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Unfalsified Weighted Least Squares
Estimates in Set-Membership ldentification

Er-Wei Bai, Li Qiu, Member, IEEE,and Roberto Tempayiember, IEEE

Abstract—It is well known that the weighted least squares identification algorithms can be constructed. For instance,
(WLS) identification algorithm provides estimates that are in jn the stochastic setting, the noisg is assumed to be a
general not in the membership set and in this sense are falsified random sequence with some known probabilistic properties

estimates. This paper shows that: 1) if the noise bound is known, . . - .
the WLS estimates can be made to lie in or converge to the and maximum likelihood estimators (MLE) can be derived

membership set by choosing the weights properly and 2) if the [16]. In set-membership identification (see e.g., the special
noise bound is unknown, the same results can still be achievedissues [1]-[3] and the survey papers [19]-[21] and [25]) the

by using white input signals for finite impulse response systems poise is assumed to be unknown but bounded,hye.,

(FIR).
e . | < .
Index Terms—dentification, least square, set membership. |v”| =¢ (1.4)

for all 4. In this case, for the presence of noise, it is in general
not possible to determine whether the obtained estindate
coincides with the true but unknowhbut we can only detect
whetherf is compatible with the observed input—output data.
v = o760+ v;, i=1,2-.- N (1.1) To this end, the membership set is defined as follows:

|. PROBLEM STATEMENT
N this paper, we consider a discrete time scalar system

. n 1 . .
wherey; € R |s.th'e system output); € R the mea_surable i, (€) = ﬂ (6 R |y — ¢76| < c). (1.5)
regressor consisting of current and past input signals and
(possibly) past output signalg,c R™ the unknown parameter .
vector to be identified ang; € RR. the measurement noise. ItAn estimatef is compatible with the input—output data from
is assumed that;'s are bounded so that there exists a constatfite ioth observation to the&;th observation if and only if

i=ig

M > 0, independent ofV and b e Sig. i (€).
2 iy 12 Besides systems and control, set-membership identification
leall” < 1.2) proves to be a valuable tool in other areas, including digital
for all 7. Equation (1.1) can be rewritten in a compact vectéignal processing, when a noise-bounded description of the
form as errors is suitable; see e.g., [10]. In this case, one exam-
ple of paramount importance is when the measurements are
Yv=2n0+ VN (1.3) affected by roundoff errors given by A/D converters [23].
More classical identification algorithms than set-membership
where . e
- identification include the celebrated least squares (LS), more
Y1 1 U1 generally, the weighted least squares (WLS) algorithm. For
Y2 o3 v V2 given dataYy and @, the WLS estimatd - is the solution
. ) N = . .

Yy = Sk Oy = of the minimization problem

YN ?;, UN

The purpose of system identification is to design an algo-
rithm A which maps the input-output measuremeptand¢;
into the estimaté of the unknown system parameter vedfor
Depending on the specific assumptions on the noise, many a1 0 -~ 0
0 ¢ -+ 0

N
Oy = arg Irgn Z qi(yi — ¢?9)2
=1

where ¢;'s are nonnegative weights. Letting
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input-output measurement, ¢; and the previous estimate(a.s.} for any bounded noise sequengewith unknown noise

61 bound e. X
P @Pi_1s A Consequently, the WLS estimafig converges to the mem-
0; =0i1 + 1+l P 7L P 1 (yi — ¢ bim1) 1.7 bership set almost surely. If the system is infinite impulse

response (lIR) (see, e.g., [14] for definitions of FIR and IIR

where the matrix’; € R™*™ is also computed recursively systems) and the noise bound is known, in Section Il we

aP—1¢i¢pT Py

P =P_,— (1.8) show that the WLS estimates converge to the membership
T 1+ ¢! Pi_1¢i set for arbitrary input ifg;’s are suitably chosen. The proofs
with some Py > 0. are provided in Section IV and some concluding remarks are

