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Abstract 

In this paper, we address several topics on multirate 
systems, mostly in a frequency domain point of view. 
We first study the frequency response of a multirate 
system and derive the aliasing component (AC) repre- 
sentation. We give the relationship between the AC 
representation and the ususal transfer function matrix 
of the lifted LTI system. Secondly, we propose a mul- 
tirate version of the Nevanlina-Pick (NP) interpolation 
problem and give a necessary and sufEcient solvability 
condition. This version of the NP interpolation prob- 
lem is of interest mathematically and has potential ap- 
plications in addressing other issues in control, signal 
processing and circuit theory. Finally, as an applica- 
tion of the multirate version of the NP interpolation 
problem, we formulate and solve the robust model val- 
idation problem for multirate systems with frequency 
domain experiment data. 

. 

1 Introduction 

Multirate systems are finding more and more appli- 
cations in control, signal processing, communication, 
econometrics and numerical mathematics. The reason 
for using multirate systems may be due to hardware 
considerations or due to the fact that multirate systems 
can often achieve objectives that cannot be achieved 
by single rate systems. Multirate signal processing is 
now one of the most vibrant areas of research in signal 
processing [MI. In control community, there has re- 
cently considerable research devoted to multirate con- 
troller design [2, 131. In communication community, 
multirate sampling is used for blind system identifica- 
tion and equalization [9]. One of the standard tech- 
niques for the analysis and synthesis of multirate sys- 
tems is blocking or lifting, which is largely a time do- 
main tool. As for single rate systems, frequency domain 
analysis of multirate systems also plays an important 
role in their understanding. Some preliminary results 
have been given for periodic systems [15, 181 and dual 
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rate systems [14]. In this paper, we first present the 
frequency response property of multirate systems us- 
ing the aliasing component (AC) representation. We 
also give the relationship between the AC representa- 
tion and the standard transfer function of the lifted 
equivalence, which can be used to obtain the frequency 
response of a multirate system by sinusoidal experi- 
ment. Secondly, motivated by the wide applications 
of the Nevanlinna-Pick (NP) interpolation in engineer- 
ing problems including digital filter design [8], control 
[7] and circuit theory [4], we propose a constrained NP 
interpolation problem pertinent to multirate systems 
and give a necessary and sufficient solvability condi- 
tion, More recently, much attention has been paid on 
validation of uncertain models consisting of a nomi- 
nal model and a norm bounded modeling uncertainty 
[I, 11, 171. Finally, we study the robust model valida- 
tion problem of multirate systems from frequency do- 
main experimental data using the solvability condition 
of the constrained N P  interpolation. 

2 General Multirate Systems 

The setup of a general MIMO multirate system is 
shown in Figure 1. Here U,, i = 1 , 2 , .  . . , p ,  are input 
signals whose sampling intervals are m, h respectively, 
and yj, j = 1 , 2 , .  . . ,q,  are output signals whose sam- 
pling intervals are n,h respectively, where h is a real 
number called base sampling interval and m,, nn3 are 
natural numbers (positive integers). We will assume 
that all signals in the system are synchronized at time 
0, i.e., the time 0 instances of all signals occur at the 
same time. In this paper, we will focus on those mul- 
tirate systems that satisfy certain causal, linear, shift 
invariance properties which are to be defined below. 

Figure 1: A general multirate system 

Since we need to deal with signals with different rates, 
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it is more convenient and clearer to associate each signal 
explicitly with its sampling interval. Let e' (7) denote 
the space of E%' valued sequences: 

P (.I = i{.. . ,2(--7) , 12 (0) , 2 ( T )  ,.(2T) 9 . .  . I  
: 5 ( k T )  E R'}. 

The system in Fig. 1 is a map from @:=li?(mih) to 
@3=ll(njh). It is said to be linear if this map is a 
linear map. 

