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Abstract: This paper investigates tracking performance limitations of a linear
time invariant (LTI) multivariable plant subject to external disturbance or model
uncertainty. It attempts to extend some recent results on tracking performance
limitation in which neither the disturbance nor the uncertainty is considered.
The reference signal to be tracked is a step signal. The tracking performance is
measured by the energy of the tracking error. The external disturbance is assumed
to be energy bounded and to be injected into the input channels of the plant.
The model uncertainty is assumed to have some special structure and to have
certain induced norm bound. The performance limitation studied is the minimal
attainable value, under any controller structure and parameters, of the maximum
tracking error energy for all possible disturbance or uncertainty. It is shown that
the tracking performance limit of the plant with the worst case disturbance can be
decomposed as the sum of the tracking performance limit without the disturbance
and the optimal disturbance attenuation performance without the reference. It
is also found that, for an LTI plant with a nonlinear time-invariant uncertainty,
the best attainable tracking performance of the system under the worst possible
uncertainty is proportional to the tracking performance limit of the plant without
uncertainty, magnified by a quantity related to the size of the uncertainty and
certain optimal H∞ gain.Copyright c©2005 IFAC
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1. INTRODUCTION

In this paper, tracking performance limitations are
considered for a linear time invariant (LTI) mul-
tivariable plant subject to external disturbance
or model uncertainty. The reference signal to be
tracked is a step signal. The tracking performance

1 This work is supported by the Hong Kong Research Grants
Council, NSFC Project 60474028 and Australia Research
Council.

is measured by the energy of the tracking error. Ob-
viously, this tracking performance not only depends
on the LTI plant and the reference signal but also
the disturbance or the uncertainty. The fundamen-
tal limitations of the system under consideration
are its minimal attainable tracking error energy for
the worst case disturbance or uncertainty under all
possible controllers. The aim of this paper is to find
explicit formulas for these limitations in terms of
the plant characteristics and structures.

Copyright (c) 2005 IFAC. All rights reserved
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The tracking control problem for a given LTI plant
with an external disturbance includes two tasks: 1)
asymptotically tracking the reference signal and 2)
attenuating the disturbance. In this paper, the best
achievable tracking performance, under all possible
controllers, of the system is considered for the worst
disturbance input. It is referred as minimax per-
formance limit of asymptotical tracking/disturbance
rejection. Here we assume that the disturbance
comes into the system from the plant input and a
two degree of freedom (2DOF) controller is used.
It is found that the minimax performance limit
of asymptotical tracking/disturbance attenuation
is the sum of two terms: one is the best tracking
performance of the system without the disturbance
input and the other is the minimal cost of optimal
disturbance attenuation. If the transfer function
from the plant input to its measurement output
satisfies certain conditions, in particular, if state
feedback is used in the control, the minimax perfor-
mance limit of asymptotical tracking/disturbance
attenuation of the system is exactly equal to the
tracking performance limit without a disturbance.

The tracking problem is also considered for a plant
with a nonlinear time invariant uncertainty which
has a certain induced norm bound. This problem
also includes two tasks: 1) asymptotically track-
ing the reference signal and 2) robustly stabiliz-
ing the system for all possible uncertainties. The
best attainable tracking performance of the system
in the problem is considered for the worst uncer-
tainty. This is referred as minimax performance
limit of asymptotical tracking/robust stabilization.
It is assumed that the uncertainty is driven by the
tracking error, and the output of the uncertainty
is injected into the input channel of the plant. It
is also assumed that a 2DOF controller is used in
this system. Then it is come out that the minimax
performance limit of asymptotical tracking/robust
stabilization is proportional to the tracking per-
formance limit of the plant without uncertainty,
magnified by a quantity related to the norm bound
of the uncertainty and the optimal H∞ gain.