The WLS algorithm does not need aaypriori assumption outlined in Section V.
on the noisewv; and enjoys several worst-case optimality
identification properties; see, [4] and [17]. Itis also well known
that the WLS estimates are in genenak in the membership Il. FINITE IMPULSE RESPONSESYSTEMS
set (1.5). In other words, under the assumption that the noisén this section, we consider the FIR system
!vi| < e.for some knowne, thel WLS estimates may be i =70 + vy = (wimr, Uimas -+ Uimn)0 + Ui,
incompatible with the observed input—-output data. In model .
validation terminology, we can say that the WLS estimates i=1,2- N 2.1)
may be falsified by the input-output data. This observation Before presenting the results, we need to define persistent
leads us to the following question: For the noise bound (1.4xcitation (PE); see [5] and [9].
can we choose the weightg > 0 properly so that the Definition 2.1: The regressor; is said to be persistently
WLS estimated; either lies within the membership set forexciting (PE) if there exist some > 0 and some positive
all i or converges to the membership set asymptotically? TH#egerp such that

motivation of studying this problem is obvious: If such choice io+p—1

of ¢;'s is possible, then the resulting WLS estimate enjoys al < Z pi;

the stochastic identification properties of the original WLS i=ig

estimate and it is also an unfalsified estimate compatible witer all i > 0.

the observed input—output measurements. Theorem 2.1:Consider the FIR system (2.1) with the noise

The idea of finding a compatible estimate is not new; bounded as in (1.4) by some known- 0. Assume that the
for examp|e, in information-based Comp]exity (|BC) [24],|nput U; is periodic with perioch and is persistently exciting.
such estimates are called interpolatory algorithms. In tifeonsider the recursive WLS algorithm (1.7) and (1.8) with
context of system identification and model validation, severle weights
interpolatory algorithms have been proposed, see, e.g., [7] and |y — ¢;féi_1| —€ 4. _

[8]. However, due to the complex nature of the problem, all . — T Pi_1; i = ¢ Via] > & (2.2)
these algorithms are off-line type. Continuing our previous it 1o T4 | <
work [5], the main contribution of this work is to fince- 0 if Jys — ¢ bia| < ¢
cursiveinterpolatory WLS algorithms. That is, the algorithmdor i > 1, the initial conditionsPy = g5 ' ®,®} (note @, is
presented in this paper choose weights on line so that defined in (1.3) with\V replaced byr), any arbitraryf, and
the resulting recursive WLS estimates either lie within th@ny positive constanf, > 0. Then, the WLS estimaté; lies
membership set or converge to it asymptotically. Clearlyy the membership set for all i.e.,

the proposed algorithms are different than the ellipsoid-outer- . .

bounding ones since they are least squares (LS) type, but the i € S1,i( ﬂ {6 € R™: |y — 910 < ¢}
weights are chosen to minimize the “volume” of the outer- m=1

bounding ellipsoid. Therefore, not every point inside the outer- Proof: See Section IV.

bounding set belongs to the actual membership set. MoreoverNext, we observe the following two facts.

it is well known that the recursive implementation of outer 1) F» > 0. To show this, notice thap; is periodic with
bounding algorithms may introduce some conservatism [25].  periodn. Let kn > p for somek,

The implication is that there is no guarantee that a point inside io+p—1 io+hkn—1
the outer-bounding set is also in the membership set. al < Z il < Z it
The results of this paper can be summarized as follows: If i=io i=ig
the system is finite impulse response (FIR) and the input is at iotn—1
designer’s disposal, in Section Il we show 1) if the input is =k > $id] = kL P,.
chosen to be periodic, the WLS estimates can be made to lie =i
within the membership set by a proper choice;0$, provided The matrix®,, is nonsingular and this implies, > 0.

that the bound on the noise is known, 2) if the input is chosen

to be an independent identically distributed (i.i.d.) random Here the definition of the almost sure convergence of the WLS estimate
sequence with zero mean, the WLS estimate converges to ¢h# the true but unknown system vectdris standard [22]

true but unknown parameté asymptotically almost surely Prob{,nm 6; = e} =1

1— 00
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2) The weightsg’s in (2.2) are well defined because b, ,
epT'P_1¢; # 0if |y; — ¢F6;_1| > . This can be easily
seen as follows: Sinc® ™ = P4 + qigigp? [11, p.
58], P;' > 0 andg > 0, we haveP; > 0 and that
¢T Pi_1¢; = 0impliesg; = 0. However,; = 0 implies 7
T

