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Tracking Performance Limitations in LTI
Multivariable Discrete-Time Systems

Onur Toker, Jie Chen, and Li Qiu

Abstract—In this paper, we investigate tracking properties of
linear shift-invariant feedback control systems. We consider the
standard unity feedback configuration, and use the energy of an
error signal as a measure of tracking ability. Our main goal is to
understand the fundamental limitation on tracking performance,
which can arise due to the nonminimum phase zeros, unstable
poles, and time delays in the plant, and which varies with input
reference signals. We consider step, ramp, and sinusoidal signals,
and for each type of the signals we derive a closed form expression
for the minimum tracking error attainable by any stabilizing con-
troller. Our results display an explicit dependence of the tracking
error on nonminimum phase zeros, unstable poles, and in partic-
ular the coupling between the directions of the poles and zeros,
and those of the input reference signal, upon which a number of
useful conclusions can be drawn. One interesting outcome is that
not only zero and pole locations affect tracking performance, but
their directional properties also play an important role. The paper
provides a nontrivial extension of the previously available results
to discrete-time systems, with a consideration on broader classes
of reference inputs.

Index Terms—MIMO discrete-time systems, nonminimum
phase zeros, optimal tracking error, time delays, tracking perfor-
mance, unstable poles.

I. INTRODUCTION

I N THIS paper, we study a tracking performance problem
for multi-input multi-output (MIMO), linear, shift-invariant

systems posed in a unity feedback control scheme. The energy
of an error signal, which is the difference between a given ref-
erence input and its output response, is used as performance
measure. We are interested in the optimal performance that
can be achieved by all stabilizing compensators, and more
importantly, in how plant properties may limit the best per-
formance achievable. We consider a class of benchmark refer-
ence inputs, including step, ramp, and sinusoidal signals. With
respect to each of these signals, we show that the optimal per-
formance depends critically upon the locations and directions
of the unstable poles and nonminimum phase zeros in the
plant transfer function matrix. We quantify the effects of these
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zeros and poles explicitly by deriving closed form expressions
for the minimal tracking error.

Performance limitations resulting from plant nonminimum
phase zeros and unstable poles have been known for a long
time. For example, earlier studies of Bode and Poisson type
integrals [10], [2], [15], [12], [3], [4], [19] show that they im-
pose inherent limitations on a system’s ability to reduce sensi-
tivity and hence the ability to attenuate disturbance signals. Sim-
ilarly, results in optimal control suggest that such zeros and
poles lead to irreducible lower bounds on the best achievable
performance defined under criteria [13], [22], [5]. Other
pertinent results are found in problems concerning cheap con-
trol [14], [17], [20], LQG/LTR design [23], and optimal refer-
ence tracking [16], [7], pointing to fundamental constraints in
attaining various feedback design objectives. The present paper
continues these earlier studies, and in particular builds on the
authors’ recent work [7], which was focused on the tracking of
a step reference signal in the continuous-time setting. Here we
derive similar expressions for the best achievable tracking per-
formance for MIMO discrete-time systems. Like their prede-
cessors, these expressions demonstrate in a clear manner how
the tracking performance may be limited by plant nonminimum
phase zeros and unstable poles, and especially in how it may
depend on the directions of such zeros and poles in a MIMO
discrete-time system. Most notably, it will be seen that the rel-
ative orientation between the reference input direction and the
directions of plant nonminimum phase zeros and unstable poles
plays a central role to this effect, and that this orientation can be
precisely quantified via an angular measure known as theprin-
cipal anglebetween the directions. The results thus reinforce
the existing work and extend it to discrete-time systems and to
broader classes of reference input signals.

The remainder of this paper is organized as follows. In
Section II, we formulate the tracking problem and state some
preliminary facts concerning nonminimum phase systems. In
Section III, we examine the tracking performance with respect
to a generalized step reference input. Section IV addresses si-
nusoidal and ramp reference signals. Section V studies tracking
performance limitations in time-delay systems. Section VI
presents an illustrative example, and Section VII provides a
number of concluding statements.

II. PRELIMINARIES

We begin by summarizing briefly the notation used
throughout this paper. For any complex number, we denote
its complex conjugate by. For any vector , we denote its
conjugate transpose by , and its Euclidean norm by .