The performance limitations in various optimal con-
trol problems have been extensively studied during
last three decades. It was obtained by Kwakernaak
and Sivan (1972) and Francis (1979) that, for a
right invertible LTI minimum phase systems, the
performance limit of the optimal tracking or cheap
control is zero. Since then the research on this issue
was extended to nonminimum phase system (e.g.
see Chen et al. (2000), Morari and Zafiriou (1989),
Qiu and Chen (n.d.), Qiu and Davison (1993) and
Su et al. (2003)). These works show that the per-
formance limits of the optimal cheap control or
optimal tracking problems are only dependent on
the nonminimum phase zeros and the directional
vectors associated with these zeros as well as the
initial state or the reference signal. On the other
hand, some efforts have also been made on this
issue for LTI plants subject to external disturbance
or model uncertainty. It was obtained by Davison
and Scherzinger (1987) that, for a class of minimum

phase LTI systems with an external disturbance in
certain particular structure, the robust performance
limit of the optimal cheap control is zero. This
discussion was also extended to a type of nonmin-
imum phase systems by Qiu and Davison (1993)
and Jemaa and Davison (2003). Some interesting
discussion on the robust performance limitation of
an LTI system with uncertainties was presented by
Xie and Petersen (2002) and Goodwin et al. (2003).

Finally, a note on the notation: A signal in the
time domain is denoted by a lower case letter, such
as r or r(t). A system, viewed as an input/output
operator, is denoted by a capital letter, such as G.
The Laplace transform is denoted by a hat “ ˆ ”,
i.e., r̂ is the Laplace transform of r. If G is an LTI
system, Ĝ represents the transfer function of G.

2. PROBLEM STATEMENTS AND
PRELIMINARIES

In this paper, we first consider a feedback system
shown in Figure 1. Here P is a given LTI plant
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Fig. 1. A general control structure

whose measurement y and output z may not be the
same, K is a 2DOF controller to be designed. The
signal r is a step reference signal and the signal
d is a disturbance with energy bounded by δ2, i.e.,
‖d‖22 ≤ δ2. W is a known LTI stable, proper weight.

The asymptotical tracking/disturbance rejection
problem for the system in Figure 1 is to design
a controller K so that the closed loop system is
internally stable and the plant output z asymptot-
ically tracks a step signal r(t) = v, t ≥ 0 for all
disturbances d ∈ L2 with ‖d‖2 ≤ δ.

The tracking performance is measured by the en-
ergy of the tracking error e(t),

J(v) =
∫ ∞

0

‖e(t)‖2dt,

which clearly depends on the disturbance d. The
performance index we consider for the track-
ing/disturbance attenuation problem is the worst
value of J(v) over all possible d:

sup
‖d‖2≤δ

J(v).

The performance limit that we are interested in is
therefore the minimum value of this performance
index achievable by the choice of the controller K:

Jopt(v) = inf
K

sup
‖d‖2≤δ

J(v)

where K is chosen among all stabilizing 2DOF
controllers.

Denote the transfer matrices from u to z by Ĝ and

that from u to y by Ĥ, i.e., P̂ =
[
Ĝ

Ĥ

]
. In order for
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the tracking problem to be meaningful and solvable,
we make the following assumption throughout the
paper.

Assumption 1.

(1) P̂ , Ĝ and Ĥ have the same unstable poles.
(2) Ĝ has no zero at the origin.
(3) Ĝ is right-invertible.

The first item in the assumption means that the
plant P is stabilizable by the measurement feedback
from y and at the same time the measurement does
not introduce any additional unstable modes. A
simple interpretation of the assumption is that if

P̂ =
[
N̂

L̂

]
D̂−1, D̂, N̂ , L̂ ∈ RH∞ is a coprime

factorization, then N̂D̂−1 and L̂D̂−1 are also co-
prime factorizations. The second and third items
are necessary for the solvability of the tracking
problem.

The second problem that we will address is the
minimax performance limit of asymptotical track-
ing/robust stabilization. In this problem, the dis-
turbance in Figure 1 is replaced by a special un-
certainty shown in Figure 2. The uncertainty is
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Fig. 2. Tracking system with uncertainty

unknown but is assumed to be a possibly nonlinear
time variant causal operator with a induced norm
bound:

‖∆‖ = sup
e∈L2,e6=0

‖d‖2
‖e‖2 ≤ δ. (1)

Note that C is simply another form of a 2DOF
controller. The performance index of the system is
the maximum value of J(v) over all possible ∆

sup
‖∆‖≤δ

J(v).

The performance limit is then the minimum value
of the performance index achievable by the choice
of the controller:

J̃opt(v) = inf
C

sup
‖∆‖≤δ

J(v).