™

|07 — sl = e+ 6
s /
lyi — ¢T'0;_1] = |vi| < e which is a contradiction. 1676 — y,| =

The theorem above shows that if the bouadon the
unknown noisev; is available, then the WLS estima’fé
can be made to lie within the membership set by choosifity- 1. Geometric interpretation of algorithm (3.1).
a periodic input and a proper weighting sequerge> 0.
Here, the availability of the noise bourdis the key. The  Theorem 3.1:Consider the system (1.1) with the noisg
following result shows that even when the noise bound bounded as in (1.4) by some known> 0. Consider the
unknown, the WLS estimates can still be made to convergertscursive WLS algorithm (1.7) and (1.8) withy = P{ > 0

the membership set asymptotically. and arbitraryd,. For any$ > 0, let ¢; be
Theorem 2.2:Consider the FIR systems (2.1) with the noise T4

v; bounded as in (1.4) by some unknown bouns 0. Let the [yi = ¢ Oi1| — € if |yi — ¢T0i_1| > e+6

input sequencgw;} be an i.i.d. random sequence with zero % ~ pf P’ ‘ R 3.1)

mean and finite variance. Consider the WLS algorithm (1.6) 0, if lyi — ¢ 01| <e+6

with the weightsg;’s lower and upper bounded for ¢+ > 1. Then, the WLS estimatéi converges to the

0<g<qg<q<oo membership set asymptotically in the following sense: For any

- . 6 > 0, there exists a finite numbe¥, = Ny(é) such that for

for all <. Then, the WLS estimat@; satisfies all i > Ny

6, — 6| — 0 a.s. R = .

| | X 6; € Sn,, 00le+6) = ﬂ {6 € R™: lym — ¢L.6] < e+ 6},
asi — oo and, consequently, the WLS estim#&econverges m=No

to the membership set a.s. as— oc. Proof: See Section IV.

Proof: See Section IV. _ The above result is a continuation of our previous work
Theorem 2.2 shows that the effect of any bounded noi§g gradient type identification algorithms [5] which was mo-
sequence wittknown or unknowrbound can be averaged outj4ieq by the papers [6] and [13]. Even though in this work

asymptotically by an i.i.d. input sequence with zero mean. The, haye ‘restricted our attention to WLS algorithms, remarks
important thing of this result is that the boua@n v; may be  gimilar to those made in [5] apply as well.

unknoyvn and it i; indeedot requiredin the_WLS algorithm.  Remark 1: The asymptotic estimate of; given by the
A similar result is reported [15] if the input sequence i§y) g gigorithm is not necessarily in the membership set
deterministic and the noise is i.i.d. with zero mean. S1 oo(c + 6). Instead, it is only guaranteed to be in the
membership sefy, (¢ + 6) whereN, the learning period,
IIl. INFINITE IMPULSE RESPONSE is the instance of final update & The “learning period”
SYSTEMS WITH ARBITRARY INPUT Ny of the above algorithm, after which no parameter update
In Section Ill, we studied FIR systems assuming that tligkes place, depends on the dé&fa;}, {v;}) and the slack
inputs were at designer’s disposal. In this section, we relygriables > 0. For the above algorithm, without additional
this assumption and study general IIR systems with arbitraffformation, it is not possible to know online whether the
inputs. In this case, the result shown in Theorem 2.1 that tRstimate has converged. The slack variable 0 represents
estimated; always lies in the membership s8¢ ;(¢) does not the tradeoff between the learning peridd and the estimation
hold in general. Therefore, we present an algorithm that, fagcuracy. Since the parameter estimate converges to the set
any given small positive numbér > 0, provides an estimate Sx,, (¢ + 6), the final estimate would be more accurate if a
that lies in or converges to the sBt, o.(c + &) for some smalleré is chosen. However, in this case, the learning period
No. The hope is that for smalf, the setSy, (¢ + ) is No would be larger.
“very close” to S, «(€). This is certainly true for any fixed The algorithm presented in Theorem 3.1 has a clear geo-
Ny and§ — 0. To see this observe that the membership s@tetric interpretation. From (1.7), we notice that the parameter
has the inclusive properntyy, -.(¢) C Sn,, (e + &) for all update atith iteration of the (weighted) least squares method
§ > 0. Now, for the sake of contradiction, suppose that thg always along the direction of the vectdt¢;; see Fig. 1,
membership sefy, o.(c+6) is not a continuous function of where|¢] 6 — ;| = ¢ represents two planes in the parameter
§ asé — 0. Then, by the inclusive property of the membershippace that bound alf compatible with the new dat#;
set, there exists some & Sy, oo(e) but§ € Sy, (e +8) andy;. The true parameter vectéris unknown but always
for any 6 > 0, i.e., for alli > Ny, |¢76 — ;| < e+ 6, for lies between these two planes. The algorithm presented in
all § > 0. Then, it follows thai$? 6 — ;| < ¢ and this would Theorem 3.1 updates the paramefgr, in the direction of
imply 6 € Sy, (¢) which is a contradiction. Therefore, theP;¢; ipdicated in the figure. However, 7 0; _1 —v;| < e+6,
two sets are “almost identical” for smail then 6,_; is compatible with the new data; andy; and
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Fig. 2. Recursive estimates, ?;i, and weightsy; .