1057-7122/02$17.00 © 2002 IEEE
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For a matrix , we denote its conjugate transpose by ,
and its column space by . If is a Hermitian matrix,
we denote its largest and smallest eigenvalues by and

, respectively. All the vectors and matrices involved in
the sequel are assumed to have compatible dimensions, and
for simplicity their dimensions will be omitted. Let the open
unit disc be denoted by , the closed
unit disc by , the unit circle by

, and the complement of by
. Define

measurable in

Then, is a Hilbert space with an inner product

Next, define

analytic in

and

analytic in

It is well-known that and are subspaces and form an
orthogonal pair of . Similarly, define as the space of all
complex-valued matrix functions which are bounded and ana-
lytic in , and the space of all rational matrix functions
in . Note that the and defined here differ from the
conventional Hardy spaces, which are usually defined over,
instead of . However, this slight deviation in notation will
prove more convenient in our later presentation. Note also that
for each of the normed spaces, and we have used
the same notation to denote the corresponding norm; this
will be clear from the context as well. Finally, for any sequence

, we define its -transform by

We shall consider the unity feedback control system depicted
in Fig. 1, in which represents a linear shift-invariant plant
and a stabilizing compensator. For a given input signal, we
define the tracking error as

Fig. 1. The unity feedback system.

The best tracking performance is measured by the minimal pos-
sible tracking error achievable by all linear shift-invariant stabi-
lizing compensators, determined as

Let a right and left coprime factorization of the plant transfer
function matrix be given by

(2.1)

where , , , and satisfy the double Bezout
identity

(2.2)

for some , , , . Then, all the stabilizing com-
pensators can be characterized by the set [21]

(2.3)

If is stable, we may choose , ,
, , , and can be further simplified to

(2.4)

Let the system sensitivity function be defined by

It follows that , and further

(2.5)

Throughout this paper we shall impose the following assump-
tions.

Assumption 2.1: has full row rank for at least one.
Assumption 2.2: has only distinct poles in .
Assumption 2.1 is standard and was made in, e.g., [14], [17],

[7]. This assumption guarantees that the plant transfer function
matrix be right invertible, which is necessary for insuring that
the tracking error be finite. Assumption 2.2, on the other hand, is
a technical one, intended mainly for simplifying our subsequent
analysis. It can be relaxed at the expense of more complex ex-
pressions. On occasions we will also assume that has only
distinct zeros in . This will be made clear as we proceed.
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In the remainder of this section, we introduce a factorization
formula for nonminimum phase discrete-time systems. Con-
sider a right-invertible matrix function . A complex number

is said to be a zero of if for some uni-
tary vector , where is called an output direction vector asso-
ciated with , and . Suppose that . Then is said
to be a nonminimum phase zero and a nonminimum phase
transfer function matrix. For such a zero, it is always true that

, for some unitary vector. On the other hand, a
complex number is said to be a pole of if be-
comes unbounded at . If , i.e., is an unstable pole
of , then an equivalent statement is that for
some unitary vector , . The unitary vector may be
conveniently termed an input pole direction vector associated
with . Throughout this paper, we shall assume that the plant
does not have a nonminimum phase zero and an unstable pole
at the same location.

It is well-known [2], [6] that any nonminimum phase, right
invertible transfer function matrix can be factorized in the
form of

(2.6)

where is an allpass factor containing all the nonminimum
phase zeros of , and has no nonminimum phase
zero and hence is said to be minimum phase. Let ,

, be the (finite) nonminimum phase zeros of .
Then, one specific factorization can be constructed as

(2.7)

Here, are unitary vectors obtained by factorizing the zeros
one at a time, and are matrices which together with form
a unitary matrix. Specifically, one can computedirectly from

, which gives rise to the factorized form
. Next, can be obtained from

. This procedure is then continued until all the nonminimum
phase zeros are factorized.

It follows rather evidently that a nonminimum phase, left in-
vertible transfer function matrix can be factorized in the
form of . Moreover, since the nonminimum
phase zeros of coincide with those of , the latter ad-
mits a similar factorization

(2.8)

where is given in (2.7). Note that similar factorizations
were used previously in [23], [6]. A special property with the
present construction, however, is that . This property
will facilitate our subsequent derivations. Finally, note that for
a discrete-time system time delays can be interpreted as non-
minimum phase zeros at the point of infinity; the factorization
formula (2.7) accommodates these zeros as well in the limit.