We end this section with some preliminary ma-
terials. If z ∈ C+ is a nonminimum phase zero
of right-invertible transfer function Ĝ, then there
exists a unitary vector η such that η∗Ĝ(z) = 0.
Suppose that zi ∈ C+, i = 1, · · · ,m, are zeros
of the nonminimum phase plant Ĝ. The transfer
matrix Ĝ can be factorized as follows:

Ĝ = ĜinĜ0 and Ĝin =
m∏

i=1

Ĝi (2)

where Ĝi is inner with only one zero zi in the
following form

Ĝi(s) = [ηi Ui]
[

z̄i

zi

zi−s
z̄i+s 0
0 I

] [
η∗i
U∗

i

]
(3)

with ηiη
∗
i + UiU

∗
i = I, η∗i Ui = 0; and Ĝ0 has no

nonminimum phase zero.

3. THE TRACKING PERFORMANCE LIMIT
UNDER DISTURBANCES

Consider Figure 1 again. Let Ĥ = ˆ̃D−1 ˆ̃L be a
left coprime factorization of Ĥ. Then there exist
X̂, Ŷ , ˆ̃X, ˆ̃Y ∈ RH∞ satisfying the double Bezout
identity (see Vidyasagar (1985))

[
ˆ̃X − ˆ̃Y
− ˆ̃L ˆ̃D

] [
D̂ Ŷ

L̂ X̂

]
= I. (4)

The set of all linear internally stabilizing 2DOF
controllers K is given by (see Vidyasagar (1985))

K =
{

K̂ = (Ŷ − R̂ ˆ̃L)−1[Q̂ (X̂ + R̂ ˆ̃D)] :

Q̂, R̂ ∈ RH∞ and |Ŷ − R̂ ˆ̃L| 6= 0
}

.

Plugging the parametrization of the 2DOF con-
trollers into the system, we obtain the expression
for the tracking error:

J(v) = ‖ê‖22 = ‖r̂− N̂Q̂r̂− N̂(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22. (5)

We will be able to show that the problem of min-
imizing the performance index sup‖d‖2≤δ J(v) by
designing the free parameters Q̂ and R̂ is equivalent
to two independent optimization problems: mini-
mizing ‖r̂− N̂Q̂r̂‖22 by designing Q̂ and minimizing

‖T̂zd‖∞ = ‖N̂(Ŷ − R̂ ˆ̃L)Ŵ‖∞
by designing R̂. This is the key point in the follow-
ing theorem.

Theorem 1. Let Ĝ have nonminimum phase zeros
z1, z2, . . . , zm with corresponding Blaschke vectors
η1, η2, . . . , ηm. Then the minimax tracking perfor-
mance limit of asymptotical tracking/disturbance
rejection of the system is given by

Jopt(v) = 2
m∑

i=1

Re (zi)
|zi|2 cos2 ∠(ηi, v) + δ2 inf

K∈K
‖T̂zd‖2∞.

The proof of this theorem is given in Appendix A.

The performance limit Jopt(v) is a sum of two
terms: The first is the tracking performance limit
of the system without the disturbance input d and
the second is the best achievable performance of
disturbance attenuation of the system without the
reference signal. The relationship between the sec-
ond term δ2 inf

K∈K
‖T̂zd‖2∞ of Jopt(v) and the char-

acteristics of the plant was studied by Chang and
Pearson (1984), and Vidyasagar (1985). Intuitively,

one can see that if the ˆ̃L is left invertible in RH∞,
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then ‖T̂zd‖∞ can be made arbitrarily small by se-
lecting a proper R̂ ∈ RH∞. This means that almost
disturbance decoupling can be achieved in this case.
In light of this, we have the following corollary.

Corollary 1. If Ĥ has no bounded zeros in closed
right half plane and is left invertible, the minimax
tracking performance limit of asymptotical track-
ing/disturbance rejection of the system is given by

Jopt(v) = 2
m∑

i=1

Re (zi)
|zi|2 cos2 ∠(ηi, v).

Notice that the conditions in above corollary are
always satisfied by the transfer function from the
input to the state in the system. Hence the perfor-
mance limitation in Corollary 1 is valid when the
measurement y is the state variable of the plant.

