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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE∗

LI QIU† , YANXIA ZHANG‡ , AND CHI-KWONG LI§

Abstract. Let Gm,n be the Grassmann space of m-dimensional subspaces of Fn. Denote by
θ1(X ,Y), . . . , θm(X ,Y) the canonical angles between subspaces X ,Y ∈ Gm,n. It is shown that
Φ(θ1(X ,Y), . . . , θm(X ,Y)) defines a unitarily invariant metric on Gm,n for every symmetric gauge
function Φ. This provides a wide class of new metrics on Gm,n. Some related results on perturbation
and approximation of subspaces in Gm,n, as well as the canonical angles between them, are also
discussed. Furthermore, the equality cases of the triangle inequalities for several unitarily invariant
metrics are analyzed.
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1. Introduction. Let F be the real field R or the complex field C. Denote by
F
n the linear space of n × 1 vectors with entries in F. Suppose X and Y are one-

dimensional subspaces of F
n spanned by the unit vectors x and y, respectively. There

are natural metrics to measure the distance between X and Y.
(a) The acute angle between X and Y, i.e., θ(X ,Y) = arccos |xHy| ∈ [0, π/2].
(b) The gap metric between X and Y defined as sin θ(X ,Y) = inf{‖x− yq‖ : q ∈

F}.
(c) The Hausdorff metric between X and Y defined as

2 sin(θ(X ,Y)/2) = inf{‖x− yu‖ : u ∈ F, |u| = 1}.

To gain more geometrical insight, let us temporarily specialize these measures
to real Euclidean space R

n. It is clear that the quantity in (a) is in fact the acute
angle between the lines X and Y. The quantity in (b) represents the distance of any
unit vector in one line, either x or −x, to the other line Y; it also turns out to be
the difference between the orthogonal projections onto X and Y, respectively, i.e.,
‖xxH − yyH‖, measured by the operator norm. The quantity in (c) represents the
Hausdorff distance between the set of unit vectors in one line, {x,−x}, and that in
the other line, {y,−y}.

It is well known and not hard to check that each of the measures in (a), (b), and
(c) indeed defines a metric ρ on the set G1,n of one-dimensional subspaces of F

n, i.e.,
for any one-dimensional subspaces X ,Y,Z of F

n, we have
(i) ρ(X ,Y) ≥ 0; the equality holds if and only if X = Y;
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508 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

(ii) ρ(X ,Y) = ρ(Y,X );
(iii) ρ(X ,Z) ≤ ρ(X ,Y) + ρ(Y,Z).

Furthermore, each of these metrics is unitarily invariant in the sense that

(iv) ρ(UX , UY) = ρ(X ,Y) for any unitary transformation U on F
n.

In a certain sense, the metric defined in (a) is superior to those in (b) or (c) for the
following reasons.

First, for any positive subadditive nondecreasing function f : [0, π/2] → [0,∞),
i.e., any function f satisfying f(α) > 0 for α ∈ (0, π/2], f(α + β) ≤ f(α) + f(β)
for any α, β ∈ [0, π/2] with α + β ≤ π/2, and f(α) ≤ f(β) for α ≤ β, the function
(X ,Y) → f(θ(X ,Y)) is again a metric on G1,n. Proper choice of such an f generates
a wide class of metrics. Taking f(α) = sinα and f(α) = 2 sin(α/2), one obtains the
metrics in (b) and (c) from that of (a). One might also take, for example, f(α) =
ln(1 + α) or f(α) = tan(α/2).

Second, for ρ(X ,Y) = θ(X ,Y), the equality in (iii) holds for X ,Y,Z ∈ G1,n if and
only if there are unit vectors x, y, z in X ,Y,Z such that y = [tx+(1−t)z]/‖tx+(1−t)z‖
for some t ∈ [0, 1] and x∗z ≥ 0. Geometrically, it means that V = span {x, y, z} is two-
dimensional and the vector y lies on the circular arc with length not larger than π/2
joining the two vectors x and z in V . This is most useful when we consider problems
involving small perturbation of subspaces. In contrast, for the metrics defined in (b)
and (c), the equality in (iii) holds only in the trivial case when X = Y or Y = Z.