We conclude this section by introducing the following an-
gular measure. Given a unitary vector, we call the one-dimen-
sional subspace spanned bythe direction of . For any two

unitary vectors , we define the angle between their
directions by

which is often known asprincipal angle[1], [11] and has been
shown to be useful in measuring geometrical orientations of
zeros and poles in multivariable systems [3], [4], [6]. We say
that the two directions are parallel if , and that
they are orthogonal if .

III. T RACKING STEP SIGNALS

In this section, we study the tracking performance problem
pertaining to a vector version of the step signal, defined by

if
if .

(3.1)

Here, is a constant unitary vector. This signal may be inter-
preted as a generalization to the scalar unit step signal, or a unit
step reference input with a specific direction determined by the
vector . The -transform of is

By virtue of (2.5), it is clear that the sensitivity function
must have a zero at in such a way that ,
in order for to be finite. In other words, it is necessary to
have an integrator in the open loop system. This necessitates
the following assumption on the plant transfer function matrix.

Assumption 3.1: .
The condition follows from the expansion of in terms of

(3.2)

and the requirement . Note that Assumption 3.1 does
not rule out the possibility that may have a zero at ;
instead, it only requires that the input must enter from a direc-
tion lying in the column space of . This property is a fun-
damental one. While for single-input single-output (SISO) sys-
tems, one can track a step input only when the plant transfer
function has no zero at , it is possible to do so in a multi-
variable system even when it does have a zero at , as long
as the signal direction is properly aligned. Of course, if
has no zero at , such a condition is always satisfied for a
right invertible plant.

A. Stable Plants

We begin our investigation with stable plants. According to
(2.4) and (2.5), the minimal tracking error in this case can be
expressed as

(3.3)

Our following theorem gives a closed form expression for.
This result and its derivation are most useful for highlighting the
main conceptual insights, and for ushering in the key techniques
used in the paper. We shall consider first plants such that
has no zero at ; in other words, does not contain time
delays. It will prove more advantageous to treat delays explic-
itly, and this is deferred to Section V.



660 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 5, MAY 2002

Theorem 3.1:Let be the step input signal defined by (3.1).
Assume that is stable, and that it has no zero at. Let

be factorized as in (2.6). Furthermore, suppose that As-
sumptions 2.1 and 3.1 hold. Then

(3.4)

Proof: In view of (3.3) and (2.6), we write first

Noting that is allpass, can be further written as

Since , it follows that

Also, since , it is possible to find a
such that ; otherwise, cannot be finite.
Under this condition, we have

By the fact that and are orthogonal complements in ,
it follows that

and accordingly

(3.5)

Note now that under Assumption 2.1 is right invertible.
A well-known fact from [21] then dictates that

Consequently, we arrive at

Using the expression in (2.7), we may evaluateexplicitly as
follows. First, we note that

Since , it can be expanded as

Therefore

The proof is now completed.
Theorem 3.1 gives a complete characterization on how plant

nonminimum phase zeros may affect the tracking performance
with respect to step inputs. The result is appealing in several
regards: not only is it unavailable previously even for SISO dis-
crete-time systems, but also it exhibits important properties only
found in multivariable systems. From this theorem, it is clear
that zeros farther outside the unit circle have less significant an
effect on the tracking performance. In fact, zeros close to the
unit circle may not have a significant effect either; only those
close to the point will be most dominant. To illustrate
this point, denote and rewrite as

Note that only when ,

This implies that the zeros in the first and fourth quadrants play
a relatively more significant role. Furthermore, even for such
zeros, one can see that decreases monotonically with .
Hence, the zeros close to have a more negative effect. In
the limit

when , while as

More importantly, in a spirit similar to that of [7], the the-
orem shows that in a multivariable system the tracking per-
formance depends not only on the zero locations, but also on
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their directional properties. The latter dependence is captured
by the directional vectors and their orientations relative to the
input signal direction. Clearly, a nonminimum phase zerowill
not affect significantly the tracking performance if the corre-
sponding vector is properly aligned with , specifically when
the subspace spanned byis nearly orthogonal to the input di-
rection. The implication of this phenomenon is a fundamental
one. While perfect tracking is never possible for nonminimum
phase SISO plants, it can be achieved in a MIMO system. This
is immediately clear by examining the limiting case where the
plant has one single nonminimum phase zerowith a direction
vector , for which the minimal tracking error becomes

