i=0

hi(P + ∆δ) +

q−1
∑

i=0

hi(P )

]

,

which in independent of l. Define Dδ as

Dδ = Tr





2q−1
∑

i=q

hi(P ) −
q−1
∑

i=0

hi(P + ∆δ)



 .

With some manipulation, we obtain J(θ∗t ) − J(θh) =
1
4q

Pr (|ε2lq| ≤ δ) Dδ. Since Pr (|ε2lq| ≤ δ) ≥ 0, J(θ∗t ) ≥
J(θh) iff Dδ ≥ 0. From Lemmas 2.3 and 4.4, Dδ is strictly
decreasing in δ and

D0 = Tr





2q−1
∑

i=q

hi(P ) −
q−1
∑

i=0

hi(P )



 > 0,

D∞ = Tr





2q−1
∑

i=q

hi(P ) −
q−1
∑

i=0

hi
(
h2q(P )

)



 < 0.

Hence there is a unique δmax such that Dδmax
= 0, which

corresponds to that δmax satisfies (24). Furthermore, for
all δ < δmax, Dδ > 0 and for all δ > δmax, Dδ < 0. From

part 3 of Lemma 4.4, for any δ <

√

λmin

(
hq(P ) − P

)
,
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Dδ = Tr





2q−1
∑

i=q

hi(P ) −
q−1
∑

i=0

hi(P + ∆δ)





≤Tr





2q−1
∑

i=q

hi(P ) −
q−1
∑

i=0

hi(P + δ2I)





< Tr





2q−1
∑

i=q

hi(P ) −
q−1
∑

i=0

hi(P + hq(P ) − P )





= 0.

Therefore
√

λmin

(
hq(P ) − P

)
≤ δmax. (2) Let δmax > 0.

For any δ ∈ (0, δmax) and for any realization φ of θh, if
|ε2lq| > δ for all odd number l, then φ is the same as
θ∗t . Hence J(φ) = J(θ∗t ). Otherwise if there exists an odd
number l such that |ε2lq| ≤ δ, then similar to the proof of
the first statement, one easily verifies J(φ) < J(θ∗t ). Notice
that the probability of those φ’s with at least one l such
that |ε2lq| ≤ δ is positive, hence

J(θh) =
∑

φ

Pr(φ)J(φ) <
∑

φ

Pr(φ)J(θ∗t ) = J(θ∗t ). �

To maximize the difference between J(θh) and J(θ∗t ), we
simply pick up the δ which maximizes Pr (|ε2lq| ≤ δ) Dδ.
Finding the closed-form expression of the optimal δ is
in general difficult. Nevertheless, it can be obtained from
simple numerical tools such as a Monte Carlo simulation.

5. EXAMPLE

Consider the following parameters for system (1-2): A =
1.01, C = 1, Q = R = 0.5, m = 99, T = 399. The
optimal time-based schedule θ∗t is periodic with period
4. Fig. 3 plots J(θ∗t ) and J(θh(δ)) for different values
of δ, which clearly demonstrates Theorem 4.5. From the
figure, δmax equals 2.002, and the optimal δ equals 1 where
the difference between J(θh(δ)) and J(θ∗t ) achieves its
maximum.

6. CONCLUSION

In this paper, we present a joint time-based and event-
based schedule to tackle the problem of remote state es-
timation with limited sensor communications. This novel
schedule leads to better performance when compared with
time-based schedules and does not require much computa-
tion resource when compared with event-based schedules.
Future work include extensions to closed-loop control data
scheduling and multiple sensor scheduling.
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