The main purpose of this paper is to extend the nice features of the metric θ(X ,Y)
on G1,n to the Grassmann space Gm,n of m-dimensional subspaces of F

n for 1 ≤ m ≤
n. It is well known that between two members of Gm,n, there are m angles, called
canonical angles or principal angles. We will define a family of metrics using directly
the canonical angles, instead of some trigonometrical functions of the canonical angles
as in the current common practice. This strengthens the fundamental role played by
the canonical angles in studying the relationship between subspaces. We will then
establish some results in the perturbation analysis of the canonical angles and in
the robustness of certain geometric relations, namely the nullity (dimension of the
intersection) and deficiency (codimension of the sum), between a pair of subspaces
using the new metrics defined. We will justify that the new family of metrics do have
advantages over the existing ones.

The demand for a distance measure between linear subspaces arises in countless
occasions, ranging from pure mathematics to engineering applications. Examples in-
clude perturbation theory of unbounded linear operators [16], perturbation analysis
of invariant subspaces, deflating subspaces in generalized eigenvalue problems, and
singular subspaces in singular value decompositions [3], [27], [28], optimization [6],
robust control [9], [24], [25], [33], geometric approach to linear multivariable control
[17], system identification [32], signal processing [4], [21], and so on. Our study was
mainly motivated by robust control of linear feedback systems. Roughly speaking a
linear time-invariant system can be described by a subspace valued frequency func-
tion, and the description of an uncertain system calls for a suitable distance measure
between subspaces. The stability of a feedback system can be restated as the com-
plement property of two frequency dependent subspaces. Hence the robust stability
deals with the robustness of subspace complement, motivating the study of robust-
ness of subspace nullity and deficiency, which is also done in this paper. Not all the
distance measures used in the aforementioned works are metrics, i.e., some of them
do not satisfy the triangle inequality, but metrics are certainly preferred from both
theoretical and practical view points. Indeed most of the measures used are metrics
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 509

and most of them are defined from certain trigonometrical functions of the canonical
angles between the subspaces. Among the possible metrics, the ones with tight trian-
gle inequalities are most desirable, since they give the tightest perturbation bounds,
best estimation of errors, etc. The main ramification of this paper is that the newly
defined family of metrics does offer the desired advantages.

In addition to being used to measure the distance between subspaces, the canoni-
cal angles also have other utilities. Notably, they can give all the singular values of an
oblique projection (Gohberg and Krein [10] related the largest singular value with the
smallest canonical angle, but the relation can be extended to all singular values); they
are used to study the volumes of matrices [23]; they are used in statistics to define
the so-called canonical correlations [13], which have attracted further mathematical
treatment [11] and have wide applications (see those mentioned in [11]); and they are
used in characterizing other geometric relations between subspaces such as nullity,
deficiency, complementarity, and so on [16], [37]. Therefore, the perturbation analysis
of the canonical angles themselves is of importance and has been conducted in the
works [11], [18], [29]. We will carry out the analysis using the newly defined family of
metrics.

In the next section, we present the theory of canonical angles on a pair of sub-
spaces in Gm,n and we develop some relationships among the canonical angles between
three different subspaces, which constitute the key technical vehicle for the proof of
our main results. In section 3, we prove that any symmetric gauge function of the
canonical angles defines a unitarily invariant metric; we also prove several results on
approximation and perturbation of subspaces as well as canonical angles using the
newly defined metrics. In section 4, we analyze and compare the equality cases of
the triangular inequalities for several unitarily invariant metrics. Further results and
extensions will be discussed in section 5.

We will use Mm,n(F) (respectively, Mn(F)) to denote the linear space of m× n
(respectively, n×n) matrices over F. The group of complex unitary or real orthogonal
matrices is denoted by Un(F). We will identify a matrix in Mn(F) and a linear
transformation on F

n. We often abbreviate the notation to Mm,n,Mn, and Un if the
statements are valid for both F = C or R.

2. Canonical angles between subspaces. The singular values of A ∈ Mm,n

are the nonnegative square roots of the l largest eigenvalues of positive semidefinite
matrix AHA, where l = min{m,n}, and are denoted by σ1(A) ≥ · · · ≥ σl(A). We
also use the more compact notation σ(A) to denote the decreasingly ordered l-tuple
of singular values of A.

