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Unfalsified Weighted Least Squares
Estimates in Set-Membership Identification

Er-Wei Bai, Li Qiu, Member, IEEE,and Roberto Tempo,Member, IEEE

Abstract—It is well known that the weighted least squares
(WLS) identification algorithm provides estimates that are in
general not in the membership set and in this sense are falsified
estimates. This paper shows that: 1) if the noise bound is known,
the WLS estimates can be made to lie in or converge to the
membership set by choosing the weights properly and 2) if the
noise bound is unknown, the same results can still be achieved
by using white input signals for finite impulse response systems
(FIR).

Index Terms—Identification, least square, set membership.

I. PROBLEM STATEMENT

I N this paper, we consider a discrete time scalar system

(1.1)

where is the system output, the measurable
regressor consisting of current and past input signals and
(possibly) past output signals, the unknown parameter
vector to be identified and the measurement noise. It
is assumed that ’s are bounded so that there exists a constant

, independent of and

(1.2)

for all . Equation (1.1) can be rewritten in a compact vector
form as

(1.3)

where

...
...

...

The purpose of system identification is to design an algo-
rithm which maps the input–output measurementsand
into the estimate of the unknown system parameter vector.
Depending on the specific assumptions on the noise, many
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identification algorithms can be constructed. For instance,
in the stochastic setting, the noise is assumed to be a
random sequence with some known probabilistic properties
and maximum likelihood estimators (MLE) can be derived
[16]. In set-membership identification (see e.g., the special
issues [1]–[3] and the survey papers [19]–[21] and [25]) the
noise is assumed to be unknown but bounded by, i.e.,

(1.4)

for all . In this case, for the presence of noise, it is in general
not possible to determine whether the obtained estimate
coincides with the true but unknownbut we can only detect
whether is compatible with the observed input–output data.
To this end, the membership set is defined as follows:

(1.5)

An estimate is compatible with the input–output data from
the th observation to the th observation if and only if

.
Besides systems and control, set-membership identification

proves to be a valuable tool in other areas, including digital
signal processing, when a noise-bounded description of the
errors is suitable; see e.g., [10]. In this case, one exam-
ple of paramount importance is when the measurements are
affected by roundoff errors given by A/D converters [23].
More classical identification algorithms than set-membership
identification include the celebrated least squares (LS), more
generally, the weighted least squares (WLS) algorithm. For
given data and , the WLS estimate is the solution
of the minimization problem

where ’s are nonnegative weights. Letting

...
...

...
...

a closed form solution of the WLS estimate can be easily
derived [16] if is nonsingular,

(1.6)

One of the powerful features of the WLS algorithm is that it
can be implemented recursively [16] using only the current
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input–output measurement , and the previous estimate

(1.7)

where the matrix is also computed recursively

(1.8)

with some .
The WLS algorithm does not need anya priori assumption

on the noise and enjoys several worst-case optimality
identification properties; see, [4] and [17]. It is also well known
that the WLS estimates are in generalnot in the membership
set (1.5). In other words, under the assumption that the noise

for some known , the WLS estimates may be
incompatible with the observed input–output data. In model
validation terminology, we can say that the WLS estimates
may be falsified by the input–output data. This observation
leads us to the following question: For the noise bound (1.4),
can we choose the weights properly so that the
WLS estimate either lies within the membership set for
all or converges to the membership set asymptotically? The
motivation of studying this problem is obvious: If such choice
of ’s is possible, then the resulting WLS estimate enjoys
the stochastic identification properties of the original WLS
estimate and it is also an unfalsified estimate compatible with
the observed input–output measurements.

The idea of finding a compatible estimate is not new;
for example, in information-based complexity (IBC) [24],
such estimates are called interpolatory algorithms. In the
context of system identification and model validation, several
interpolatory algorithms have been proposed, see, e.g., [7] and
[8]. However, due to the complex nature of the problem, all
these algorithms are off-line type. Continuing our previous
work [5], the main contribution of this work is to findre-
cursiveinterpolatory WLS algorithms. That is, the algorithms
presented in this paper choose weights’s on line so that
the resulting recursive WLS estimates either lie within the
membership set or converge to it asymptotically. Clearly,
the proposed algorithms are different than the ellipsoid-outer-
bounding ones since they are least squares (LS) type, but the
weights are chosen to minimize the “volume” of the outer-
bounding ellipsoid. Therefore, not every point inside the outer-
bounding set belongs to the actual membership set. Moreover,
it is well known that the recursive implementation of outer
bounding algorithms may introduce some conservatism [25].
The implication is that there is no guarantee that a point inside
the outer-bounding set is also in the membership set.