Let 1 E N be a multiple of mi and nj, i = 1,2, , . . , p ,  
j = 1,2, .  . . ,q. Let mi = l/mi and f i j  = l/nj. Denote 
the sets {mi} and {nj} by M and N respectively and 
the sets {jjLi} and ( f i j }  by M and respectively. Let 
S : P (T) - P (T )  be the forward shift operator, i.e., 

s {. . * , z ( -T)  , 12 (0) , z (7-1 , * * .) 
{. . . ,2 (-279,132 ( -T) ,z (0) ,z (7) , . . .} = 

Define 

S a  = diag { Sml, . . . , Smp } , Sm = diag { S" , . . . , S'q } 
Then the multirate system in Fig. 1 is said to be 
(i@,fl)-shift invariant or Zh periodic in real time if 
G,,Sa = SmG,,. Now let Pt : e' (T )  - e' (T )  be 
the truncation operator, i.e., 

Pt {. . . , z ((k - 1) 7) ,z (kT )  , 2 ((k + 1) T )  , . . .} 
{. . . ,2 ((k - 1) T )  ,z (ICT) ,o,  . . .} = 

if JCT 5 t < (k f 1) T. Extend this definition to spaces 
@$'=)=,e (mih) and (njh)  in an obvious way. Then 
the multirate system is said to be causal if 

P ~ u  = Ptv + PtGmru = PtGmrv 

for all t E W. In this paper, we will concentrate on 
causal linear (A?, N)-shift invariant systems. Such gen- 
eral multirate system covers many familiar classes of 
systems as special cases. If mi, nj, 1 are all the same, 
then this is an LTI single rate system. If mi, nj are all 
the same but 1 is a multiple of them, then it is a single 
rate 1-periodic system. If p = q = 1, this becomes the 
SISO dual rate system studied in [3]. If mi are the same 
and nj are the same, then this becomes the MIMO dual 
rate system studied in [12]. For systems resulted from 
discretizing LTI continuous time systems using multi- 
rate sample and hold schemes in [2, 131, 1 turns out to 
be the least common multiple of mi and nj. The study 
of multirate systems in such a generality as indicated 
above, however, has never been done before. 

A standard way for the analysis of such systems is 
to use lifting or blocking. Define a lifting operator L, : 
l (T )  -+ C' (rT) by 

L,  {. :. l X ( O ) , Z ( T ) ,  . . .} -+ 
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and let 

L u  = diag{Lfil,. . . ,Ley}, Lm = diag{L6, , . . . , Laq} .  

Then the lifted system G = LnGm,.LG1 is an LTI sys- 
tem in the sense that GS = SG. Hence it has transfer 
function G in A-transform. However, G is not an arbi- 
trary LTI system, instead its direct feedthrough term 
G(0) is subject to a constraint that is resulted from 
the causality of G,,.. This constraint is best described 
using the language of nests and nest operators (12, 131. 

Let X be a finite dimensional vector space. A nest 
in X , denoted {A&}, is a chain of subspaces in X ,  
including (0 )  and X ,  with the nonincreasing ordering 

x = X ,  2 x, 2 . . . 2 x1-1 2 x, = CO}. 

Let U, y be both finite dimensional vector spaces. De- 
note by .C(U,y) the set of linear operators U -+ y .  
Assume that U and y are equipped, respectively, with 
nests which have the same number of subspaces, say, 
1 + 1 as above. A linear map T E C ( U , y )  is said t,o 
be a nest operator if TUk C y k ,  k = 0,1, .  . . ,1.  The 
set of all nest operators (with given nests) is denoted 
N ( { U k } ,  {&}). If we decompose the spaces U and y in 
the following way: 

U (U0 0 U1) @ (U1 8 U2) @ . . . CB (Uz-1 0 UL) 
Y = (YO 8 &) @ (y1 8 J'2) CB . . . @ (yl-1 0 Yi) 

(1) 
(2) 

then a nest operator T E N({&},{&}) has the fol- 
lowing block lower triangular form 

Write 21 = LQU, y = Lmy. Then - 
- u(0 )  = [U1(O)...U1((fi1 - l )m1h). . .  

U p ( 0 ) .  . . up((fip - l)mph)lT,, 
- y(0) = [Yl(O)...Yl((fil - l )n1h) . . .  

Yq(0) . . . YQ((fiiQ - l)ng.h>lT. 