tpere Ais no need to updaté_l. In this case,q; = 0 and
0; = 6;,_1. Now, if |¢70;_; — | > ¢ + 8, thend,_; is not

computational burden since there is no or little computation
at most iterations. 2) In many applications, the noise may
have small “averaging effect.” Sufficient use of all the data
likely helps reducing estimation errors, especially if the bound
€ on v; is overestimated. Notice that the standard LS or WLS
algorithm does not assume aaypriori knowledge onw; and
gives the true estimaﬁé =6 if N >nandVy = 0. In other
words, the standard LS and WLS algorithms belong to the set
of correct identification algorithms (CIA) [18] as defined by

C={A:AYN)=0=01if Vy =0} (3.2)

where 4 is any identification algorithm which maps the data
Yy into the estimatd. It is also well known that the standard
LS estimate is worst case optimal [5] in terms of output
prediction error, i.e., lefLs = (9% ® )~ 1®% Yy denote the
least squares estimate, then

%

> (76— oF )

k=1
7
2
> vk
k=1

frs =arg min sup
0=A(Y;) wi

compatible with the new data andy;. In this case, we choose Now, the algorithm proposed in Theorem 3.1 is guaranteed to

gi = (lyi — ¢T60;_1| — €)/(e¢? Pi_1¢;) such that

GdF Pi_1¢i
1+ qopf Piigy
N €
= |¢3191—1 - yz| T = ¢
|¢;‘F9i—1 - yz|
Pictorially, the new estimaté is on the planeé¢?d — y;| = ¢
that is closer tod;_.

|67 0 — il =7 Oimy — | - |1 =

provide an estimate in the membership Set, (e + ¢) but

it is not necessarily a correct algorithm as defined in (3.2) and
neither worst case optimal because many;&f may be zero.
Motivated by this observation, in the following, we modify
the algorithm (3.1) replacing weights that are zero by some
positive constang so that this modified algorithm achieves the
following multiple objectives: a) It is correct and worst case
optimal in terms of output error, similarly to the LS estimate.
b) It produces estimates satisfying pointwise noise constraint.

We now illustrate the performance of the algorithm pre- Theorem 3.2:Consider the system (1.1) with the noisg
sented in the Theorem 3.1 using a simulation example. We 1 4ed as .in. (1.4) by some know:n>. 0. Consider the
consider a second order system of the form recursive WLS algorithm (1.7) and (1.8) with, = PI > 0

Y = au; + bu;_1 + v, and arbitraryéo. Let ¢; be
with (unknown) ¢ = (§) = (). The initial estimate was lyi — ¢T ;1| — e it |y — $T6i | > ¢
chosen to bé, = (0, 0)7, § = 0.01 andPy = (* ,3,). The ¢ = el P19 i @itimlm e (33)
input sequence applied was;} = {1,0,1,0, 1,0, ---} and q if |y — d);-”éi_ﬂ <e

v; were chosen as independent random variables uniformly ) -
distributed in the interva)l—e, ¢] with e = 1. Fig. 2 shows the for < > 1, whereq > 0 is any positive constant. Then, the

estimated; = (Z) derived using the algorithm of Theorempmposed WLS estimat@ satisfies the following conditions.