4. THE TRACKING PERFORMANCE LIMIT
UNDER UNCERTAINTIES

In this section, the minimax performance limit of
asymptotical tracking/robust stabilization will be
discussed for the system with a model uncertainty
shown in Figure 2. Denote the transfer function
from d to z by T̂zd. The uncertainty is a nonlinear
time invariant operator and has certain induced
norm bound given in (1).

Theorem 2. Let Ĝ have nonminimum phase zeros
z1, z2, . . . , zm with corresponding Blaschke vectors
η1, η2, . . . , ηm. Then the minimax performance limit
of asymptotical tracking/robust stabilization of the
system with a nonlinear time invariant uncertainty
is given by

J̃opt(v) =
2

1− δ2ρ2

m∑

i=1

Re (zi)
|zi|2 cos2 ∠(ηi, v)

while ρ = inf
C
‖T̂zd‖∞.

The proof of this theorem is given in Appendix B.

The performance limit J̃opt(v) is proportional to the
tracking performance limit of the system without
uncertainty while it is a inverse ratio of 1−δ2ρ2. The
factor 1 − δ2ρ2 is determined by inf

C
‖T̂zd‖∞ which

gives the largest magnitude stable margin of the
system for the worst uncertainty. The former term
is determined by selecting the free parameter Q̂ of
the controller C while the latter term is determined
by selecting the free parameter R̂ in the controller
since the transfer function R̂zd is given

T̂zd = N̂(Ŷ − R̂ ˆ̃L)Ŵ .

The key point in the problem is to construct a worst
uncertainty associated with the maximum value of
J(v). This is closely related to the works about
the necessary and sufficient conditions of robust
stabilization of LTI systems by Qiu et al. (1995)
and Shamma (1994). Here the difficulty is that
the LTI system under consideration is driven by a
given external signal which is usually assumed to be

zero in the existing works. To solve this problem, a
new method in constructing a worst uncertainty is
discussed in the proof of Theorem 2.

It is worth to note that the result in Theorem 2
also holds for a linear time varying uncertainty with
certain norm bound.

5. CONCLUSION

In this paper, we discussed tracking performance
limitation for an LTI plant with an external distur-
bance or uncertainty. It is shown that, if the exter-
nal disturbance is injected into the system at the
input of the plant, then the tracking performance
limit under the worst disturbance is a sum of the
tracking performance limit of the system without
the disturbance and the disturbance attenuation
performance limit of the system without the refer-
ence and tracking. Then, the minimax performance
limit of asymptotical tracking/robust stabilzation
is considered for the system with a nonlinear time
invariant uncertainty in a special structure. The
minimax performance limit of asymptotical track-
ing/robust stabilzation under the worst uncertainty
is dependent on the optimal H∞ gain from distur-
bance input to the output of the system, the size of
the worst uncertainty and the tracking performance
limit of the system without uncertainties.

APPENDIX A: PROOF OF THEOREM 1

Applying a controller from K into the system shown
in Figure 1, we have

ê = r̂ − N̂Q̂r̂ − N̂ Ŷ Ŵ d̂ + N̂R̂ ˆ̃LŴ d̂. (6)

The tracking performance is given by

J(v) = ‖r̂ − N̂Q̂r̂ − N̂(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22.
Due to the fact that an inner-outer factorization of
N̂ is given by N̂ = ĜinN̂out, J(v) is written as:

J(v) = ‖r̂ − ĜinN̂outQ̂r̂ − ĜinN̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22
= ‖Ĝ−1

in r̂ − N̂outQ̂r̂ − N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22.
Notice that Ĝ−1

in r̂ − r̂ ∈ H⊥2 and r̂ − N̂outQ̂r̂ −
N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂ ∈ H2 by selecting proper Q̂.
Then, we have

J(v) = ‖Ĝ−1
in r̂ − r̂‖22 + ‖r̂ − N̂outQ̂r̂‖22

+2〈r̂ − N̂outQ̂r̂,−N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂〉
+‖N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂)‖22. (7)

For ‖d‖2 ≤ δ, in the worst case, the third term
on the far right is positive. Therefore, for any Q̂ ∈
RH∞,

sup
‖d‖2≤δ

J(v) ≥ ‖Ĝ−1
in r̂ − r̂‖22

+ sup
‖d‖2≤δ0

‖N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22.