Note that ui (r) occurs at t = rmih, and yj ( r )  occurs 
at  t = rnj h. Define for k = 0,1, . . . ,1, 

Uk = 

J'k = 

( ~ ( 0 )  : ui(rmih) = 0 if rmih < kh}  
( ~ ( 0 )  : yj(rnjh) = 0 if rnjh < kh} . 

Then the lifted plant G will have 

4 0 )  E N W k } ,  {Yk)). (4) 
Now we see that each multirate system has an equiva- 
lent single rate LTI system satisfying a causality con- 
straint. This causality constraint is characterized by a 
nest operator constraint as in (4) on its transfer func- 
tion. 
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3 Frequency Response 

To make the frequency relation among all the 
input signals with different sampling rate clear, 
we shall use the Fourier transform of a sequence 
{ui(O), ui(mih),ui(2mih), . . . ,} with sampling interval 
mih, incorporating the real time frequency. For more 
detail, refer to Sec. 7.4 in [lo]. The Fourier transform 
of the input signal {ui(kmih)}, i = 1,. . . , p ,  is 

00 

Ui(ejwmch) = ui(kmih)e-j(w'Emzh). 

k=O 

It is well-known that Ui (ejwmeh) is periodic with period 5. The length-mi AC representation of ui is defined 
as 116, 141 

In contrast to the time domain lifting in the last sec- 
tion, the AC representation of U ,  can be considered as 
the frequency domain lifting of U,(ejwmth). Clearly, 
this frequency domain lifting is also a one-one corre- 
spondence and it gives a different representation to the 
signal U,. Let U, (ejwlh) , O  .< w < E, be the Fourier 
transform of E, = Llfiru,. It is easy to check the follow- 
ing equation [14, 181 

UtC(eJwlh) = F~~ D ~ ,  (eJwlh)UZ(gwlh) 

where Fe* is the m, dimensional DFT matrix and 

1. e-jw(TE, -l)mt h Dm,(eJwlh) = diag ( l , e -3wmfh  , . . .  , 

For the input U = [ u1 up 1' of the multirate 
system shown in Fig. 1, define its length-51 AC repre- 
sentation as 

... 

U A C ( p J l h )  = 

Then the Fourier transform U (ejwlh) of 14 = Lliju and 
UAc(ejwlh) have the following relation 

UAC($wlh) = F -  A4 D l i j ( e j w l h ) U ( e j w l h )  (5) 

where 

FM = diag ( F f i l , .  . . , F&) 
Dl;i(ejwlh) = diag(Dfi,(e3"lh), . . . , DTE,(ejwlh 

We can also define the length-N AC representation 
YAC(ejwLh)  of the output 

~ A C ( ~ j w l h )  = F -  D - ( e j w l h ) y ( e j w l h  N N  - ). (6)  

As shown in Section 11, an ( M ,  IV) shift-invariant mul- 
tirate system has a transfer function G. Then we have 

- y ( e j w " )  = &(,+w")~(e3w"). (7) 

It follows from (5  - 6) that 

YAC(ejwlh)  = F - D  - ( e j w l h ) & ( $ w l h )  N N  

(8) ~ i l  e j w l h  1 . AC &wlh 
* M (  )F$IJ  ( 1. 

Denote 

GAC ( e j w l h  ._ F - D  - ( e j w l h ) G ( : e j w L h ) D _ l ( e j w l h ) F _ l ,  

then (8) becomes 

).-  N N M M 

yAC(ejwlh)  = GAC (e jw lh  uAC ejwlh ) ( ). .(9) 

We call GAC (ejwlh) the AC matrix of the multirate 
system. This gives us the following interpretation of 
the frequency response for an (a, N) shift-invariant 
system: 

Let L1 = maxi{%;} and L2 =maxj{fij}. Let U, be 
the set of all signals that consist of sinusoidal compo- 
nents exp(jwt + j k g t )  of the input, k = 0 , .  .. , L1, 
and yw be the set of all signals that consist of si- 
nusoidal components exp(jwt + j k 2 t )  of the output, 
k = 0, .  . . ,maxi{fij}, where w E [0, g). That is 

= {.aod"t + alej(w+2n/lh)t + . . . : ai E CP) 
{boe3wt + blej("+2"/")t + . . . : bi E CQ} y w = 

Then the system maps Uw into yw in the steady state. 
Note that t takes the value of m,h or n,h which de- 
pends on the specified signals. Compared to the LTI 
system G via lifting defined in the last section, the AC 
matrix is convenient in dealing with the specifications 
in frequency domain [14]. 