(3.6)

It follows that whenever the zero direction is orthogonal
to that of the input signal, hence resulting in perfect tracking.
This in fact is possible in more general situations. Indeed, a little
thought indicates that can be written alternatively as

(3.7)

This in turn suggests that can always be made zero provided
that the matrix

is not full-rank, and that is selected appropriately.
Since the minimal error depends upon the input direction, it

is of interest to determinea priori the best and worst tracking
performance possible. This is equivalent to determining

(3.8)

and

(3.9)

From (3.7), it follows that

and

and that the least and most desirable signal directions lie in the
eigenspaces corresponding to and , respectively. Fi-
nally, consider any two nonminimum phase zerosand . A
simple calculation yields

This expression shows that the zeros may themselves couple to
affect the tracking performance.

B. Unstable Plants

For unstable plants, the doubly coprime factorizations (2.1)
and Youla parameterization (2.3) lead to

. Under Assumption 3.1, there exists a
such that , and for such

a

is well-defined. Our following result extends Theorem 3.1,
which shows how plant unstable poles may affect the tracking
performance.

Theorem 3.2:Let be the step input signal defined in (3.1).
Assume that has no zero at . Furthermore, suppose that
Assumptions 2.1 and 3.1 hold, and that is factorized as in
(2.8). Then

(3.10)

where

and is the index set defined by .
Proof: Using (2.8), we may first express as

Define

(3.11)

and write
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Since , we have
. Furthermore, since

is required to satisfy

we have

This, together with the fact that

leads to

Note that the first term in this expression has been evaluated
explicitly in Section III-A. As such, the rest of the proof will
proceed by evaluating the second term. To facilitate the evalua-
tion, denote it by . In addition, define . Since

for all , and since is left invertible, it can
be factorized in the form of , where

and is left invertible in . Consequently,

Let

It is easy to show that . This allows us to write

where

It is clear that

and

In particular, a straightforward calculation yields

Therefore, we have

The proof can now be completed by noting that
for any , and by invoking Cauchy theorem,

which gives rise to

where in the contour integration the unit circle is positively
oriented.

While one generally expects that plant unstable poles affect
negatively the tracking performance, interestingly, this may or
may not be true. Theorem 3.2 exhibits that such poles will have
an effect on only when the plant is also nonminimum phase.
This is clear since for minimum phase plants . More
interestingly, even for nonminimum phase plants, the unstable
poles exert their effect in a rather distinctive manner, unlike the
nonminimum phase zeros. Specifically, only those poles whose
input directions are parallel to that of the reference signal have a
toll on , while other poles do not play any role. This brings us
to another major distinction between MIMO and SISO systems:
while in a MIMO system plant unstable poles may or may not
affect the tracking performance and this depends on whether the
pole and input directions are aligned, they always do in a SISO
system, whenever the plant is also nonminimum phase.
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Since the matrix contains terms such as , when
some of the poles do have directions parallel to that of the input
signal, one should expect a large if there are nonminimum
phase zeros lying in the close vicinity of the poles, and as such
the performance limitation in these cases will become particu-
larly acute. This can be seen by examining the following lim-
iting case. Suppose that has one zero with a direc-
tion vector , and that it has one pole whose direction is
parallel to the input direction. Then, it can be readily deduced
from (3.10) that

(3.12)

which indicates that can become exceedingly large when
and are located nearby. Note, however, that such a scenario
will never arise in a MIMO system if the pole and signal direc-
tions are not completely aligned, although it always occurs in
SISO systems.

We conclude this section by pointing out that Theorem 3.2
may be extended to cases where has multiple poles. Under
this more complex circumstance, will generally possess the
form

where is the multiplicity of the unstable pole. Accordingly,
is to be constructed as

with determined via the formula

With these modifications, it can be shown similarly that

which can be further evaluated to fine details. Unfortunately, it
will only yield a rather cumbersome expression.

IV. SINUSOIDAL AND RAMP SIGNALS

We now extend our results to other typical classes of signals.
Of main interest herein are vector versions of real sinusoids and
unit ramp signals. The extension helps reveal the intricate na-
ture of tracking performance limitations in relation to different
signals. It also points to a general technique that can be applied
to solve analytically tracking performance problems of similar
kinds.