Consequently, it holds
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inf
Q̂∈RH∞

sup
‖d‖2≤δ

J(v) ≥ ‖Ĝ−1
in r̂ − r̂‖22

+ sup
‖d‖2≤δ

‖N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22. (8)

On the other hand, selecting Q̂ such that

‖r̂ − N̂outQ̂r̂‖ → 0 (9)

results in

sup
‖d‖2≤δ

J(v) = ‖Ĝ−1
in r̂ − r̂‖22

+ sup
‖d‖2≤δ

‖N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22. (10)

It follows from (8)-(10) that

inf
Q̂∈RH∞

sup
‖d‖2≤δ

J(v) = ‖Ĝ−1
in r̂ − r̂‖22

+ sup
‖d‖2≤δ

‖N̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂‖22. (11)

Denote the operator from d to z by Tzd. Then,

T̂zdd̂ = ĜinN̂out(Ŷ − R̂ ˆ̃L)Ŵ d̂.

From the definition of H∞ norm, (11) is written

Jopt(v) = ‖r̂ − Ĝinr̂‖22 + inf
K∈K

‖T̂zd‖2∞δ2. (12)

Applying the result by Chen et al. (2000) into (12)
leads to

Jopt =
m∑

i=1

2Re(zi)
∣∣∣∣
〈ηi, v〉

zi

∣∣∣∣
2

+ inf
K∈K

‖T̂zd‖2∞δ2.

APPENDIX B: PROOF OF THEOREM 2

For the simplicity, we only consider SISO systems
in this proof. But it can be easily extended to
the multivariable case. Here, all the discussion is
carried on in the time domain and all the converted
functions in the system are converted into operators
in the time domain.

For this system in Figure 2, the set of all 2DOF
stabilizing controller C is given by

C =
{

Ĉ = (Ŷ − R̂ ˆ̃L)−1[Q̂ (X̂ + R̂ ˆ̃D) + Q̂] :

Q̂, R̂ ∈ RH∞ and |Ŷ − R̂ ˆ̃L| 6= 0
}

.

Then the tracking error of the system is given by

e = r̃ + rQ − Tzdd (13)

where r̃ = r − Ginr, rQ = Gin(r − N0Qr) while it
follows from the discussion in Appendix A that the
integral square of this tracking error is given by

‖e‖22 = ‖r̃‖22 + ‖rQ − Tzdd‖22. (14)

Select Q such that (9) holds. Then, we have

‖e‖22 = ‖r̃‖22 + ‖Tzdd‖22. (15)

Due to d = ∆e and ‖∆‖∞ ≤ δ, (15) is written

‖e‖22 = ‖r̃‖22 + ‖Tzd∆e‖22 (16)

≤ ‖r̃‖22 + ‖Tzd‖2∞δ2‖e‖22.
Hence, one can see that

‖e‖22 ≤
‖r̃‖22

1− ‖Tzd‖2∞δ2
(17)

and e ∈ L2.

Next, we will proof that, for any given positive
scalar ε0, there exists a nonlinear time invariant
uncertainty with norm bound δ, ‖∆‖∞ ≤ δ such
that

‖r̃‖22 − ε0

1− ‖Tzd‖2∞δ2
≤ ‖e‖22. (18)

Define [f ][T1,T2] by

[f ][T1,T2] =
{

f(t), t ∈ [T1, T2)
0, t /∈ [T1, T2)

for any function f(t).

Notice the fact that Tzd is a stable LTI system.
Suppose ω0 be a peak frequency of Tzd and let
sk(t) = [Ak sinω0t][kT,(k+1)T ] where Ak is a real
amplitude. Then, for any given ε > 0, there exists
a positive T0 such that if T ≥ T0, it holds

0 ≤ ‖Tzd‖2∞ −
∥∥[Tzdsk][kT,(k+1)T ]

∥∥2

2

‖sk‖22
≤ ε. (19)

To seek the simplicity, it is assumed that T is
integral times of

π

ω0
.