3.1 for 50 iterations fromi = 1 to ¢ = 50. The bottom 1) The algorithm is worst case optimal, i.e., for edach n
diagram shows the estimabg versus the estimaté; for ¢ =

%

0,1, 2, 3, 5, 6, and50. The actual membership s&f 50(1) is Z (¢T6 — (7){&)2
depicted by a solid line box around the true parametets5 N ) . =1
andb = 5. The top figure shows the weighis versus time 0; = arg ézlgl(%_) Sup (3.4)

1. From Fig. 2 we see that after a few iterations, the weights
q; become 0 and update ceases.

As illustrated in the above example, a unique feature of the . . e . . ,
algorithm given in Theorem 3.1 is that no parameter update :’I:har%“;‘ ;zra]r\lryf?‘ntmcatlon algorithm ant; is defined
takes place if the new data does not contradict the hypothesi?) For é” . =
of the noise model. For a large data set, the consequence 0 b
the cessation of up(_jating at timHo is that a very small _ |y — d);fé” <e
percentage of data is used. This fact can be interpreted in
two ways. 1) The algorithm is very efficient in terms of Proof: See Section IV.

@
2
E ALV
k=1
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Remark 2: Note that the denominator in the cost functiotetting 8 = [6(1), 6(2), ---, 8(n)]Y and 6; =
(3.4) can be interpreted as the weightachorm of the uncer- [6;(1), 6;(2), -- -, f:(n)]¥, we obtain
tainty corrupting the measurements; similarly the numerator . . .
can be interpreted as thé norm of the output estimation i — ¢ bi—1 =¢] 6 +v; — ¢} 6i_1 = 6(1) +vi + 6;_1(])
error. Thus, the algorithm (3.3) minimizes the worst casand
amplification from the weighted noise to the output estimation i — ¢;Tréi =0(1) + vi — éi(l)-
error. We remark, however, that another WLS algorithm with
different weights than those given in (3.3) might providgherefore,|y; — ¢%F9Ai| < ¢ holds if and only if
smaller mean-square residuals even though not worst case .
optimal according to the definition given in Theorem 3.2. —e+0(0) +v; <6;(D) <)+ e+ ;.

Now, decompose the noise sequeficg into » subsequences
. . {Ukn-l—l}v {Ukn-[—Q}v Ty {Ukn-l—n}a for k Z 0. For anyi =
Proof of Theorem 2_.1:The proof relies on the foIIowmg kn+1, 6; € ﬂ:n:l {0 lym — ¢L 8| < €} if and only if
lemma that is a special case of Theorem 2.1 when the input

IV. PROOFS

u(kn) = 1andu(kn+1) = u(kn+2) = --- = u(kntn—-1) = —c+ max vjnpy+00) < 6;(1) <O(1) + min vjn4+e¢

0forall k =1,2 ---. We then extend the result to general Osy<k Osi<k

periodic input signal in the proof of Theorem 2.1. (4.1)
Lemma 4.1: Consider the recursive WLS algorithm (1.7)ror all=1.2 ... nandk> 150 thatkn 41 < i. We now

and (1.8) withg; and i, - given in Theorem 2.1. Assume thatprove the lemma by induction. We first check the case when

ui is periodic with periodn so that i = 1. For any initial conditiond, if |1 — ¢T8o| < e, then