The results of this paper can be summarized as follows: If
the system is finite impulse response (FIR) and the input is at
designer’s disposal, in Section II we show 1) if the input is
chosen to be periodic, the WLS estimates can be made to lie
within the membership set by a proper choice of’s, provided
that the bound on the noise is known, 2) if the input is chosen
to be an independent identically distributed (i.i.d.) random
sequence with zero mean, the WLS estimate converges to the
true but unknown parameter asymptotically almost surely

(a.s.)1 for any bounded noise sequencewith unknown noise
bound .

Consequently, the WLS estimate converges to the mem-
bership set almost surely. If the system is infinite impulse
response (IIR) (see, e.g., [14] for definitions of FIR and IIR
systems) and the noise bound is known, in Section III we
show that the WLS estimates converge to the membership
set for arbitrary input if ’s are suitably chosen. The proofs
are provided in Section IV and some concluding remarks are
outlined in Section V.

II. FINITE IMPULSE RESPONSESYSTEMS

In this section, we consider the FIR system

(2.1)

Before presenting the results, we need to define persistent
excitation (PE); see [5] and [9].

Definition 2.1: The regressor is said to be persistently
exciting (PE) if there exist some and some positive
integer such that

for all .
Theorem 2.1:Consider the FIR system (2.1) with the noise
bounded as in (1.4) by some known . Assume that the

input is periodic with period and is persistently exciting.
Consider the recursive WLS algorithm (1.7) and (1.8) with
the weights

if ;

if

(2.2)

for , the initial conditions (note is
defined in (1.3) with replaced by ), any arbitrary and
any positive constant . Then, the WLS estimate lies
in the membership set for all, i.e.,

Proof: See Section IV.
Next, we observe the following two facts.

1) . To show this, notice that is periodic with
period . Let for some ,

The matrix is nonsingular and this implies .

1Here the definition of the almost sure convergence of the WLS estimate
^�i to the true but unknown system vector� is standard [22]

Prob lim
i!1

�̂i = � = 1:

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 06:15:37 UTC from IEEE Xplore.  Restrictions apply. 



BAI et al.: UNFALSIFIED WEIGHTED LEAST SQUARES ESTIMATES 43

2) The weights ’s in (2.2) are well defined because
if . This can be easily

seen as follows: Since [11, p.
58], and , we have and that

implies . However, implies
which is a contradiction.

The theorem above shows that if the boundon the
unknown noise is available, then the WLS estimate
can be made to lie within the membership set by choosing
a periodic input and a proper weighting sequence .
Here, the availability of the noise boundis the key. The
following result shows that even when the noise boundis
unknown, the WLS estimates can still be made to converge to
the membership set asymptotically.

Theorem 2.2:Consider the FIR systems (2.1) with the noise
bounded as in (1.4) by some unknown bound . Let the

input sequence be an i.i.d. random sequence with zero
mean and finite variance. Consider the WLS algorithm (1.6)
with the weights ’s lower and upper bounded

for all . Then, the WLS estimate satisfies

a.s.

as and, consequently, the WLS estimateconverges
to the membership set a.s. as .

Proof: See Section IV.
Theorem 2.2 shows that the effect of any bounded noise

sequence withknown or unknownbound can be averaged out
asymptotically by an i.i.d. input sequence with zero mean. The
important thing of this result is that the boundon may be
unknown and it is indeednot requiredin the WLS algorithm.
A similar result is reported [15] if the input sequence is
deterministic and the noise is i.i.d. with zero mean.

III. I NFINITE IMPULSE RESPONSE

SYSTEMS WITH ARBITRARY INPUT

In Section III, we studied FIR systems assuming that the
inputs were at designer’s disposal. In this section, we relax
this assumption and study general IIR systems with arbitrary
inputs. In this case, the result shown in Theorem 2.1 that the
estimate always lies in the membership set does not
hold in general. Therefore, we present an algorithm that, for
any given small positive number , provides an estimate
that lies in or converges to the set for some

. The hope is that for small, the set is
“very close” to . This is certainly true for any fixed

and . To see this observe that the membership set
has the inclusive property for all

Now, for the sake of contradiction, suppose that the
membership set is not a continuous function of

as . Then, by the inclusive property of the membership
set, there exists some but
for any , i.e., for all , for
all . Then, it follows that and this would
imply which is a contradiction. Therefore, the
two sets are “almost identical” for small.

Fig. 1. Geometric interpretation of algorithm (3.1).