The AC matrix and the lifted transfer function ma- 
trix of a multirate system are two complementary r e p  
resentations of the multirate system. The lifted sys- 
tem transfer function exhibits the time domain features, 
such as causality, clearly but obscure the frequency do- 
main features. On the other hand, the AC matrix ex- 
hibits the frequency response properties more clearly 
but the causality becomes obscure. One may be more 
advantageous than the other in a particular application. 

4 Constrained Nevanlinna-Pick interpolation 

Let X,, i = 1 , .  . . ,n, be finite dimensional Hilbert 
spaces. Also let U and y be finite dimensional Hilbert 
spaces with nests {&} and {yk} respectively. Let U, 
and Y ,  be linear operators from X, to U and from 
X, to y respectively. Let X , , i  = 1,. . . ,n ,  be n 
complex numbers on the open unit disc JID. Denote 
H,(U, y )  the Hardy class of all uniformly bounded an- 
alytic functions on D with values in L(v,y).  Denote 
by HOO({Uk}, {&}) the set of functions G E &,(U, Y )  
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satisfying G (0) E N({Uk} ,  {&}). The tangential NP 
interpolation problem with constraint N( {Uk}, { Yk}) 
for the data Xi, Vi, ,Yi, i = 1,. . . ,n ,  is to find (if 
possible) a function G in H w ( { U k } , { & } )  such that 
l\Gllw 5 1, and Y ,  = G(Xi)Ui for i = 1,. . . ,n. Denote 

Before going into the solvability conditions of the con- 
strained N P  interpolation, we need to state a result on 
matrix positive completion. The matrix positive com- 
pletion problem is as follows (51: Given Bij, Ij - il 5 
q, satisfying Bij = B;i, find the remaining matri- 
ces Bij, J j  - il > q, such that the block matrix B = 
[Bij]:j=l is positive definite. The matrix positive com- 
pletion problem was first proposed by Dym and Go- 
hberg [5], who gave the following result: 

Lemma 1 The matrix positive completion problem has 

U : = [  U1 iJn ] m d Y : = [  Y1 Yn 1. 

If we decompose the spaces U and y as in (1-3), then a 
nest operator T E N ( { U k } ,  {&}) has a block lower tri- 
angular form shown in (3). Therefore, the constrained 
N P  interpolation problem has a solution if and only if 
(14) holds for a block lower triangular mat.rix T.  This 
is a matrix positive completion problem. By Lemma 1, 
(14) holds for some block lower triangular T if and only 
if 

I O 1 -  I &,U 
(%,U)* p+y*y (nykY>* > O  (15) 

nYkY 

for k = 0,. . . , 1. Using Schur complement twice, we can 
easily show that (15) is equivalent to 

a solution i f  and only af for k = 0, .  . . ,1. We claim that inequalities (16) when 
k = 0 is implied by (16) when k = 1. In fact, when 
k = I ,  inequalities (16) gives 

2 0, i = 1 , . . . ,  n-q. (10) : I  P 2 0. (17) [ :  Bi+q,i . . . Ba+g,i+q 

Bii . . . Bi,i+q 

Theorem 1 There exists a solution to the NP inter- 
polation problem with constraint N ( { U k } ,  { y k } )  for  the 
data X i ,  Vi, Y,, i = 1, ..., n, if and only if 

When k = 0, inequalities (16) gives 

u;uj - Yi*Yj [I: *.. - An ] P [ :  ... An 
] 2 0 .  (18) 

1 A i X j  

Proof: The nestloperator constraint on the in- 
terpolation function G can be cpnsidered as an ad- 
ditional interpolation condition G (0) I = T for some 
T E N({Uk},{Yk}). If we set A0 = 0, U0 = I and 
Yo = T. By the solvability condition of the standard N P  
interpolation problem [6], the NP interpolation problem 
wit,h nest operator constraint has a solution if and only 
if there exists T E N ( { U k } ,  {&}) such that 