1 0 0 q1 = 0. This iminesél = 6 and|y; — T é; | < e. Onthe other
¢ _ |0 ¢ R ¢ _ | hand, if|y1 — ¢ bo| > ¢, thengr = (Jy1 —¢1 bo| —¢) /ep] Pohr
Fndl = PRz T T PR T g and this implies
0 0 1 T
; ; Pods A
A - T9 = — T9 — M _ T9
for all k£ > 0. Then, the WLS estimaté; satisfies o2 = @rba] = Jon = @700 1+ q1¢1 Pogps (1 = ¢10)
i - 1
N o R =y — ¢TB] - ‘7
i 510 = ) B lum — 6501 < 0 o= Ol | TR,
m=1 TAh €
=ly— 1ol —————=e
for all 7 > 0. ly1 — ¢1 ol

Proof: PO_1 = ¢ol and by the matrix inversion lemma

(see [11, p. 58]), we have Therefore, for anyy; andéy, |y; — ¢¥6;| < e. We now show

that if the (4.1) holds at— 1, then it is also true at In other

. . . i—1 . words, leti = kn + [ and
P73 =P 5+ qic10idi = qol + Z 45Pi¢j - i
i=1 ~ ~ ~
_ ! bir € () 16 1050 — yml| < ¢} (4.2)
For anyi > 1, there exists somé& > 0 and1 <[ < n so m=0
thati = kn + [. Thus,
then
Pi__ll =diag| go + Z Tjn+1, " 75 Qo+ Qjn+1-1, 90 0, € ﬂ {é; |¢319A — Y| < €}
=0 3=0 m=0
k—1 k—1 .
+ Z Qintts > Qo+ Z Gintn | This is obvious iffy; — ¢ 6;—1| < e simply becausg; = 0 and
~0 ~0 6; = 0;_1. For |y; — ¢78;,_1| > ¢, we consider two different
T cases: R
Case 1L: If y; — 20,1 > «
1 A
-Pi—ld)i = 07 ’ 07 k1 ’ 07 B} 0 91—1(1) < 9(1) + Ukn41 — €. (43)
o + Zqﬁ“rl However, from (4.1) and (4.2), we have
;=0
and 0i—1(1) = —e+6(0) + o JAX | Vjnett: (4.4)
1
¢f P = — By comparing (4.3) and (4.4), it easily follows that
qo + Z an+l . J g
— Vkn+l > Oéjlgr(l’z(_l) Vjn+l
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and

a9 Pi_1 ¢
1+ gl Py
</);‘F9Ai—1 Y _
|y = ¢7 051

From this, we have

¢T0; —y; =T ;1 + (yi — ¥ i) — yi

A~

;D) =0 +vknti —e > 0() —e+ (DAX Vjntl-
Also, since|v;| < e,

() =0D) +vgnti —e <O +e+ Olﬁnjlélk Vjntl
and this implies

- a N < < i i .
€+ jmax vjny+0(0) < 0D < 0() + min vjngs + e

Notice that at theith ({ = kn + ) update only thelth
component of); is affected, not other componemgm), m #

Proof of Theorem 2.2.The proof is reminiscent of that
which appeared in [15] for a symmetric problem where the
input sequence is deterministic and the noise is i.i.d. with zero
mean. Thus, we will only provide a sketch of proof here as
much of details are similar and can be found in [15]. Write

b; — 6 = (27 Q%) 0F Qv
Sincel < ¢ < ¢ < ¢ < oo andy; is i.i.d., by [12], we have

Omin ((P?QZ(PZ) Z go—min(q)zrq)i) X O(L)v a.s.

where o, indicates the minimum eigenvalue. On the
other hand, each row of the matri@? Q;V;) is given by
> i1 uj4kgiv; for somek. Thew;yy’s are ii.d. with zero
mean and this implies,;1xg,v;'s are independent with zero
mean and Vam;xqv;) = ¢jvio? < g°e?o? < oo, where
o2 is the variance of;. From [22, Corollary 3.4.2], it follows

1 %
{ Z Uj+kG5V5 — 0, a.s.
Jj=1

asi — oco. Therefore

[ that are compatible with all the previous and current data.

Therefore,6; € M.,_o {6; |4Z.6 — ym| < €}

Case 2: y; — ¢;—”9i_1 < —e. The proof for this case is

similar to Case 1.