A. Real Sinusoids

The real sinusoids in question are defined by

(4.1)

whose -transform is given by

Here is the frequency, andis a real constant unitary vector.
Note that for the tracking error to be finite, the system is required
to meet the requirements and .
This necessitates

Assumption 4.1: .
Theorem 4.1:Let be the real sinusoid defined in (4.1). Sup-

pose that Assumptions 2.1 and 4.1 hold. Furthermore, suppose
that has only distinct zeros and poles in, and that
has no zero at . Let be factorized as in (2.8). Then,

(4.2)

where and are defined as follows:

The constants and the set are defined as in Theorem 3.2.
Proof: The proof is similar to that for Theorem 3.2, but

with some additional nontrivial derivations. We begin with the
characterization

where is defined by (3.11); this characterization is
found in the proof for Theorem 3.2. By construction, we have

, and . Hence,
it follows that

and
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The proof then proceeds as

Denote

and

It suffices to show that , and . For
this purpose, we calculate and explicitly. First, note that
we may expand as

(4.3)

where is some constant matrix. This is possible whenever
the zeros are distinct, and it can be readily observed by con-
ducting a partial fraction expansion on . Let

Then, it follows that

A straightforward calculation yields

As a result, we have

Therefore

This proves . Next, we evaluate . Toward this
end, we begin with the characterization

As in the proof of Theorem 3.2, we may write

where . Define

and

It follows that

Since

becomes

This establishes the fact . The proof is now
completed.
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In much the same spirit, Theorem 4.1 demonstrates that non-
minimum phase zeros and unstable poles can each exert a sig-
nificant effect on a system’s performance in tracking a real sinu-
soidal signal. This effect, however, manifests itself in a signif-
icantly more complex fashion, leading to a rather complicated
expression of the minimal tracking error. Unlike in the case of
tracking step signals, the zero effects are now seen to be cou-
pled, which obscures the relationship betweenand the zeros,
and renders the analysis more difficult; the interaction between
the zeros is captured by the cross terms involvingand .
In spite of this difficulty notwithstanding, one may be sure that
certain conceptual statements remain valid. This can be partly
observed by examining a number of special instances. For ex-
ample, when is stable and has only one zero with
a direction vector , one obtains

In addition, if has one pole whose direction is
parallel to that of , then

Both expressions follow readily from (4.2). It is clear that the
nonminimum phase zeros close to can be par-
ticularly problematic. Other additional interpretations follow
analogously.

B. Ramp Signals

The ramp signal under consideration is described by

.
(4.4)

Likewise, we assume that . The -transform of is
given by

(4.5)

As in the previous analysis, it is easy to see that the sensi-
tivity function must meet the requirements that , and

. Thus, the following condition is necessary.
Assumption 4.2: .
This assumption implies that the open loop system must be of

a type no less than two. For that to be possible, whenever
has a multiple zero at , must lie in the column spaces of

and .
Theorem 4.2:Let be the ramp signal given in (4.4). Sup-

pose that Assumptions 2.1 and 4.2 hold. Suppose also that
has only distinct zeros and poles in , and that has no
zero at . Let be factorized as in (2.8). Then

(4.6)

where

Furthermore, , , , and are defined as in Theorem 4.1.
Proof: The proof follows the essential steps in the proof

for Theorem 4.1, with replaced by , and by

Since , and since

can be written alternatively as

In light of (4.3), we further have

for some constant matrix , and additionally

Consequently

and
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Finally, in a similar manner, we also obtain

The proof may then be completed via similar manipulations as
those in the proof for Theorem 4.1.

