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Abstract 
A navel idea, termed as uncertainty equivalence 

principle, is proposed, based on which an eqniva- 
lent measure to the X,-norm is adopted for unmod- 
eled dynamics using time-domain measurement data. 
Such an equivalent description for modeling errors is 
consistent with %--based robust control, and allows 
31- optimization to be successfully used in adaptive 
control to achieve robust stability and performance 
comparable to 31- control. Specifically a new adap- 
tive control systems is proposed in this paper, focus- 
ing on stable plants. It employs the recursive least- 
squares (RLS) algorithm for adaptive model estima- 
tion, and weighted sensitivity minimization plus ro- 
bust stabilization for adaptive controller design. Our 
results show that the proposed adaptive control sys- 
tem admits robust stability and performance asymp- 
totically, provided that the estimated plant model 
converges. 
1 Introduction 

The intellectual appealing of the notion of self- 
tuning, abundant algorithms for adaptive model es- 
timation and controller design, and wide practice in 
industrial applications have made adaptive feedback 
control one of the central methodologies in the re- 
search community of control. Yet the rich theory 
and great success of adaptive control is built upon 
the certainty equivalence principle under which adap- 
tively estimated model is taken as the true one for 
on-line controller design. While the certainty equiv- 
alence principle was instrumental to the success of 
adaptive conbrol, it failed to accomplish the same in 
robust adaptive control. Indeed it  as shown in Ill] 
that  instability may occur if unmodeled dynamics or 
persistent disturbances appear near the crossover f ro  
quency where the loop transfer function has a phase 
angle of 180' or magnitude of 0 dB. The lack of sta- 
bility robustness has stimulated research activities in 
robust adaptive control for almost two decades. See 
[l ,  2, 5, 6, 8, 12, 13, 141, and references therein. Ro- 
bust stability was established for adaptive control sys- 
tems in presence of unmodeled dynamics provided 
that the size of the uncertainty is suitably small. The 
progress in robust adaptive control is notwithstand- 
ing. There lacks a uniform lower bound on the stabil- 
ity margin in terms of the size of the uncertainty for 
several robust adaptive control schemes using normal- 
izations [7]. It is still far away from achieving stability 
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margins (by any adaptive control system) compara- 
ble to those achievable by Xtl,-based robust control 
[3, 15, 161, which aims to  design a single feedback 
controller having the maximum stability margin, and 
optimal disturbance rejection, both measured by '&- 
norm. Consequently robustification via various mod- 
ifications of conventional adaptive laws appears to  be 
limited. 

Lack of adequate stability margins for adaptive cou- 
trol seems to have its root in certainty equivalence 
principle whose premise is the accurate representa- 
tion of physical processes by differenceldifferential 
equations of finite and known order. Such a premise 
does not hold in most engineering practice. It i s  now 
widely accepted that physical processes involve un- 
certainties in both parameters and dynamics, if rep- 
resented by transfer functions of finite McMillan de- 
grees. The modeling error between the mathematical 
model and its corresponding physical process is in- 
evitable due to nonlinearities, infinite-dimensionality, 
and time-varying nature of the physical system. In or- 
der to effectively cope with unmodeled dynamics and 
parameters variations, new approaches and methods 
are indispensable. 

Nevertheless we are motivated by the developments 
of adaptive control, and 31, control in the past two 
decades. Both are capable of dealing with model 
uncertainties. Roughly speaking adaptive control 
is effective in tackling time-varying systems or sys- 
tems with uncertain paramet,ers, while 31, control 
is more powerful in coping with unmodeled dynam- 
ics. Moreover adaptive control is a time-domain ap- 
proach, whereas Xw control involves optimization in 
frequency-domain. Although the differences between 
the two prevent them from unifying together mean- 
ingfully, we propose a novel approach in this paper to  
tackle robust adaptive control. Our goal is to max- 
imize stability margins and to optimize the perfor- 
mance index for adaptive control systems via 31,- 
based robust control. The foundation of our proposed 
approach is the uncertainty equivalence principle, con- 
trast to  the conventional certainty equivalence princi- 
ple. In general, the modeling error in adaptive esti- 
mation can not be quantified at each time instant in 
terms of 31,-norm based on real time data, which rep- 
resents only one time sample path. Hence an equiva- 
lent measure of the modeling error will be proposed. 
Even though the 'HHm-norrn of the error system can 
not be quantified, the output signal of the error sys- 
tem is guaranteed to satisfy the same energy ampli- 
fication constraint as the XW-norm, thereby provid- 
ing an equivalent description of the dynamics uncer- 
tainty, and enabling applications of 31, optimization 
in adaptive control systems to achieve equivalent sta- 
bility margin and performance comparable to those 
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achievable in 71, control. Moreover we will propose 
a specific adaptive feedback control system focusing 
on stable plants in this paper, and prove its stabil- 
ity, and performance under under the condition that 
the adaptively estimated plant model converges. I t  is 
interesting to  note that persistent excitation of the ex- 
ogenous signals is not required for our proposed adap- 
tive control system. 