Combining Cases 1 and 2, we have completed the induction

and consequently the proof of Lemma 4.1.
We now prove Theorem 2.1. Recall that= kn + [ and
¢, = &;1®,, = I. Hence,

o\
d)? : = 07"'707 1 707' 70
. S~
d)z ith
and
T
e -1 P PR .
(d)lv ) ¢n) d)z 07 ) 07 \ 1 ) 07 ) 0
ith
Defining O; = ®71PeT™ Y o, = T¢;, & = @71,

n = ®-6, we have

_ —-1_ :
O7 =0 [ @ "0 + > gibi¢) |2
j=1

@
=qol + Z gjojof
=1

¢:0i-10;

=0 = T
& " bim1t 1+ golOi_10;

(yi —oF&i—1).

Note thaty;, — ¢76;,_y = y; — 0¥ &,_1 and

lyi — dF bi_1] — € _ ly; — ol &1 —e
epF P14 eclO;_10;

The conclusion follows immediately from Lemma 4.1.

16; — ]| = |(@F Q: @)L @T Q. V||
< (@ Q@)™ - |97 Q: Vil

a.s.

This completes the proof. X
_ Proof of Theorem 3.1Let ¢; = ¢; — ¢ and L(z) =
HZTPi_lei. The following equations can be checked easily:

55 a1 T
a) 0, =0,_ — Wi — ¢; 0,_
) 1+ 1+ T P1gy (Wi = ¢ 1

~14 qivili—1¢i
=PPi0i + ——————.
=17l 1+ qiopl Pis1¢i

b) If |y; — ¢T6i_1| > ¢+ 6, then

lyi — ¢ ;1|
€

1+ qi¢f Pi_igpi =
and
7 =Ty e
1+ @t Py lyi — ¢?éi—l|¢?ﬂ—l¢i'

c) 6, PiPPZ6; =6, Pi6
_ @bi19igi i
1+ qof Pigi

¢FPi_1PTYP_1¢s  dFPiiigi
1+ gl P_1¢s)? 14+ qor Py’

5 ~ 1T a. 2
d) LG) =T poig,_, - —GldiOial
) ( ) 1—1+¢—1 1 1+ qz(f)?_PZ_ld)Z
2s0i¢7 01 a7vi et i1
14+ ¢¢f Piigi 14 ¢! Pimigi
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Therefore, ifly; — ¢T6;_1| < e+ 6, AL(i) = L(i) — L(i —
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if |yi — ¢T8;_1] > ¢+ 6. Note againL(0) is bounded.

1) =0 and if |y; — ¢78;_1] > e+ 6, from the above equations Therefore, the number of changes of the estirmhta)r the

a)-d), we have
L) - L(i - 1)
1+ gl Py
(=1¢T 01| + 2007 O;_1 + qvidT Pim1¢hi)
qi
14+ ¢l Pio1gi
A= (P 01 — vi)® + 0] + vid] Pimii}
qi
1+ gl Py
A=(@F Oy —y) > + (L4 qidT P_1hi)}
qi
1+ gl iy
« = ¢T0;_1|
(T 0| — yi)? 2|yz P; i1
{ (d)z 1 y) +Uz €
< qi
~ 14+ gt P_ios
A—=(pF it — yi)? + elyi — 7 0,1}
_ o lw- pF0;_1| — ¢ s — 76|
lyi — 701 |¢T Prrhi
Alyi — ¢ 0iza| — €}
_ =gl —¢}?
PFPi_1¢i
Note ||¢;]|*> < M for all 4. Also, P, < P,_; < -+- <
Thus

1 1
>
(7);11})1—1(7)2 - M0111aX(P0)

and
AL(#) =L(#) — L(i — 1)

-1 N
K ——m— i — TQZ_ - 2.
— Max]]ax(PO) {|y d)z 1| 6}

casely; — ¢f§i_1| > e+ 6 is finite. This completes the proof.
Proof of Theorem 3.2:Let ®; = U(Ig) W7T, whereU and

W are unitary matrices an@; = UQUT = U(g11 QT

Notice that the cost function (3.4) is finite onlillﬁ a correct

identification algorithm. Therefore, we only have to show

that Algorithm 3.3 achieves the minimum in the s&tWe
demonstrate by the following.