Theorem 3.1:Consider the system (1.1) with the noise
bounded as in (1.4) by some known . Consider the
recursive WLS algorithm (1.7) and (1.8) with
and arbitrary . For any , let be

if

if

(3.1)

for . Then, the WLS estimate converges to the
membership set asymptotically in the following sense: For any

, there exists a finite number such that for
all

Proof: See Section IV.
The above result is a continuation of our previous work

on gradient type identification algorithms [5] which was mo-
tivated by the papers [6] and [13]. Even though in this work
we have restricted our attention to WLS algorithms, remarks
similar to those made in [5] apply as well.

Remark 1: The asymptotic estimate of given by the
WLS algorithm is not necessarily in the membership set

. Instead, it is only guaranteed to be in the
membership set where , the learning period,
is the instance of final update of. The “learning period”

of the above algorithm, after which no parameter update
takes place, depends on the data and the slack
variable . For the above algorithm, without additional
information, it is not possible to know online whether the
estimate has converged. The slack variable represents
the tradeoff between the learning period and the estimation
accuracy. Since the parameter estimate converges to the set

, the final estimate would be more accurate if a
smaller is chosen. However, in this case, the learning period

would be larger.
The algorithm presented in Theorem 3.1 has a clear geo-

metric interpretation. From (1.7), we notice that the parameter
update at th iteration of the (weighted) least squares method
is always along the direction of the vector ; see Fig. 1,
where represents two planes in the parameter
space that bound all compatible with the new data
and . The true parameter vector is unknown but always
lies between these two planes. The algorithm presented in
Theorem 3.1 updates the parameter in the direction of

indicated in the figure. However, if ,
then is compatible with the new data and and
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(a)

(b)

Fig. 2. Recursive estimateŝai, ^bi, and weightsqi.

there is no need to update . In this case, and
. Now, if , then is not

compatible with the new data and . In this case, we choose
such that

Pictorially, the new estimate is on the plane
that is closer to .

We now illustrate the performance of the algorithm pre-
sented in the Theorem 3.1 using a simulation example. We
consider a second order system of the form

with (unknown) . The initial estimate was
chosen to be , and . The
input sequence applied was and

were chosen as independent random variables uniformly
distributed in the interval with . Fig. 2 shows the
estimate derived using the algorithm of Theorem
3.1 for 50 iterations from to . The bottom
diagram shows the estimate versus the estimate for

, and . The actual membership set is
depicted by a solid line box around the true parameters
and . The top figure shows the weights versus time
. From Fig. 2 we see that after a few iterations, the weights

become 0 and update ceases.
As illustrated in the above example, a unique feature of the

algorithm given in Theorem 3.1 is that no parameter update
takes place if the new data does not contradict the hypothesis
of the noise model. For a large data set, the consequence of
the cessation of updating at time is that a very small
percentage of data is used. This fact can be interpreted in
two ways. 1) The algorithm is very efficient in terms of

computational burden since there is no or little computation
at most iterations. 2) In many applications, the noise may
have small “averaging effect.” Sufficient use of all the data
likely helps reducing estimation errors, especially if the bound

on is overestimated. Notice that the standard LS or WLS
algorithm does not assume anya priori knowledge on and
gives the true estimate if and . In other
words, the standard LS and WLS algorithms belong to the set
of correct identification algorithms (CIA) [18] as defined by

if (3.2)

where is any identification algorithm which maps the data
into the estimate . It is also well known that the standard

LS estimate is worst case optimal [5] in terms of output
prediction error, i.e., let denote the
least squares estimate, then

Now, the algorithm proposed in Theorem 3.1 is guaranteed to
provide an estimate in the membership set but
it is not necessarily a correct algorithm as defined in (3.2) and
neither worst case optimal because many of’s may be zero.
Motivated by this observation, in the following, we modify
the algorithm (3.1) replacing weights that are zero by some
positive constant so that this modified algorithm achieves the
following multiple objectives: a) It is correct and worst case
optimal in terms of output error, similarly to the LS estimate.
b) It produces estimates satisfying pointwise noise constraint.

Theorem 3.2:Consider the system (1.1) with the noise
bounded as in (1.4) by some known . Consider the
recursive WLS algorithm (1.7) and (1.8) with
and arbitrary . Let be

if ;

if

(3.3)

for , where is any positive constant. Then, the
proposed WLS estimate satisfies the following conditions.

1) The algorithm is worst case optimal, i.e., for each

(3.4)

where is any identification algorithm and is defined
in (1.3) for .

2) For all ,

Proof: See Section IV.
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Remark 2: Note that the denominator in the cost function
(3.4) can be interpreted as the weightednorm of the uncer-
tainty corrupting the measurements; similarly the numerator
can be interpreted as the norm of the output estimation
error. Thus, the algorithm (3.3) minimizes the worst case
amplification from the weighted noise to the output estimation
error. We remark, however, that another WLS algorithm with
different weights than those given in (3.3) might provide
smaller mean-square residuals even though not worst case
optimal according to the definition given in Theorem 3.2.