Let X ,Y ∈ Gm,n. Suppose the columns of X1, Y1 ∈ Mn,m form orthonormal
bases for X and Y, respectively. Then the singular values of XH

1 Y1 lie in [0, 1] and
are independent of the particular choices of the orthonormal bases. We define the
canonical angles between X and Y to be

θi(X , Y) = arccosσm−i+1(X
H
1 Y1) ∈ [0, π/2], i = 1, 2, . . . ,m.

In the following, we denote the decreasingly ordered m-tuple of canonical angles be-
tween X and Y by

θ(X , Y) := (θ1(X , Y), . . . , θm(X , Y)).

Let X⊥ and Y⊥ be the orthogonal complements of X and Y, respectively. Sup-
pose X2, Y2 ∈ Mn,n−m have columns forming orthonormal bases for X⊥ and Y⊥,
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510 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

respectively. Then X = [X1 X2] and Y = [Y1 Y2] are unitary matrices. By the
CS decomposition of matrices in Un (e.g., see Theorem 5.2 in [27]), there are E =
diag (E1, E2), F = diag (F1, F2) ∈ Un with E1, F1 ∈ Um such that

EHXHY F = diag

[
Im−l ,

[
Γ −Σ
Σ Γ

]
, In−m−l

]
,

where l = min{m,n − m}, Γ and Σ are diagonal matrices with diagonal entries in
[0, 1] satisfying Γ2 + Σ2 = Il. Hence the diagonal entries of Γ are the cosines of the
first l canonical angles between X and Y; the diagonal entries of Σ are the sines of
the first l canonical angles. The rest m − l canonical angles between X and Y are
always zero. This leads to several observations:

(1) The nonzero canonical angles between X and Y are the same as those of X⊥
and Y⊥.

(2) The singular values of XH
2 Y1 are sin θ1(X ,Y) ≥ · · · ≥ sin θl(X ,Y), and so are

those of XH
1 Y2.

(3) The canonical angles are unitarily invariant, i.e., θ(UX , UY) = θ(X ,Y) for
all U ∈ Un, since (UX1)

H(UY1) = XH
1 Y1.

In view of the above observations, we can always assume m ≤ n/2 in our discussion;
otherwise, we can consider the canonical angles between X⊥ and Y⊥ instead.

Jordan [15] discovered the canonical angles shortly after he discovered the matrix
singular values [14]. In statistics, Hotelling [13] used canonical angles to define the
canonical correlations shortly after he used the singular values to define the principal
components [12]. Also see, for example, [1], [3], [35].

The CS decomposition also yields a special unitary transformation mapping X to
Y, called a direct rotation from X to Y [3]. Set X̂ = XE and Ŷ = Y F . We have

X̂H Ŷ =

⎡
⎣Γ −Σ 0

Σ Γ 0
0 0 In−2m

⎤
⎦ .(2.1)

A direct rotation from X to Y is given by

R = X̂

⎡
⎣Γ −Σ 0

Σ Γ 0
0 0 In−2m

⎤
⎦ X̂H = X̂ exp

[
0 −A

AH 0

]
X̂H ,(2.2)

where A =
[
diag θ(X ,Y) 0m,n−2m

]
. It is shown in [3] that among all unitary trans-

formations mapping X to Y, the direct rotation is the “most economic” in some sense.
We will revisit this point in section 5.

Similarly, if we have another subspace Z ∈ Gm,n, then a direct rotation from Y
to Z is given by

S = Ȳ exp

[
0 −B

BH 0

]
Ȳ H ,

where B =
[
diag θ(Y,Z) 0m,n−2m

]
, Ȳ =

[
Ȳ1 Ȳ2

]
∈ Un, and the columns of Ȳ1 and

Ȳ2 form special orthonormal bases of Y and Y⊥, respectively. Also a direct rotation
mapping X to Z is given by

T = X̃ exp

[
0 −C

CH 0

]
X̃H ,
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 511

where C =
[
diag θ(X ,Z) 0m,n−2m

]
, X̃ =

[
X̃1 X̃2

]
∈ Un, and the columns of X̃1

and X̃2 form special orthonormal bases of X and X⊥, respectively.