2 0. u:uJ-k;l; [ ' - ' I A J  11,3=0 

CT'U -yay n 
Let P = [ 11:xt;3 ]t,3=1, which is the Pick matrix 
corresponding to the N P  interpolation problem with - 

dais Xi, Vi, Y,, i = 1, ..., n, without constraint. Then 
(12) can be rewritten as 

(13) 
I -T"T U-T*Y L O .  [ U*-Y*T P ] 

By Schur complement, (13) is equivalent to 

It is obvious that (17) implies (18). The proof is then 
completed by noticing that (16) is exactly the same as 
(11). m 

5 Frequency Domain Model Validation of 
Multirate Systems 

In this section, we extend the results in [l] to mul- 
tirate systems. The setup is shown in Fig 2, where 
Pm, and A,, are both multirate systems, and they 
together form a multirate uncertain system model with 
Pm, fixed and A,, unknown. Here, ui, i = 1 , .  . . , p ,  are 
input signals whose sampling intervals are 7nih and yj, 
j = 1, . . . ,, q,  are output signals whose sampling inter- 
vals are njh. Also q, i = 1 , .  . . ,?, and wj ,  j = 1,. . . , s! 
are the auxiliary signals whose sampling intervals are 
mi h and nj h respectively. 

The model validation problem considered in this pa- 
per is as follows. Given p,,, an uncertainty set which 
Am, belongs to, a set of time domain experimental data 
on ui and yi, and a set € of noise signals, find out if there 
exists a Am, in the uncertainty set such that the ex- 
perimental data can be reproduced with Pmr and A,, 
together with the noises E .  

Assume that both Pm, and Am, are lh periodic in 
= l/ma, f i g  = l /n$,  

= l /mi ,  fij = l / n j .  And let y = Lpy, 21 = La,u, 
real time for some integer 1. Let (14) 

- I 
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Figure 2: A general multirate LFT uncertain model 

-1 
L,, 0 Lgl 0 

= [ o  L N l p m r [ 0  L a ]  

where L,,, LA;,, , L u ,  Lm are appropriately defined as 
in Section 11. Then the multirate uncertain system in 
Fig. 2 is converted to an equivalent LTI uncertain sys- 
tem with a causality constraints shown in Fig. 3. 

Figure 3: The equivalent LTI uncertain moLL 

Denote 

x(0)  

- w (0)  

= [Vl(O)T,. . . ,Vl((fil - l)m1h)?',. . . , 
VT(O>T,. . . , vr ( ( f i r  - ~ ) m r h ) ~ ] ~  

= I w ~ ( o ) ~ ,  . . . , w l ( ( ~ 1  - l )nlh)T, .  . . , 
w,(O)~,  . . . , ws((fi ,  - l)nsh)*]' 

U ~ ( O ) ~ ,  . . , , up((fik - l)m;h)'lT 
- ~ ( 0 )  = [ ~ 1 ( 0 ) ~ ,  . . . ,ul((Ci; - l)mih)'r,.  . . , 

- y (0)  = [yl(o)T,.. . ,9l((fii - l)n;h)T,.  . ' > 

Y , ( O ) ~ ,  . . . ,ys((%; - l ) ~ t ; h ) ~ ] " .  

Define for k = 0,1, .  . . , 1 ,  

Vk = (g(0) : v,(rm,h) = 0 if rm,h < k h }  
W k  = ( ~ ( 0 )  : w3(rn,h) = 0 if rnlh <: kh}  
U,  = (u(0)  - : u,(rm:h) = 0 if rm',h c: kh} 
Yk = (y(0) - : yj(rn(,h) = 0 if m(,h  < k h }  . 

