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Abstract 
It is well-known that the Weighted Least Squares 

(WLS) identification algorithm provides estimates that 
are in general not in the membership set and in this sense 
are falsified estimates. This paper shows that: (1) If the 
noise bound is known, the WLS estimates can be made 
to lie in or converge to  the membership set by choosing 
the weights properly. (2) If the noise bound is unknown, 
the same results can still be achieved by using white input 
signals for Finite Impulse Response systems. 

1. Problem Statement 
In this paper, we consider a discrete time scalar system 

y ; = # ) p + v i ,  i = 1 , 2  , . . . ,  N (1.1) 

where yi E R is the system output, 4% E R'" the measur- 
able regressor consisting of current and past input signals 
and (possibly) past output signals, 0 E R" the unknown 
parameter vector t o  be identified and U; E R the measure- 
ment noise. It is assumed that 4%'~ are bounded so that 
there exists a constant M > 0, independent of N and 

for all i. The equation (1.1) can be re-written in a compact 
vector form as 

Y N  = @N6' f V N  (1.3) 

where 

The purpose of system identification is to  design an 
algorithm A which maps the-input-output measurements 
yz and 4z into the estimate 6' of the unknown system pa- 
rameter vector 19. Depending on the specific assumptions 

on the noise, many identification algorithms can be con- 
structed. For instance, in the stochastic setting, the noise 
I:, is assumed to be a random sequence with some known 
probabilistic properties and Maximum Likelihood Estima- 
tors can be derived [17]. In set-membership identification, 
see e.g. the special issues [l], [a], [3] and the survey papers 
[20], [all ,  [22], [26], the noise is assumed to  be unknown 
but bounded by E, i.e., 

I%l i E (1.4) 

for all i. In this case, for the presence of noise, it is in 
general not possible to  determine whether the obtained 
estimate B coincides witkthe true but unknown 6' hut we 
can only detect whether 8 is compatible with the observed 
input-output data. To this end, the membership set is 
defined as follows: 

An estimate e is compatible with the input-output data 
from th_e io-th observation to  the i l- th observation if and 
only if 6' E Sio,zl ( 6 ) .  

Besides systems and control, set-membership identi- 
fication proves to  be a valuable tool in other areas, in- 
cluding digital signal processing, when a noise-bounded 
description of the errors is suitable; see e.g., the survey 
paper [lo]. In this case, one example of paramount impor- 
tance is when the measurements are affected by roundoff 
errors given by A/D converters [24]. More classical identi- 
fication algorithms than set-membership identification in- 
clude the celebrated Least Squares (LS), more generally, 
the Weighted Least Squares (WLS) algorithm. For given 
data YN and Q N ,  the WLS estimate gp.~ is the solution of 
the minimization problem 

N 

0 z = 1  
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where qz’s are non-negative weights. Letting 

a closed form solution of the WLS estimate e ^ ~  can be 
easily derived [17] if @;QN@N is non-singular, 

One of the powerful features of the WLS algorithm is that  
it can be implemented recursively [17] using only the cur- 
rent input-output A measurement U,, 4% and the previous 
estimate OtP1 

where the matrix P, E RnX” is also computed recursively 

with some PO > 0. 
The WLS algorithm does not need any a priori as- 

sumption on the noise U ,  and enjoys several worst-case 
optimality identification properties; see, [4] and [ N I .  It 
is also well-known that the WLS estimates are in general 
not  in the membership set (1.5). In other words, under the 
assumption that the noise I w , ~  5 E for some known E ,  the 
WLS estimates may be incompatible with the observed 
input-output data. In model validation terminology, we 
can say that the WLS estimates may be falsified by the 
input-output data. This observation leads us to the fol- 
lowing question: For the noise bound (1.4), can we choose 
the weights q2 2 0 properly so that the WLS estimate ê , 
either lies within the membership set for all i or converges 
to  the membership set asymptotically? The motivation 
of studying this problem is obvious: If such choice of q,’s 
is possible, then the resulting WLS estimate enjoys the 
stochastic identification properties of the original WLS 
estimate and it is also an unfalsified estimate compatible 
with the observed input-output measurements. 