2 Uncertainty Equivalence Principle 
In %,-based robust control, the unmodeled dy- 

namics are assumed to  he stable, and quantified by 
the 71,-norm. However by definition, 71,-norm of a 
stable dynamic system is the worst-case gain ampli- 
fication over energy bounded signals, while the time- 
domain signal in practical operation is unlikely to he 
the worst-case one. Hence for system identification 
with time-domain signals, it is impractical to estimate 
the modeling error in 31, norm that is especially true 
for adaptive estimation. This seems to  be a disadvan- 
tage for time-domain modeling techniques. However 
if we examine i t  further, this disadvantage is actually 
an advantage for adaptive feedback control systems. 
The pivot is the uncertainty equivalence pnnciple. 

Denote e: as the collection of all the causal signals 
(&hich can be vector-valued for each time instance t )  
having bounded energy. Then for any s ( t )  E I!:, its 
tz-norm is defined by 

Assume that the uncertainty represented by its trans- 
fer function A(z) is eZ:BIBO stable, Then its 71,- 
norm IlAll, is hounded, determined by its frequency 
response. Let p = {fi(t)}Eo E e: be the input. Then 
the output w = {v(t) jE0 E e:. Moreover 

6 = llAllm := sup a ( A ( e J " ) )  = sup - l l 4 l z  (1) 
UER 11Pl12 

with a(.) the maximum singular value. That is, 71,- 
norm is the worst-case energy amplification, or e'- 
gain. The collection of all stable rational transfer 
functions is denoted by RX,, and its closure is de- 
noted by 71,. 

wr,T 2 0, as the projection operator satisfying 
For any signal s = {s(t)}&, E e:, we define 

By slight abuse ofnotation, !'-gain can also be defined 
over the finite time horizon by 

For any input/output pair (p ,  w ) ,  there hold IJYII[z,TI 5 
~ T I I ~ I I [ ~ , T ]  for T 2 0, and 6 = limr,, 6 ~ .  However i t  
is lff icult  to  determine 6~ for each T 2 0 using only 
the time-domain measurement data, which requires 
the presence of the worst-case input/output signals. 
Indeed for adaptive feedback control, only one time 

The transition from A(%) to AN(.) is important. 
Although the frozen model uncertainty at each time 
t is linear, and may be represented by A(z), its 
71,-norm IlAll, can not be quantified based on 
input/ontput pair ({p(t)}TF0, {w(t)}T=,,) in general. 
But if an adaptive estimation algorithm can ensure 
I l ~ w ( ~ ) l l [ i . r ~  5 E l b t l [ Z . T ]  for Some > 0, and any 
{ ~ ( t ) } : = ~ ,  and T 2 0, then e can serve as an upper 
bound for IlA,~(p)ll 2 TI. Moreover the following re- 
sult can he obtained,' which illustrates our proposed 
concept of uncertainty equivalence principle. See also 
1151. 

Proposition 2.1 Consider the uncertain feedback 
system en Figure 1 where both HN(.), with 2 x 1 block, 
and AN are ez-BIBO stable. Suppose that fo. any 
pair ( { ~ ( t ) } T = o ,  { v ( t ) }?=d ,  I I 4 l [ z . r i  5 c l l ~ l l [ z , ~ ~ ,  and 
IIH,vil[,.T] 5 7 for  Some e > 0, y > 0, and all T 2 0. 
Then the nonhear feedback system in Figure f is sta- 
ble, and satisfies 

I l~ l l [2 .T l  5 ~ l l ~ l l ~ z , T l  v T t 0, (3) 

provided that cy < 1. The upper bound y/(l -q) will 
be referred to as equivalent 71, perfownance. 