Theorem 4.2 also shows that the tracking of a ramp signal
depends in a rather complex way on plant nonminimum phase
zeros. This result is very similar to Theorem 4.1. In fact, a close
inspection reveals that the former may be regarded as the limit of
the latter, in the sense described below. Denote as the real
sinusoid (4.1), and the ramp signal (4.4). Furthermore,
denote and as the corresponding tracking errors. It can
be readily verified that

A comparison of (4.2) and (4.6) then shows that

Interestingly, a similar relationship exists between and

On another account, it is of interest to compare Theorem 4.2
with Theorem 3.2. Suppose that has only one zero ,
and one pole , so that its direction parallels to that of the
signal. Under this circumstance, Theorem 4.2 gives

(4.7)

In comparison to (3.6) and (3.12), it becomes clear that a non-
minimum phase zero close to , specifically when

, has a more serious effect in tracking a ramp signal
than in the case of a step input. On the other hand, for a zero far-
ther away from , so that , the error in tracking a
ramp signal is relatively smaller. Since ramp signals vary faster
with time, this seemingly suggests that zeros close to
are more serious toward the tracking error in steady state, while
those farther away from play a more significant role on
the error in transience.

V. TIME DELAY SYSTEMS

As we have pointed out in Section II, time delays in a dis-
crete-time system can be treated as nonminimum phase zeros at

. In principle, it is thus possible to generalize the preceding
results directly to time-delay systems by resorting to a limiting
argument. Nevertheless, in view of the complexity of zero direc-
tions, it is more instructive to study delay effects explicitly. For
this purpose, we shall consider plants with measurement delays,
by which we mean that the plant transfer function matrix can be
expressed as

(5.1)

where contains no delay, and

...

The integers indicate the units of delay time, and
represents the number of output channels. To simplify our anal-
ysis, we shall also assume that is stable. For a given refer-
ence input , denote the tracking error with respect to
by

and accordingly, the minimal error by

Furthermore, denotes the minimal error in the absence of
delay.

Let the right and left coprime factorizations of be given
by (2.1). When is stable, the right and left coprime factors
for can be constructed such that

and

It then follows that

Since , it is clear that Assumption 3.1 is necessary
when is the step signal (3.1), and Assumption 4.2 needs to
be imposed when is the ramp signal (4.4).

We first give the following formula for in the case of step
signals.

Theorem 5.1:Let be the step input signal defined in (3.1),
and be partitioned compatibly with . Assume that
is stable. Furthermore, suppose that Assumptions 2.1 and 3.1
hold. Then

(5.2)

where is given by (3.4).
Proof: First, note that is allpass. Hence, with the step

signal (3.1), we may write

It is clear that
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As a result

Since for any integer

and as such

we obtain

thus completing the proof.
Theorem 5.1 shows indeed that time delays impose also a

fundamental performance limit irreducible by feedback, much
as we expect of nonminimum phase zeros. One particularly ap-
pealing feature about this result dwells on the fact that when
tracking a step signal, the delay effects are completely indepen-
dent of those due to plant nonminimum phase zeros. This phe-
nomenon, however, cannot be observed in general, as evidenced
by our next result.

Theorem 5.2:Let be the ramp input signal defined in (4.4),
and be partitioned compatibly with . Assume that
is stable, and that it is factorized in (2.6). Furthermore, suppose
that Assumptions 2.1 and 4.2 hold. Then

(5.3)

where

...

and , are defined in Theorem 4.1.
Proof: Define . It follows readily

that

Hence, we have

We claim that

This follows by noting that for any integer

and hence

The rest of the proof then proceeds as in that for Theorem 4.2.

Despite that, time delays and nonminimum phase zeros will
generally interact to affect the tracking error, an interesting out-
come from (5.3) is that partial delay effects can be indepen-
dently characterized, which are captured by the first term in
(5.3). For a minimum phase plant, it follows that

(5.4)

This in turn furnishes a complete characterization of the delay
effects. Note that for ,

which indicates that in a time delay system it is generally more
difficult to track a ramp input than a step signal. Note also that
if , then the delay contributes no effect on .
A deeper investigation reveals that this observation can be ex-
tended to a more general conclusion, that for a minimum phase
plant, a delay unit will generally have no effect on the tracking
performance whenever the-transform of the reference input
is a rational function with an order greater than the delay time
of that unit. As such, in order to achieve perfect tracking, the
variation speed of the reference input will necessarily impose a
limit on the allowable delay time.
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VI. A N ILLUSTRATIVE EXAMPLE

We now construct an illustrative example. Consider a plant
whose transfer function matrix is given by

This plant is invertible, but is nonminimum phase. The two non-
minimum phase zeros are located at and , with
output zero direction vectors as

respectively. When factorized sequentially, the corresponding
direction vectors are

It follows that

As such, both angles vary from zero to as takes values in
. Moreover, depending on the value of, the plant may or

may not be stable. For anysuch that , it has an unstable
pole at with a pole direction vector

With the plant so constructed, our purpose is to demonstrate
and verify several highlights found in the preceding results con-
cerning how zero-pole coupling and how the relative orienta-
tion between zero and pole directions, and that between zero
and input signal directions, may affect the tracking performance.
For this purpose, we focus on step input signals only. In all cases
discussed below, we formulate the tracking problem as one of
optimal control, and use MATLAB’s -Toolbox to compute
the optimal cost. The computational results all match pre-
cisely the minimal tracking errors evaluated using the expres-
sions obtained in Section III.