The idea of finding a compatible estimate is not new; 
for example, in Information-Based Complexity [as], such 
estimates are called interpolatory algorithms. In the con- 
text of system identification and model validation, several 
interpolatory algorithms have been proposed, see, e.g., 
[7] and [8]. However, due to  the complex nature of the 
problem, all these algorithms are off-line type. Continu- 
ing our previous work [5], the main contribution of this 
work is to  find recursive interpolatory WLS algorithms. 
That is, the algorithms presented in this paper choose 
weights qz’s on line so that the resulting recursive WLS 
estimates either lie within the membership set or converge 

to  it asymptotically. Clearly, the proposed algorithms are 
different than the ellipsoid-outer-bounding ones since they 
are Least Squares type, but the weights are chosen to  mini- 
mize the “volume” of the outer-bounding ellipsoid. There- 
fore, not every point inside the outer-bounding set belongs 
to the actual membership set. Moreover, it is well-known 
that the recursive implementation of outer bounding al- 
gorithms may introduce some conservatism [as]. The im- 
plication is that  there is no guarantee that a point inside 
the outer-bounding set is also in the membership set. 

The results of this paper can be summarized as fol- 
lows: If the system is Finite Impulse Response (FIR) and 
the input is at designer’s disposal, in Section 2 we show: 
(a) If the input is chosen to  be periodic, the WLS esti- 
mates can be made to  lie within the membership set by a 
proper choice of q,’s, provided that the bound on the noise 
is known; (b) If the input is chosen to be an independent 
identically distributed (i.i.d.) random sequence with zero 
mean, the WLS estimate converges to  the true but un- 
know parameter d asymptotically almost surely (a.s.) for 
any bounded noise sequence U ,  with unknown noise bound 

Consequently, the WLS estimate ê , converges to  the 
membership set almost surely. If the system is Infinite 
Impulse Response (IIR) (see, e.g., [15] for definitions of 
FIR and IIR systems) and the noise bound is known, in 
Section 3 we show that the WLS estimates converge to  
the membership set for arbitrary input if 4,’s are suitably 
chosen. The proofs are provided in Section 4 and some 
concluding remarks are outlined in Section 5. 

€. 

2. Finite Impulse Response Systems 
In this section, we consider the FIR system 

y, = #TO + U, = ( ~ ~ - 1 , .  . . , U ~ - ~ ) O  + U,, z = 1,.  . . , N .  
(2.9) 

Before presenting the results, we need to  define per- 
sistent excitation (PE), see [5] and [9]. 
Definition 2.1: The regressor 4,  is said to  be persistently 
exciting (PE) if there exist some cy > 0 and some positive 
integer p such that 

for all i o  2 0. 

Theorem 2.1 Consider the FIR system (2.9) with the 
noise U ;  bounded as i n  (1 .4 )  b y  some known E > 0.  As- 
sume that the input U ,  is periodic with period n and is 
persistently exciting. Consider the recursive WLS algo- 
r i thm (1.7) and (1.8)  with the weights 
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f o r  i 2 1, th,e initial conditionu PO = qi l@, ,@T(note  
is  defined in (1.3)  with N replaced b y  n), any arbitrary $0 
and any positive c o n d a n t  qo > 0. Then,  the WLS estimate 
e ,̂ lies i n  the membership set for all i, i.e., 

2 

m=l 

Next, we observe the following two facts: 

1. Po > 0. To show this, notice that q5i is periodic with 
period n. Let k n  > p for some k ,  

i,l +n- 1 

2 = q J  2=2(J 

The matrix Gn is non-singular and this implies Po > 
0. 

2. The weights qi’s in (2.10) are well defined because 
E $ T I ? - ~ $ ~  # 0 if Iyi - @&-.~l > e .  This can be eas- 
ily seen as follows: Since P,-’ = P-’ 2- I + q;di$T (see 
[ll], page 58), P;’ > 0 and 4% 2 0, we have P, > 0 
and that @TP2-1@, = 0 implies @, = 0. However, 
4% = 0 implies Iy; - q5TOkp11  = Iu;I < E which is a 
contradiction. 

The theorem above shows that if the bound E on @e 
unknown noise U, is available, then the WLS estimate 0, 
can be made to  lie within the membership set by choosing 
a periodic input and a proper weighting sequence gi L 0. 
Here, the availability of the noise bound E is the key. The 
following result shows that even when the noise bound 
t is unknown, the WLS estimates can still be made to 
converge to  the membership set asymptotically. 