Figure 1: Uncertain Feedback System 

Proposition 2.1 seems to  be a very simple result. 
I ts  significance is far reaching for adaptive model esti- 
mation and adaptive controller design, because X,. 
norm of the uncertainty in the form of A(z) at each 
frozen time T 2 0 remains unknown which may he 
greater than e,  yet stability and performance of the 
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equivalent nonlinear feedback system are nevertheless 
ensured. Indeed for adaptive estimation there is no 
guarantee for the ",-norm of the frozen model un- 
certainty a(~) at each time instant due to  the lack 
of the worst-case signal. But if the upper bound E 

under which I I v I I [ ~ , T ]  2 r l lp l lp .~ l  can be estimated 
and ensured for each pair ({p(t)}fo,(u(t)}To), and 
each T 2 0, then the underlying adaptive feedback 
control system can be converted into an equivalent 
nonlinear feedhack system as in Figure 1 where HM 
is a function (often a linear fractional transform) of 
the adaptive feedback controller, which is again non- 
linear and time-varying due to its dependence on 
the inputfoutput signals, even t,hough it is often pa- 
rameterized by fixed order linear systems. Hence if 
the adaptive feedback controller is designed appropri- 
ately such that each frozen transfer function matrix 
H ( z )  E R'H, with upper bound y minimized, and 
~t << 1 at each time instant t = T 2 0, then both 
stability and performance of the adaptive feedback 
control system can be ensured. Moreover the struc- 
ture of the feedback system in Figure 1 is quite gen- 
eral, including the so called "twc-block" problem in 
%-based robust control. Many meaningful and prx-  
tical feedback control systems admit the two-block 
st,ructure. Proposition 2.1 illustrates the essence of 
uncertainty eyuivalence pnnciple, and is the founda- 
tion of our proposed %-based robust adaptive con- 
trol. 

Remark 2.2 There are two key issues for the ro- 
bust adaptive control problem to be studied in this 
paper in order for the uncertainty eyuivalence prin- 
ciple to  be applicable. The first is associated with 
adaptive estimation: for a given form of model un- 
certainty, how to minimize the upper bound e un- 
der which I I v I I I ~ , ~  < ~ l l p l l p , ~ ~  holds for each T 2 0. 
The upper bound ;will be called equivalent uncer- 
tainty bound, vhich is indeed a n  upper bound for 
llA.u/l[,,q, when the modeling error is viewed as a 
nonlinear system rather than the linear one due to its 
dependence on the input, output, and the estimation 
algorithm. The second is associated with adaptive 
control: how to design the fixed order linear feedback 
controller such that the equivalent nominal feedback 
system H,v(-) as in Figure 1 satisfies IIHNII[~,TI 5 y 
for each T 2 0 where y < We would like to point 
out that the least-squares type algorithm is a natural 
candidate to approach the first issue, while 'H, con- 
trol design methodology is a natural candidate to  the 
second. However both need be studied before used for 
%,-based robust adaptive control. I 

In the following section we propose a new adaptive 
control algorithm, to not only estimate the nominal 
plant model, but also quantify the equivalent uncer- 
tainty bound, and design robust adaptive feedback 
controllers. Only stable plants are considered. 

3 Robust Adaptive Control 
In t,his section we consider adaptive feedback con- 

trol for stable plants, which admit continuous fre- 
quency response. The feedback system has the stan- 
dard form as in Figure 2 where the plant P ( z )  has 
m-input and p-output, and is stablc. Our design ob- 
jective is to synthesize the feedback controller ti(%) 

such that the closed-loop system is stable, and 

/ I M P ( I  - KP)-llI- 5 1 (4) 

where P ( z )  is the approximate plant model, and M ( a )  
represents the ideal sensitivity function. 

Figure 2: Feedback System 

If (4) holds, then the nominal sensitivity 
( I  - K ( z ) P ( z ) ) - l  will be no worse then the ideal 
sensitivity function M ( z ) .  A simple way to  obtain 
M ( z )  is through using some first order or second order 
proto-type systems. We are now led to consider adap- 
tive estimation algorithms to identify the approximate 
model 6 ( z )  such that /lAMllrn is minimized, where 
A(%) = P ( z )  - P ( z )  is the additive uncertainty. By 
the small gain theorem, the feedback system in Figure 
1 is stable, if K ( z )  stabilizes P ( z ) ,  and 

The nominal performance plus robust stability condi- 
tion yields the following performance index: 

is satisfied, where G(z)  = 

K ( z )  = [ aV(z)  -U(%) 1 .  (8) 

Then both K ( z ) ,  and G(z) are stable, and the Bezout 
identity (7) is equivalent to that K ( z )  is a stable left 
inverse of G(z). In this case the performance index 
has another expression 