1) For each4 € C andf = A(Y;)

> (¢F6 - ¢16)?

k=1 >

4 9 - O—min(all) '
> o
k=1

2) The WLS estimatd; provided by (3.3) satisfies

sup (4.5)

vy

PCARICADS

k=1 ‘ <
; <
2
> o
k=1

Now, DW*'is nonsingular. Lef € R such thatDW?'(¢£—
#) is an eigenvector oi);; associated with the smallest
eigenvaluer,i, (@) of @, ;. Let the noise b&; = ¢,(£—6).
Then,

sup (4.6)

vy

Omin (@1 1) '

Y= .64+ V; = 6.
If A e C, we haveA(Y;) =6 = ¢ and

D6 — 0,0 = U<10)>WT(§ - ).

Consequently, (4.7) shown at the bottom of the page. Thus,
PR A

k=1 >

. R sup 4 Z —
Since|y; — ¥ 0;_1| > e+ 6 implies|y; — ¢F0;_1|— e > § and i : Tmin((11)
7 7 2
, Z qrVy,
ALG) < — 2 =
M0111aX(P0) for any A e .
D
R YA T T Ti¢ _
100 — aug)? (& — 6)TW(DT0)U U<O )W €-0)

i

2
§ qrVj,
k=1

(€ - 0)TT()Qi2i(€ - 6)

(E-)TWDTDWT(£-0)

21 Q22

(€ - 9)TW(DT0)UTU<%H Q1 ) UTU<€ ) WT(¢ - 6)

(E-OTWDTDWT (¢ -0) 1

(£ = 0)TWDTQDWT (£~ 0)

= - 4.7
Ulnin(Qll) ( )
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On the other handp;f; — ®;6 = &;(®7Q;®;) 10T Q,V;
and

@ (07 Qf €))7t o]
= U<10)>WT{W(DTO)UTU<QH Ql?)

21 22
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for IR systems with arbitrary inputs. These algorithms con-
verge to the membership set after a finite “learning period”
and therefore are useful for both identification applications
and adaptive control. Finally, we developed algorithms that
have good worst case output estimation performance (like the
standard WLS) and, at the same time, satisfy pointwise noise
constraint. In this regard, we feel that more research needs

oro(P\wrl wrer
(5)w} woro

U(lo) )WTWD—lén‘lD—leW(DTo)UT
-1
U<Q11 0 ) ur,

0 0
(1]

(2]
(3]
(4]

Hence
——1
@iéi - 9,0 :U<Q11 O>UTQ1Q_1/2QV2V
0 0 ) 7 )
=0Q'?V,

— 1 5
whereO = U(%t HUTQ,Q7 2. Now for anyV;, o

|:6; — 246 [6]
> ad 7]
k=1

T 1/2 T 1/2 8
= 00709 Y < (070) "
VTQi/ Q/QV
ro=—1
-0 y(@u 0 UrQ,Q;? [9]
max- 0 0 (23
——1
.0~ Y2, @, O T
@i Q2U< 0 0>U } [10]
= Opax —U <@1_11 0 ) UT U(Qll Q1o ) [11]
L 0 0 Qa1 22
@—1 0 [12]
'UTU< 61 ())UT} 3]
——1
_ Q 0\,
= Omax {U < 51 oV [14]
——1 1 [15]
= Ulnax(Q ) = = -
H omin(Q11)
This completes the proof. el
[17]
V. CONCLUDING REMARKS [18]

In this paper, we have addressed the issue of weights
selections for WLS algorithms in a set-membership contextfl
The objective was to obtain an estimate that is compatible
with the data and tha priori information available about the [20]
system model and the measurement noise. 21]

In the first part of the paper, we focused on FIR system[s.
In particular, we have shown that the WLS estimate can I®#2]
made to lie within the membership set for all iterations i3l
the bound on the noise is known. If the bound is unknowig4]
the estimate can be still made to converge to the memberifziﬁ
set asymptotically by utilizing i.i.d. random inputs with zer
mean. In the second part of the paper, we presented algorithms

to be performed for obtaining algorithms that enjoy “good
performance” properties and are also compatible withahe
priori information.
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