Then the_ causality constraints that P and A sat-  

E N({Wk},  {Vk}) ,  where P and A are transfer func- 
tions of P and A respectively. The model validation 
for multirate systems Pmr and Amr are then converted 
to that for LTI system P and A satisfying the above 
causality constraints. 

isfy are p(0) E N({Uk @ vk}, {& @ Wk}) and A(o) 
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To state the frequency domain model validation prob- 
lem, we need to introduce a few definitions. Let D, := 
{ A :  1x1 < p } ,  define 

H ,  ( p )  := { P ( A )  : F is analytic in ID, 
and sup a(P)  < CO} 

H ,  (p ,y)  := {P (A) : F is analytic in ID, 
and sup (T($') 5 y} 

where 5 ( a )  denotes the largest singular value. Assume 
that an uncertain model of the lifted LTI equivalenceAof 
a multirate system is represented by the LFT 7 ( P ,  A),  
where the nominal model P E H,(p) is giyen satisfy- 
ing P22 E H,(p, $) and the uncertainty A is known 
a przori to satisfy A E H, (p ,  7). By carrying out a 
series of steady state frequency response experiments 
on the multirate system, we can obtain the frequency 
response data for the LTI equivalent system U, and x, 
at different frequency points w, E [0, T), i = 1,.  . . , n, by 
equations (5) and (6). Note that U, and Kt can also be 
obtained by the Discrete Fourier Transform from time- 
domain data of and y. The model validation prob- 
lem is to test whether the uncertain model is consistent 
with the experimental data, i.e. whether there exists a 
A E H ,  (p ,  y) with A (0) E hr({ W k } ,  { V k } )  such that 

(19) 

for some E, E &, where & is a cornpact convex set repre- 
senting a bound on the measurement noise. From Fig. 
3, we see that (19) implies 

XED, 

XED, 

x, = F(P(eJwl) ,  A ( P * ) ) ~ ,  + &,, i = 1 , .  . . , n 

-a y = &(A,)LL, + k2(A,)JL, + &, (20) 
w, = @2l(A%)U, + %z(A,)Z, (21) 
E, = A(Az)K, (22) 

for some JL,. E,, i = 1,.  . . , n, where A, = e-Iwi. 

Theorem 2 For data u l , .  . . ,U, and & , .  . . , y,, De- 
fine 

The uncertain model is not invalidated if and only 
if there exists a sequence := (VI,. . . ,yn) with 
yi E ai,i = 1 , . . . ,  n, such that H k ( L )  2 0 for all 
k =  1, . . . ,  Z, where 
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Proof: We know that P22(0)  E N ( { U k } , i W k } )  
since P(0) E N({Uk @ Uk}, {Yk @ T k } ) .  Define F(A) = 
y>22-(~A), then llPlloo L 1, with F ( A i / p )  = yP22(Ai) 
and F(0)  E N({Vk},{Wk}). By Theorem 1, we get 
r2Qi >_ 0 for all 1 = 1 , .  . . , l .  This shows that Qk is 
well-definFd. Consider now the problem of finding an 
analytic F E Hw({Wk} ,  { V k } )  such that 

and ll$llm 5 1. This is a tangential NP interpolation 
problem with constraint N( { Wk} { V k } ) .  By Theorem 
1. there exists a solution if and onlv if 

for all k = 1 , .  . . , 1 .  Substituting (21) into the above 
inequality yields 

It follows by Schur complement that (24) is equiva!ent 
to H k ( V )  2 0. Hence, there exists a function F E 
Hoo({Wk}l {Vk} )  such that (23) holds and llplloo 5 1 
if and only if Hk (11) 2 0 for a!l k = 1 , .  . . , l .  On the 
other hand, if we set A(A) = yF(A/p) ,  then F has the 
above property if and only if A ( A )  E H,(p,y) with 
A(0) E N ( { W k } , { V k } )  such that (19) holds . There- 
fore, the uncertain model is not invalidated if and only 
if H k ( v )  2 0, k = 1 , .  . . , I ,  for some = (&, . . . ,yn) 
with vi E Ri.  This completes the proof. 

6 Conclusion 

In this paper, a frequency domain method for the 
analysis and model validation is presented for general 
multirate systems. , First, we generalize the frequency 
response property of LTI systems to multirate systems. 
we then propose and study a muiterate version of the 
N P  interpolation problem and give a necessary and suf- 
ficient solvability condition. Finally we formulate and 
solve the robust model validation problem‘for multirate 
systems with frequency experimental data. 
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