Since SR also takes X onto Z, it can only differ from T locally in X and X⊥ [3],
i.e., there exists unitary matrix Q = diag (Q1, Q2) with Q1 ∈ Um and Q2 ∈ Un−m

such that

X̃ exp

[
0 −C

CH 0

]
QX̃H = SR,

which is equivalent to

exp

[
0 −C

CH 0

]
Q = X̃H Ȳ exp

[
0 −B

BH 0

]
Ȳ HX̃X̃HX̂ exp

[
0 −A

AH 0

]
X̂HX̃.

Denote X̃H Ȳ by M and X̃HX̂ by N . Notice that N = diag (N1, N2) for some
N1 ∈ Um and N2 ∈ Un−m. Hence

exp

[
0 −C

CH 0

]
Q = M exp

[
0 −B

BH 0

]
MHN exp

[
0 −A

AH 0

]
NH .(2.3)

Taking inverse, we get

QH exp

[
0 C

−CH 0

]
= N exp

[
0 A

−AH 0

]
NHM exp

[
0 B

−BH 0

]
MH .

Multiplying J = diag(Im, −In−m) from both sides and noticing that J commutes
with both Q and N , we get

QH exp

[
0 −C

CH 0

]
= N exp

[
0 −A

AH 0

]
NHJM exp

[
0 B

−BH 0

]
MHJ.(2.4)

Multiplying (2.3) and (2.4), we obtain

exp

[
0 −2C

2CH 0

]

= M exp

[
0 −B

BH 0

]
MHN exp

[
0 −2A

2AH 0

]
NHJM exp

[
0 B

−BH 0

]
MHJ

= exp

[
M

[
0 −B

BH 0

]
MH

]
exp

[
N

[
0 −2A

2AH 0

]
NH

]

× exp

[
JM

[
0 B

−BH 0

]
MHJ

]
.

The product of matrix exponentials on the right-hand side can be transformed
to the exponential of a sum by using a matrix exponential formula of Thompson [31]
(also see [2]), which asserts that for skew-Hermitian matrices S, T ∈ Mn, there exist
unitary matrices U, V ∈ Un(C) such that

exp(S) exp(T ) = exp(USUH + V TV H).

This leads to the following relation of the canonical angles.
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512 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

Proposition 2.1. There exist U1, U2, V ∈ Un(C) such that

exp

[
0 −2C

2CH 0

]
(2.5)

= exp

[
V

[
0 −2A

2AH 0

]
V H + U1

[
0 −B

BH 0

]
UH

1 + U2

[
0 B

−BH 0

]
UH

2

]
.

Note that even when F = R, we have the above relations of canonical angles
among three subspaces in terms of complex skew-Hermitian and unitary matrices.

3. Unitarily invariant metrics. A norm ‖ ·‖ on Mm,n is unitarily invariant if
‖UAV ‖ = ‖A‖ for any U ∈ Um, V ∈ Un, and A ∈ Mm,n. It is immediately seen from
the singular value decomposition that a unitarily invariant norm on Mm,n depends
only on the singular values of matrices.

Unitarily invariant norms are intimately related to symmetric gauge functions.
A symmetric gauge function Φ : R

l → R is a norm function satisfying the additional
properties that it is symmetric, i.e.,

Φ(Pξ) = Φ(ξ)

for any ξ ∈ R
l and permutation matrix P , and that it is absolute, i.e., Φ(|ξ|) = Φ(ξ).

The absolute property can be replaced by the monotone property, i.e., Φ(|ξ|) ≤ Φ(|ζ|)
if |ξ| ≤ |ζ| in an elementwise sense. This follows from the well-known fact that a norm
function is absolute if and only if it is monotone. A particular class of symmetric gauge
functions, called Ky Fan functions [7], plays an important role. Let 1 ≤ k ≤ l. The
Ky Fan k-function is defined as

Φk(ξ1, . . . , ξl) = max
1≤i1<···<ik≤l

{|ξi1 | + |ξi2 | + · · · + |ξik |}.

The reason why the class of Ky Fan k-functions is special lies in the fact that for a
pair of vectors ξ, ζ ∈ R

l, Φk(ξ) ≤ Φk(ζ) for all k implies that Φ(ξ) ≤ Φ(ζ) for all
symmetric gauge functions Φ. When Φk(ξ) ≤ Φk(ζ) for all 1 ≤ k ≤ l, we say that ζ
weakly majorizes ξ.