J = II[ aV -U Ill, = IIW-. (9) 

That is, our design goal is to  search for a stable left 
inverse K ( z )  to  G(r)  such that its 'H,-norm is min- 
imized. But the difficult part is the use of the adap- 
tive algorithms to estimate the desired approximate 
model P(z) ,  and to synthesize the required feedback 
controller K ( z )  at each time instant t 2 0. 
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3.1 Adap t ive  Model Es t ima t ion  via  RLS 
For the purpose of adaptive estimation, we write 

K ( z )  = M(z)C,u(z) .  Since M ( z )  can he chosen such 
that both M ( z )  and M - ' ( z )  are causal and stable 
transfer functions, C M ( Z )  = M - ' ( z ) K ( z )  is well de- 
fined. Now the feedback system in Figure 2 is equiv- 
alent to  the one in Figure 3. 

Figure 3: Equivalent Feedback System 

The model estimation objective of minimizing 
llAMllm implies that  the RLS algorithm can he used 
to identify p ( z ) ,  based on the measurement data 
( { ~ ( t ) } ,  {y(t)}), in light of the uncertaznty equzvnlence 
pnnciple. Because of the optimality of the least- 
squares algorithm, the equivalent uncertainty bound 
associated with modeling fi(z) = P ( z ) A l ( z )  is the 
smallest possible. Moreover since { u ( t ) }  is the inter- 
nal signal of the feedback controller K ( z ) ,  it can be 
assumed to be noise-free in its measurement. 

Let X z  he the 2-transform of e:. I t  follows that 
1 1 2  is also a Hilbert space. Let {$,(z))zl be a com- 
plete orthonormal basis for X 2 .  Then stability and 
smoothness of P ( z )  and M ( z )  imply that there exist 
{S,)P.=, such that 

Our RLS estimation algorithm uses real-time data 
{ u ( t ) } ,  {y(t)}) to  identify the optimal approximate 
model parameterized by 

" 
Ay,) = b ( z ) M ( z )  = Cl,$;(z) = 0 * ( z ) ,  

*(.) = [ $ i ( Z )  $:@) .'. $:(I) ] '>  (10) 

i = i  

0 = [ S  1 Sz ' . '  8% 1 ,  
with n > 0 an integer in the sense that I /e / l {2 ,T]  is 
minimized for each T 2 0, where {e(t)] is the error 
signal in Figure 3. The use of more general basis func- 
tions can incorporate the a priori information about 
the plant model, such as the locations of its dominate 
poles, to  achieve smaller modeling errors. Denote 

$ i ( t )  =$;(q)v(t), i = l , Z , . . . , n ,  (11) 

with q the unit advance operator. Then the output of 
the approximate model P ( z )  has the form 

Y(t) = W t ) ,  M) = [ & ( t )  _ ' '  4 m  I '  
(12) 

Let @T = [ $(0) $(1) "., $(T) 1. Then 

?T= [ c(0) i ( 1 )  . ' .  $(T) ] = 6 @ T .  (13) 

The RLS algorithm computes recursively 6 = 6 ~ ,  
the optimal solution, to achieve 

inf /lYT - 6 '*T/ l2  (14) 
e 

%.here l'~ = [ y(0) y(T) 1. It is noted that the 
conventional RLS algorithm needs be adapted to our 
case due to the multivariable nature, which yields the 
following for computing the optimal solution to (14): 

6 T  = QT--l + ( U T  - ~ T - ~ $ T ) * T & x T - - ~ ,  

. . . 

X T  = x T - ~  - XT--~$T*T&.XT--~ (15) 

for T = 1 , 2 , . . .  where QT = ( < + & X T - ~ $ T ) - ' .  
I t  is noted that the first a few 0 T  (for T close to  
0) need be computed from other methods, because 
XT = (*T*&)-' does not exist for small T.  But one 
may also employ Xo = rl with large r value to  begin 
the recursive computation, which does not affect the 
asymptotic performance of the RLS algorithm. 