Construct an uncertainty ∆ = ∆2∆1. The first
part ∆1 generates a sequence of impulse signals at
t = kT , k = 1, 2, · · · ,∞ and the output of ∆1 is

∆1e =
∞∑

k=1

Ckδ(t− kT )

where Ck =
∥∥[e][(k−1)T,kT ]

∥∥2

2
, k = 1, 2, · · · ,∞ and

δ(t − kT ), k = 1, 2, · · · ,∞ are a unit impulse
function. The second part ∆2 is a sinusoid generator
as follows:

[∆2∆1e](t) = Ak sinω0t, t ∈ [kT, (k + 1)T )

where Ak = δ

√
2Ck

T
. That is, the output d(t) of the

uncertainty is given by

d(t) = [∆2∆1e](t) =
∞∑

k=1

sk(t). (20)

After a simple calculation, we can see that
∥∥[d][kT,(k+1)T ]

∥∥2

2
= δ2Ck.

It is clear that, for any e(t) ∈ H2, there holds
‖d‖22 = ‖∆2∆1e‖22 = δ2‖e‖22 (21)

and ‖∆2∆1‖∞ = δ. To show that the inequality
(18) holds for this uncertainty, a lower bound of L2

norm of Tzdd =
∞∑

k=1

Tzdsk is considered. To do this,

Tzdsk is partitioned in time domain as below:
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Tzdsk =
∞∑

i=1

[Tzdsk][(k+i−1)T,(k+i)T ]. (22)

For the stable LTI system Tzd, there exists a posi-
tive constant ρi such that

‖[Tzdsk][(k+i)T,(k+i+1)T ]‖2
≤ ρi‖[Tzdsk][(k+i−1)T,(k+i)T ]‖2. (23)

Since, for different k, the differences on sk(t) are
its amplitude and the time interval which it is
defined in, ρi is independent from k. Moreover, ρi is
dominantly determined by an exponential function
of the most slowly decaying mode of Tzd and T . So
ρi → 0 as T → ∞. Denote the upper bound of ρi,
i = 1, 2, · · · ,∞ by ρT . By the same reason, ρT → 0
as T →∞.

From (20) and (22), we have

Tzd∆e=
∞∑

k=1

{
[Tzdsk][kT,(k+1)T ] + [Tzdsk][(k+1)T,∞]

}
.

(24)

Following (23) and the triangular inequality,∥∥[Tzdsk][(k+1)T,∞]

∥∥ is bounded by

∥∥[Tzdsk][(k+1)T,∞]

∥∥ ≤
∞∑

i=2

ρi−1
T

∥∥[Tzdsk][kT,(k+1)T ]

∥∥

≤ ρT

1− ρT

∥∥[Tzdsk][kT,(k+1)T ]

∥∥ . (25)

On the other other, from the triangle inequality and
(24), the L2 norm of Tzd∆e is bounded by

‖Tzd∆e‖2 ≥
∥∥∥∥∥
∞∑

k=1

[Tzdsk][kT,(k+1)T ]

∥∥∥∥∥
2

−
∞∑

k=1

∥∥[Tzdsk][(k+1)T,∞]

∥∥
2
. (26)

Substituting (25) into (26) and noticing the or-
thogonality among the items [Tzdsk][kT,(k+1)T ], k =
1, 2, · · · ,∞ in time domain, we have

‖Tzd∆e‖2 ≥ 1− 2ρT

1− ρT

∞∑

k=1

∥∥[Tzdsk][kT,(k+1)T ]

∥∥
2
.

(27)

It follows from (19) that
(‖Tzd‖2∞ − ε

) ∞∑

k=1

‖[sk]‖22

≤
∞∑

k=1

∥∥[Tzdsk][kT,(k+1)T ]

∥∥2

2
. (28)

From (27) and (28), we have that, for any given
positive ε0, it holds

‖Tzd∆e‖22 ≥ ‖Tzd‖2∞
∞∑

k=1

‖[sk]‖22 − ε0, as T →∞.

= ‖Tzd‖2∞‖∆e‖22 − ε0 (29)

where the second equality follows the orthogonality
among the items sk, k = 1, 2, · · · ,∞ in the time
domain. Substituting (21) into (29) leads to

‖Tzd∆e‖22 ≥ ‖Tzd‖2∞δ2‖e‖22 − ε0, as T →∞.(30)

With (17), (16) and (30), we have

‖e‖22 →
‖r̃‖22

1− δ2‖Tzd‖2∞
, as T →∞.

The proof is completed.
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