IV. PROOFS

Proof of Theorem 2.1:The proof relies on the following
lemma that is a special case of Theorem 2.1 when the input

and
for all . We then extend the result to general

periodic input signal in the proof of Theorem 2.1.
Lemma 4.1:Consider the recursive WLS algorithm (1.7)

and (1.8) with and given in Theorem 2.1. Assume that
is periodic with period so that

...
...

...

for all . Then, the WLS estimate satisfies

for all .
Proof: and by the matrix inversion lemma

(see [11, p. 58]), we have

For any , there exists some and so
that . Thus,

and

Letting and
, we obtain

and

Therefore, holds if and only if

Now, decompose the noise sequence into subsequences
, for . For any

, if and only if

(4.1)

for all and so that . We now
prove the lemma by induction. We first check the case when

. For any initial condition , if , then
. This implies and . On the other

hand, if , then
and this implies

Therefore, for any and , . We now show
that if the (4.1) holds at , then it is also true at. In other
words, let and

(4.2)

then

This is obvious if simply because and
. For , we consider two different

cases:
Case 1: If ,

(4.3)

However, from (4.1) and (4.2), we have

(4.4)

By comparing (4.3) and (4.4), it easily follows that
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and

From this, we have

Also, since ,

and this implies

Notice that at the th ( ) update only the th
component of is affected, not other components

that are compatible with all the previous and current data.
Therefore, .

Case 2: . The proof for this case is
similar to Case 1.

Combining Cases 1 and 2, we have completed the induction
and consequently the proof of Lemma 4.1.

We now prove Theorem 2.1. Recall that and
. Hence,

...

and

Defining , ,
, we have

Note that and

The conclusion follows immediately from Lemma 4.1.

Proof of Theorem 2.2:The proof is reminiscent of that
which appeared in [15] for a symmetric problem where the
input sequence is deterministic and the noise is i.i.d. with zero
mean. Thus, we will only provide a sketch of proof here as
much of details are similar and can be found in [15]. Write

Since and is i.i.d., by [12], we have

a.s.

where indicates the minimum eigenvalue. On the
other hand, each row of the matrix is given by

for some . The ’s are i.i.d. with zero
mean and this implies ’s are independent with zero
mean and Var , where

is the variance of . From [22, Corollary 3.4.2], it follows

a.s.

as . Therefore

a.s.

This completes the proof.
Proof of Theorem 3.1:Let and

. The following equations can be checked easily:

a)

b) If , then

and

c)

d)
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Therefore, if ,
and if , from the above equations

a)–d), we have

Note for all . Also, .
Thus

and

Since implies and

if . Note again is bounded.
Therefore, the number of changes of the estimatefor the
case is finite. This completes the proof.

Proof of Theorem 3.2:Let , where and

are unitary matrices and .
Notice that the cost function (3.4) is finite only if a correct
identification algorithm. Therefore, we only have to show
that Algorithm 3.3 achieves the minimum in the set. We
demonstrate by the following.

1) For each and

(4.5)

2) The WLS estimate provided by (3.3) satisfies

(4.6)

Now, is nonsingular. Let such that
is an eigenvector of associated with the smallest

eigenvalue of . Let the noise be .
Then,

If , we have and

Consequently, (4.7) shown at the bottom of the page. Thus,

for any .

(4.7)
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On the other hand,
and

Hence

where . Now for any ,

This completes the proof.

V. CONCLUDING REMARKS

In this paper, we have addressed the issue of weights
selections for WLS algorithms in a set-membership context.
The objective was to obtain an estimate that is compatible
with the data and thea priori information available about the
system model and the measurement noise.

In the first part of the paper, we focused on FIR systems.
In particular, we have shown that the WLS estimate can be
made to lie within the membership set for all iterations if
the bound on the noise is known. If the bound is unknown,
the estimate can be still made to converge to the membership
set asymptotically by utilizing i.i.d. random inputs with zero
mean. In the second part of the paper, we presented algorithms

for IIR systems with arbitrary inputs. These algorithms con-
verge to the membership set after a finite “learning period”
and therefore are useful for both identification applications
and adaptive control. Finally, we developed algorithms that
have good worst case output estimation performance (like the
standard WLS) and, at the same time, satisfy pointwise noise
constraint. In this regard, we feel that more research needs
to be performed for obtaining algorithms that enjoy “good
performance” properties and are also compatible with thea
priori information.
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