Theorem 3.1 Consider the feedback system en Fig- 
ure 3. Suppose that the measurement output y(t) = 
w(t) + q(t) with w(t) the true output of P ( z ) ,  and 
q ( t )  the additive noise satisfying llqllp,r] 5 € T / I U ~ ~ ~ , T ]  

for some CT > 0. Let {$i(r)}Zl be the given complete 
orthonownal basis for X Z .  Define 

6; := inf IIP - @Zll; 

with 6 and * ( z )  as in (10). If the feedback system 
in Figure 3 is at rest at t ime t = 0, then the use of 
the RLS algorithm as in (15) for estimation of P ( z )  
ensuns that 

e 

llw - YllI2.Tl 5 (6 ;  + 2fT)IIvII12,T] 2 O .  (16) 

As mentioned earlier, v(t) is assumed to  he noise- 
free because it is an internal signal of the feedback 
controller. The assumption on the additive noise q ( t )  
in measurement of the output data y ( t )  implies that  
6;' is the signal-to-noise ratio in the time interval 
[0, TI, The inequality (16) shows that the equiva- 
lent uncertainty bound for the weighted modeling er- 
ror A ( z ) M ( z )  is no more than E ( T )  = 6: + Z ~ T  with 
A(z) the additive modeling error a t  the frozen time 
t = T .  Now the problem for adaptive control is the 
synthesis of the robust feedback controller based on 
each estimated approximate model. 

3.2 Control ler  Design via X, Fil ter ing 
The RLS algorithm yields a time-7 .ar y' ing approx- 

imate model pt(q) = Nt(q)hl-'(q) with q the unit 
advance operator. We associate a statespace realiza- 
tion with the generalized plant model: 
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for t 2 0 with the k e d  order n. The assumption on 
M(+)  implies that Dt has full column rank, and Gt(q) 
is strictly minimum phase, satisfying for each frozen 
time t 2 0, 

As Dt of size (p + m) x m has full column rank, there 
exist D: of size rn x @+ m), Dtl of size ( p  + m) x p ,  
and D:I of size p x (p + m) such that 

There are many choices for D:, Dt l ,  and DFl. A 
simplest one is the following: 

and D:l = D:L.  It follows that at each frozen t imet ,  
there exists a stable left inverse G:(q) to  Gt(q) such 
that G:(q)Gt(q) = I .  It is noted that 

for any constant matrix Lt, in form of state estimation 
gain matrix. Hence 

G:(q) = D: [ I + C t ( q I - A r ) - l B t ~ ] - l  (20) 

= D: [I - Ct(q1- A ~ L ) - ' B ~ L ]  , 

with Btr. := B t D +  - LtD;,, and At' := At - BtLCt, 
The.strict minimum phase condition (18) is equivalent 
to  the existence of Lt such that A ~ L  is stable. 

Denote Dt, = [ Dt D ~ L  1, and 

Then the frozen time system Gto(z) is square, and 
strictly minimum phase, provided that Gt(z) is 
strictly minimum phase, and Lt is stabilizing at the 
frozen time t .  The above results in 

which is stable as well at each frozen timet. We there- 
fore have a dynamic version to (19): 

The next result characterizes all stable left inverses of 
Gt(q) ,  which is in essence the Youla parameterization. 
Thus the proof is omitted. 

Proposi t ion 3.2 Let G ( q )  as in (17) satisfy (18) 
with Dt full rank for all t 2 0, and G:(q) and G:,(q) 
be defined as in (Zf). Then all stable left inverses of 
Gt(q) at each frozen time t are parameterized by 

where Q,(q) is stable, and arbitmry 

~ 
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By the expression of G:(q) and G:,(q) as in (21), 
and an abuse of notation, the parameterized stable 
left inverse Gy(q )  has the form 

In light of the discussion earlier, our controller de- 
sign objective is to  synthesize a stable left inverse 
X , ( q )  = Gp'(q), such that IlGF'll, is minimized for 
each frozen time t ? 0 over all possible state esti- 
mation gains Lt,  and stable dynamic systems Qt(q ) .  
While this is feasible and amounts to  the W- filter- 
ing problem in light of the expression of the left in- 
verse in (22), it requires to solve the stabilizing solu- 
tion to some discrete-time algebraic Riccati equation 
which can be numerically demanding. As an alter- 
native, we view  KC,(^) = G?(q) as a time-varying 
system, and seek Lt and Qt(q) such that l I K t ~ l ~ ~ , q  = 
IIG;"'1lrrn.q < 7 whenever feasible. We have the fol- 
lowing result based on [3]. 