Unitarily invariant norms as well as their interplay with symmetric gauge func-
tions have been very well understood. We list a few results that serve as models for
our development of unitarily invariant metrics. For a more complete coverage, see
[27].

(I) (See [34].) There is a one-to-one correspondence between unitarily invariant
norms ‖ · ‖ on Mm,n and symmetric gauge functions Φ : R

l → R, where
l = min{m,n}, given by

‖A‖ = Φ(σ(A)).

(II) (See [22].) For the unitarily invariant norm ‖ · ‖ on Mm,n corresponding to
the symmetric gauge function Φ,

Φ(σ(A) − σ(B)) ≤ ‖A−B‖

for all A,B ∈ Mm,n.
(III) (See [5], [22], [26].) Let ‖ · ‖ be a unitarily invariant norm on Mm,n, and

1 ≤ k ≤ l = min{m,n}. Suppose A ∈ Mm,n. Then

min{‖A−B‖ : B ∈ Mm,n, rank(B) ≤ k} = Φ(0, . . . , 0, σk+1(A), . . . , σl(A)).
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 513

Specializing the triangle inequality of the norms in (I) to Ky Fan k-functions
yields that for any A,B,C ∈ Mm,n with C = A + B,

k∑
j=1

σj(C) ≤
k∑

j=1

σj(A) +

k∑
j=1

σj(B).(3.1)

Specializing the Mirsky result (II) to Ky Fan k-functions yields that for any A,B,C ∈
Mm,n with C = A + B,

k∑
j=1

σij (C) ≤
k∑

j=1

σij (A) +

k∑
j=1

σj(B)(3.2)

for any 1 ≤ i1 < · · · < ik ≤ l = min{m,n}. In this sense, the inequalities in (II)
are more general than the triangle inequalities of the norms in (I). Recently, the
complete set of inequalities relating the singular values of matrices A,B,C ∈ Mm,n

with C = A + B has been determined; e.g., see [8].
One can use symmetric gauge functions to define unitarily invariant metrics on

Gm,n. Suppose Φ : R
m → R is a symmetric gauge function and ‖·‖ is the corresponding

unitarily invariant norm on Mn,m. For X ,Y ∈ Gm,n, let X1, Y1 ∈ Mn,m have columns
forming orthonormal bases for X and Y. Two families of frequently used unitarily
invariant metrics between X and Y are the gap metrics

Φ(sin θ1(X ,Y), . . . , sin θm(X ,Y)) = inf{‖X1 − Y1Q‖ : Q ∈ Mm}(3.3)

and the Hausdorff metrics

Φ(2 sin(θ1(X ,Y)/2), . . . , 2 sin(θm(X ,Y)/2)) = inf{‖X1 − Y1V ‖ : V ∈ Um},(3.4)

which extend the metrics (b) and (c) for the case when m = 1 introduced in section 1.
As we have shown in the case when m = 1, it is desirable to have an extension of metric
(a). Potentially, the metrics defined by the canonical angles, instead of their sines
or other functions, can be used to generate other metrics and have tighter triangle
inequalities. It appears to be a long-established fact in the differential geometry
literature [6], [38] that

√
θ2
1(X ,Y) + · · · + θ2

m(X ,Y)

is a metric. In [35], Wedin showed that the largest canonical angle θ1(X ,Y) is a
metric. Qiu and Davison [25] and Vinnicombe [33] also gave alternative proofs for
this result in the engineering literature and demonstrated that the use of θ1(X ,Y) as
a metric is crucial in engineering applications. Recently, this fact was connected to a
Finsler geometry of the Grassmann manifold [36]. It has been conjectured that any
symmetric gauge function of the canonical angles is a metric. This conjecture was
explicitly announced by the first author at the 10th ILAS Conference in 2002. Using
the results in the last section, we are now able to prove the conjecture.

Theorem 3.1. Let Φ : R
m → R be a symmetric gauge function. Define ρ :

Gm,n × Gm,n → R by

ρ(X ,Y) = Φ(θ(X ,Y)).