Let us fix and select the input vectoras

Fig. 2. J with respect tov andv .

Note that for , the pole and input directions are parallel,
but for , they are not. Hence, if , one expects
that in the former case the tracking error will be larger due to
the effect from the unstable pole , and that it will become
excessively large whenapproaches or . On
the other hand, when , the pole does not play
any role and hence one expects no change in the tracking error
regardless of the value of. The computational results shown in
Fig. 2 clearly confirm these observations. Additionally, we also
observe that with , is a constant for , and that
a gap exists between this value and thecorresponding to ;
this can clearly be attributed to the different alignments between
zero and signal directions in the two respective cases.

Now, fix and construct

with

For , the signal direction is orthogonal to both the zero
directions, and further to the directions spanned byand .
Fig. 3 shows that in this case perfect tracking is achieved. When

departs from zero, the alignment changes. As shown in the
figure, the change in the value of is substantial.

Finally, let us examine how may vary with the align-
ment between and , or that between and . For this
purpose, set and change from 10 to 10. When ,
the directions spanned by and are orthogonal (so are the
zero directions), and Fig. 4 shows that achieves its min-
imum. If , increases with monotonically, to its
maximum value when , at which and are per-
fectly aligned. Note that a computation of with respect to

shows that not only , but also itself can change
substantially with the alignment between the direction vectors.
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Fig. 3. J vs. zero and signal direction alignment.

Fig. 4. J andJ vs. zero direction alignment.

VII. CONCLUSION

Optimal tracking performance is a classical issue and has
been long under examination for its intrinsic appeal and
fundamental implication. This paper furnishes a study on this
issue for linear, shift-invariant, MIMO discrete-time systems.
The problem is investigated in conjunction with several classes
of reference input signals, including step, ramp, and sinusoidal
signals, which are widely held as benchmark signals for testing
system performance. For each class of signals, we derived a
closed form expression for the minimal tracking error. The
results characterize explicitly how plant properties such as
nonminimum phase zeros, unstable poles, and time delays
may lead to a performance limit that cannot be overcome via
the means of feedback. While in a SISO system this limit is
solely determined by the location of nonminimum phase zeros
and unstable poles, modulo to the effect from time delays, in

a MIMO system it depends on the directional properties of
such zeros and poles also. The relative orientations of the zero,
pole, and input signal directions were seen to play a major role.
As a fundamental consequence, it becomes clear that perfect
tracking may be achieved in a MIMO nonminimum phase
system, which, on the other hand, can never be possible for a
SISO nonminimum phase plant. The analytic quantification of
these important facts reinforces the previously known results
and is the main contribution of this paper.

The tracking performance considered herein is the best pos-
sible under the use of causal, one-parameter feedback controller.
It is known that tracking quality can be further improved using
more general control structures and strategies. In this vein, our
work can be directly generalized to two-parameter tracking sys-
tems, in a way similar to [7], which will rid of the effect by plant
unstable poles. The effect by the nonminimum phase zeros may
be circumvented by adopting a noncausal feedforward (e.g., pre-
view) compensation scheme [17], [8]. Additionally, the tech-
niques and results herein can in principle be extended to polyno-
mial type reference inputs whose-transforms may be rational
functions of a higher order; it is clear from Section IV that cen-
tral to our development is to construct a polynomial interpolant
[ and ] that interpolates certain values at the poles of
these rational functions. Generally, such signals vary faster with
time, and as a result the analysis is expected to be more com-
plex and difficult. Finally, the optimal tracking problems can be
interpreted and tackled from an optimal function interpolation
perspective, as suggested in [18]. We leave these extensions and
perspectives to the reader’s discretion.
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