Theorem 2.2 Consider the FIR systems (2.9) with the 
noise U ,  bounded as in (1 .4)  b y  some unknown bound 
E > 0. Let  the input  sequence {U,}  be a n  i.i.d. random 
sequence with zero m e a n  and finite variance. Consider the 
WLS algorithm (1.6) with the weights 4 % ’ ~  lower and upper 
bounded 

0 < q 5 qi 5 l j  < 00 - 

for all i. Then, the WLS estimate $, satisfies 

[le, - 011 + 0 a.s. 

as i + 00 and, consequently, the WLS estimate %, con- 
verges to  the membership set a.s. as i + M .  

Theorem 2.2  shows that the effect of any bounded 
noise sequence with known or  unknown bound can be av- 
eraged out asymptotically by an i.i.d. input sequence with 
zero mean. The important thing of this result is that the 
bound t on v, may be unknown and it is indeed not re- 
quired in the WLS algorithm. A similar result is reported 
[ l G ]  if the input sequence is deterministic and the noise is 
i.i.d. with zero mean. 

3. Infinite Impulse Response Systems 
with Arbitrary Input 

In the previous section, we studied FIR systems as- 
suming that the inputs were at designer’s disposal. In 
this section, we relax this assumption and study general 
IIR systems with arbitrary inputs. In this ca_se, the result 
shown in Theorem 2.1 that the estimate 8; always lies 
in the membership set Sl,%(t) does not hold in general. 
Therefore, we present an algorithm that,  for any given 
small positive number 6 > 0, provides an estimate that 
lies in or converges to  the set SNo ,oo(E  + 6) for some NO. 
The hope is that  for small 6, the set SNo,oo(c + 6) is “very 
close” to S N l j , O O ( t ) .  This is certainly true for any fixed 
NO and 6 + 0. To see this observe that the membership 
set has the inclusive property S N ~ , , ~ ( C )  C SN!j,03(E + 6) 
for all b 2 0. Now, for the sake of contradiction, suppose 
that the membership set S N ~ ~ , ~  (t + 6) is not a continuous 
function of 6 as 6 + 0. Then, by the inclusive property 
of the membership set, there exists some e $ S N ~ ~ , ~ ( ~ )  
but 4 E SN(j,oc(e + 6) for any 6 > 0, i.e., for all i 2 NO,  
1q5Te - y,( 5 E + 6, for all 6 > 0. Then, it follows that 
Iq5Te - y.1 5 E and this would imply e E S N ~ , , ~ ( E )  which 
is a contradiction. Therefore, the two sets are “almost 
identical” for small 6. 

Theorem 3.1 Conszder the system (1.1)  wzth the nozse 
v, bounded as an (1.4) b y  some known E > 0 .  Conszder the 
recursave WLS algorathm (1.7) and (1.8) wzth PO == PT > 
0 and arbitrary 00. For any 6 > 0 ,  let q, be 

A 

for i 2 1. Then,  the WLS estimate converqes to  the 
membershap set asgmptotically in the following sense: For 
any 6 > 0, there exists a f ini te  number No = NO(5) such 
that for all a 2 NO 

00 

m=No 

The above result is a continuation of our previous work 
on gradient type identification algorithms [5] which was 
motivated by the papers [6] and [13]. Even though in this 
work we have restricted our attention to  WLS algorithms, 
remarks similar to  those made in [5 ]  apply as well. 
Remark 1: The asymptotic estimate of 0, given by the 
WLS algorithm is not necessarily in the membership set 
SI,,(€ + 6). Instead, it is only guaranteed to  be in the 
membership set S N ~ , ~ ( E  + 6) where No, the learning pe- 
riod, is the instance of final update of 0. The “learning pe- 

update takes place, depends on the data ({$;}, {y;}) and 
the slack variable 6 > 0. For the above algorithm, without 
additional information, it is not possible to  know on-line 

riod” No of the above algorithm, after which nu parameter 
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whether the estimate has converged. The slack variable 
d > 0 represents the tradeoff between the learning period 
No and the estimation accuracy. Since the parameter esti- 
mate converges to  the set S A I ( ~ , ~ ( ~  + 6) ,  the final estimate 
would be more accurate if a smaller b is chosen. However, 
in this case, the learning period No would be larger. 