Then ρ is a unitarily invariant metric.
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514 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

Proof. Evidently, ρ(X , Y) is unitarily invariant and satisfies the positivity con-
dition (i) and the symmetry condition (ii) in section 1. It remains to show that
it satisfies the triangle inequality (iii). As shown in section 2, the canonical angles
between subspaces X ,Y,Z satisfy the relationship (2.5). Hence the eigenvalues of

[
0 −2C

2CH 0

]
(3.5)

and those of

V

[
0 −2A

2AH 0

]
V H + U1

[
0 −B

BH 0

]
UH

1 + U2

[
0 B

−BH 0

]
UH

2(3.6)

are equal modulo ±i2π, where i =
√
−1. Since the eigenvalues of (3.5) belong to

i[−π, π] and those of (3.6) are known to belong to i[−2π, 2π], each eigenvalue of
(3.6) either is equal to its corresponding eigenvalue of (3.5) or belongs to i[−2π,−π]∪
i[π, 2π], hence having no less absolute value than its corresponding eigenvalue of (3.5).
Since both matrices (3.5) and (3.6) are skew-Hermitian, their singular values are the
absolute values of their eigenvalues. Therefore, by the monotone property of the
symmetric gauge function,∥∥∥∥

[
0 −2C

2CH 0

]∥∥∥∥ ≤
∥∥∥∥V

[
0 −2A

2AH 0

]
V H + U1

[
0 −B

BH 0

]
UH

1

+ U2

[
0 B

−BH 0

]
UH

2

∥∥∥∥
≤

∥∥∥∥
[

0 −2A
2AH 0

]∥∥∥∥ + 2

∥∥∥∥
[

0 −B
BH 0

]∥∥∥∥
for all unitarily invariant norms ‖ · ‖ on Mn. Hence

‖C‖ ≤ ‖A‖ + ‖B‖

for all unitarily invariant norms ‖ · ‖ on Mm,n−m. This is equivalent to

ρ(X ,Z) ≤ ρ(X ,Y) + ρ(Y,Z)

for all symmetric gauge functions Φ on R
m.

The metrics defined by the symmetric gauge functions of the canonical angles as
in Theorem 3.1 will be called the angular metrics. We designate the notation ρ for
such a metric.

By continuity, slight perturbations in subspaces will result in slight perturbations
in the canonical angles in between. How are the perturbations in the canonical angles
bounded by the perturbations in the subspaces involved? The same question was
asked in [29], and the following “Mirsky-type result” gives an answer.

Theorem 3.2. Let ρ be the angular metric corresponding to symmetric gauge
function Φ. Then for X ,Y,Z ∈ Gm,n,

Φ(θ(X ,Z) − θ(X ,Y)) ≤ ρ(Y,Z) = Φ(θ(Y,Z)).

Proof. Let σ1 ≥ · · · ≥ σn be singular values of

Σ := V

[
0 −2A

2AH 0

]
V H + U1

[
0 −B

BH 0

]
UH

1 + U2

[
0 B

−BH 0

]
UH

2 .
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 515

Then it follows from the argument in the proof of Theorem 3.1 that there are singular
values ci, i = 1, 2, . . . , n, ordered properly, of

[
0 −2C

2CH 0

]

such that either σi = ci or σi = 2π−ci. Rewrite αi = θi(X ,Y), βi = θi(Y,Z), and γi =
θi(X ,Z) for i = 1, 2, . . . ,m. Since ci is a reordering of 2γ1, 2γ1, . . . , 2γm, 2γm, 0, . . . , 0,
we have for any symmetric gauge function Ψ : R

n → R,

Ψ(2γ1 − 2α1, 2γ1 − 2α1, . . . , 2γm − 2αm, 2γm − 2αm, 0, . . . , 0)

≤ Ψ(c1 − 2α1, c2 − 2α1, . . . , c2m−1 − 2αm, c2m − 2αm, c2m+1, . . . , cn)

≤ Ψ(σ1 − 2α1, σ2 − 2α1, . . . , σ2m−1 − 2αm, σ2m − 2αm, σ2m+1, . . . , σn).

Here we used the fact that σi−η either is equal to ci−η or has no less absolute value
than ci − η for any η ∈ [−π, π]. By (II), we obtain

Ψ(2γ1 − 2α1, 2γ1 − 2α1, . . . , 2γm − 2αm, 2γm − 2αm, 0, . . . , 0)

≤
∥∥∥∥Σ − V

[
0 −2A

2AH 0

]
V H

∥∥∥∥
Ψ

=

∥∥∥∥U1

[
0 −B

BH 0

]
UH

1 + U2

[
0 B

−BH 0

]
UH

2

∥∥∥∥
Ψ

≤ 2

∥∥∥∥
[

0 −B
BH 0

]∥∥∥∥
Ψ

.