Theorem 3.3 Consider the time-varying left in- 
uerses G?(q) in (22) where 0 < t _< 7'. 
Then there ezist {Lt)T=o, and {Qt(q))T=o such that 
/IG?I/[,,TI < y, i f  and only if the following difer- 
ence Riccati equation (DRE) 

yr+' = A&A; + B ~ ( D ; D ~ ) - ' B ;  (23) 
-st(r - y 2 ~ t ~ ;  +cti%c;)-'s: 

with Y, = 0, A. = At - BtD:Ct and St = (AoYtC'-  
BD+) satisfies I:+, 2 0 and 

( D ; D t ) - '  + D : C t Y f C ; r t ( D : ) '  < y 2 1  (24) 

f o r t  =0,1, . . . ,T wi thr t  = (I+DtlD;lCtl<Ci)-l. 
In  this case, a left inverse in the f o r m  of (22) satisfy- 
ing I I @ l l [ m . ~ ~  < y i s  specified by 

That is, Qt(q) m n  be chosen as a time-dependent con- 
stant matrix. 

It is now clear that the design of &(q)  = GY(q) 
requires to compute recursively (23) given each new 
estimated model. Since each iteration in DRE (23) 
requires only O(nz)  with n the order of the estimated 
model, the computational complexity for controller 
design is comparable to  that of the RLS algorithm 
for model estimation. 
3.3 Asymptot ic  Stabil i ty and Performance 

The RLS algorithm for adaptive estimation, and 
W, filtering algorithm for controller design are all 
based on the approximate model. The real issue is 
the stability, and performance of the feedback system 
with the true plant as in Figure 2. Recall that  the 
feedback controller is now time-varying, thus denoted 
by Kt(q) ,  and is given by Kt(q) = &-'(q)Ut(q) with 
X ( q )  and Ut(q) the same as in the partition of Kc,(q), 
as (8) which is the left inverse of Gt(q). However 
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the feedback controller K t ( q )  is implemented as in 
Figure 3 with C , M ( q )  = M-’(q )Kt (q ) .  We have the 
following result concerning asymptotic stability and 
performance of our proposed adaptive control system 
in this section. 

Theorem 3.4 Consider the proposed adaptive con- 
trol system with RLS estimation algorithm as in (15), 
and 31, filtering algorithm as in Theorem 3.3. Let the 
feedback system be as in Figure 3 where the measure- 
ment data y ( t )  = w ( t ) + r ~ ( t )  with q ( t )  the observation 
noise satisfying IjOll12,TJ 5 €TIIUII[Z,T] fo r  some LT > 0, 
and each T > 0. Suppose that the true plant is linear, 
tame-invariant, and stable, and XT --t 0 as T --t 00, 

with XT as defined in (15). Assume further that the 
DRE (23) admits the solution Yt+l 2 0 such that (244) 
holds for 0 5 t 5 T and some y > 0. If in addition 
YT + Y 2 0 as T + m for which 

then the proposed adaptive feedback control system 
is stable asymptotically, and admits the performance 
bound equivalent to l lM- ‘ ( I -KP) - ’ l lm  < ?/(I-?€), 
provided that €7 < 1, where E = IimT,, 6; + 2 e ~ .  

Theorem 3.4 shows the asymptotic robust stability 
and equivalent performance for our proposed adaptive 
control system. It  should be mentioned that the pa- 
rameter a can be made time-varying, which should be 
taken a small value (< 1) at the beginningstage, and 
a relatively large value (> 1) at the later stage of the 
adaptive control. This will help ensure the existence 
of the required solution to DRE (23) and satisfaction 
of the condition (24). Similarly the ideal sensitivity 
U ( z )  can also be made time-varying with lower re- 
quirements on its performance at the beginning stage, 
and be gradually strengthened at the later stage. For 
the same reason, y can be made time-varying as well 
withy close to, but smaller than l / e  at  the beginning 
stage of the adaptive control. Gradually it can move 
to a value of I/(@€) with @ 2 2 in order to have better 
stability margin and performance. 

4 Conclusion 

Robust adaptive control has been tackled in this pa- 
per. The key ingredient is the new concept of uncer- 
tainty equivalence principle, which motivated quantifi- 
cation of the equivalent uncertainty bound for adap- 
tive estimation of the plant model, and helped intro- 
duce ‘Hm control into the adaptive controller design. 
A new adaptive control system is proposed with rw 
bust stability and equivalent performance established 
under the convergence assumption for the estimation 
algorithms. Although only stable plants are consid- 
ered in this paper, unstable plants can also be tack- 
led which will be reported elsewhere. I t  is seen that 
the successful unification of adaptive control and 31,- 
based robust control empowers robust adaptive con- 
trol, enabling the proposed adaptive feedback control 
systems to achieve robust stability and performance 
comparable to  those achievable by 31, control. The 
results in this paper shed some light to new direction 
for robust adaptive control. 
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