The algorithm presented in Theorem 3.1 has a clear 
geometric interpretation. From equation (1.7), we no- 
tice that the parameter update at 1,-th iteration of the 
(weighted) least squares method is always along the di- 
rection of the vector p;&; with I$Te - y;/ = E representing 
two planes in the parameter space that bound all 4 com- 
patible with the new data 4% and y t ,  The true parameter 
vector 0 is unknown hut always lies between these two 
planes. The algorithm presented in Theorem 3.1 updates 
the parameter t9-1 in the direction of E’%$% indicated in 
the figure. However, if /@8,-1 - 5 E + 6, then 8%-l is 
compatible with the new data  4, and y, and there is no 
need to update 0,-1.  In this case, q% = 0 and 0; = 8 i - l .  
Now, if \$ye,- ,  - y,/ > E + d, then g2-1 is not compati- 
ble with the new data  4, and yt .  In this case, we choose 

Pictorially, the new estimate 8; is on the plane l$T&ytl = 
E that  is closer to  O , - l .  

A unique feature of the algorithm given in Theorem 
3.1 is that  no parameter update takes place if the new data 
does not contradict the hypothesis of the noise model. For 
a large data  set, the consequence of the cessation of updat- 
ing at time No is that  a very small percentage of data is 
used. This fact can be interpreted in two ways: (a) The al- 
gorithm is very efficient in terms of computational burden 
since there is no or little computation at most iterations. 
(b) In many applications, the noise may have small “av- 
eraging effect”. Sufficient use of all the data likely helps 
reducing estimation errors, especially if the bound E on U, 

is over-estimated. Notice that the standard LS or WLS 
algorithm does not assume a_ny a priori knowledge on U ,  

and gives the true estimate 0% = 0 if N 2 11 and VN = 0. 
In other words, the standard LS and WLS algorithms be- 
long to the set of Correct Identification Algorithms [19] as 
defined by 

where A is any identificacon algorithm which maps the 
data  YPJ into the estimate 0. It  is also well-known that the 
standard LS estimate is worst-case optimal [5 ]  in terms of 
output prediction error, i.e., let 8,s = ( @ ; @ ~ ) - l @ g Y ,  

denote the least squares estimate, then 

Now, the algorithm proposed in Theorem 3.1 is guar- 
anteed to  provide an estimate in the membership set 
S N ~ , ~ ( F  + 6) but it is not necessarily a correct algorithm 
as defined in (3.2) and neither worst-case optimal because 
many of qi’s may be zero. Motivated by this observation, 
in the following, we modify the algorithm (3.1) replac- 
ing weights that  are zero by some positive constant q so 
that this modified algorithm achieves the following multi- 
ple objectives: (a) It is correct and worst,-case optimal in 
terms of output error, similarly to the LS estimate; (b) I t  
produces estimates satisfying pointwise noise constraint. 

Theorem 3.2 Consider the sys tem (S.1) with the noise 
U ,  bo imded as i n  (1.4) by some known F. > 0 .  Consider the 
recursive WLS algorithm (1.7) and (1.8) with Po PT > 
0 and arbitrary 00. Let q; be 

- 

for z 2 1, where q > 0 IS any positzue constant. Then ,  
the proposed WLS estzmate F, satascfies the following con- 
ditionu: 
(a)  The algorithm is worst-case optimal, i .e.,  f o r  each i 2 
I?. 

where A is any identijication algorithm and Y, is  de,Jined 
i n  (1.3) fo r  N = i .  
( b )  For all i ,  

T- 

Remark 2: Note that the denominator in the cost func- 
tion (3.4) can be interpreted as the weighted &2 norm of 
the unckrtainty corrupting the measurements; similarly 
the numerator can be interpreted as the 4,  norm of the 
output, estimation erqor. Thus, the algorithm ( 3 . 3 )  mini- 
mizes the worst-case amplification from the weighted noise 
to  the output estimation error. We remark, however, that  
another WLS algorithm with different weights t,lian those 
given in (3.3) might provide smaller mean-square residu- 
als even though not worst-case optimal according to the 
definition given in Theorem 3.2. 

1 %  - 4; 8,I i e .  

4. Concluding Remarks 
In this paper, we have addressed the issue of weights 

selections for Weighted Least Squares algorithms in a set- 
membership context. The objective was to  obtain an es- 
timate that is compatible with the data  and the a pri- 
ori information available about the system model and the 
measurement noise. 
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