Hence

Φ(γ1 − α1, . . . , γm − αm) ≤ Φ(β1, . . . , βm)

for all symmetric gauge function Φ on R
m, which immediately gives

Φ(θ(X ,Z) − θ(X ,Y)) ≤ ρ(Y,Z).

If we specialize the metrics in Theorem 3.1 to the ones corresponding to the Ky
Fan k-functions, the triangle inequality gives us

k∑
j=1

θj(X ,Z) ≤
k∑

j=1

θj(X ,Y) +

k∑
j=1

θj(Y,Z).(3.7)

On the other hand, specializing Theorem 3.2 to the Ky Fan functions gives us

k∑
j=1

θij (X ,Z) ≤
k∑

j=1

θij (X ,Y) +

k∑
j=1

θj(Y,Z)(3.8)

for any 1 ≤ i1 < · · · < ik ≤ m. In this sense, the inequalities in Theorem 3.2 cover
the triangle inequalities in Theorem 3.1 as special cases.

Sometimes we are concerned with the perturbation of canonical angles when both
subspaces involved are perturbed. In this case, the following version of Theorem 3.2
might be more convenient.
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516 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

Corollary 3.3. Let ρ be the angular metric corresponding to symmetric gauge
function Φ. Then for X , Y, X̃ , Ỹ ∈ Gm,n,

Φ(θ(X̃ , Ỹ) − θ(X ,Y)) ≤ ρ(X̃ ,X ) + ρ(Ỹ,Y).(3.9)

Proof. For any subspaces X ,Y and the perturbations of them X̃ , Ỹ, it is easy to
show that

Φ(θ(X̃ , Ỹ) − θ(X ,Y)) = Φ(θ(X̃ , Ỹ) − θ(X , Ỹ) + θ(X , Ỹ) − θ(X , Y))

≤ Φ(θ(X̃ , Ỹ) − θ(X , Ỹ)) + Φ(θ(X , Ỹ) − θ(X ,Y)).

≤ ρ(X̃ , X ) + ρ(Ỹ, Y).

Sun in [29] established certain bounds on Φ(θ(X̃ , Ỹ)− θ(X ,Y)) for the case when
Φ is the Ky Fan 1-function (Hölder ∞-norm) and when it is the Hölder 2-norm.
Corollary 3.3 extends and improves the bounds in [29].

However, the analysis in [29] is more general in one direction: it applies to canon-
ical angles between two subspaces with possibly different dimensions, which are also
important in applications. Let us first extend the notion of canonical angles to this
more general setting. For X ∈ Gm,n and Y ∈ Gl,n, again let X1 ∈ Mn,m and Y1 ∈ Mn,l

be matrices whose columns form orthonormal bases of X and Y, respectively. The
canonical angles between X and Y are defined to be

θi(X ,Y) = arccosσmin{m,l}−i+1(X
H
1 Y1), i = 1, 2, . . . ,min{m, l}.

Let us take a closer look at this definition for the case when m < l. By the
singular value decomposition, we know that there exist E1 ∈ Um and F1 ∈ Ul such
that

EH
1 XH

1 Y1F1 =
[
diag (cos θ1(X ,Y), . . . , cos θm(X ,Y)) 0m,l−m

]
.

This shows that Y has an m-dimensional subspace Y0 such that θ(X ,Y0) = θ(X ,Y)
and X ⊥ (Y � Y0). A similar interpretation can be made for the case when l < m.
Now we would like to ask whether Corollary 3.3 can be extended to the case when
X , X̃ ∈ Gm,n and Y, Ỹ ∈ Gl,n after reconciling the two metrics in the right-hand side
of (3.9) properly. We are not able to give an affirmative answer at this moment,
though all indications show that this is possible. We nevertheless are able to treat
another important special case when l = n−m. It is this case that is directly relevant
to robust control [24], [37]. In this case, there are at most min{m,n − m} nonzero
canonical angles between any two members of Gmax{m,n−m},n. Hence a symmetric

gauge function Φ on R
min{m,n−m} also defines a metric on Gmax{m,n−m},n by applying

to the min{m,n−m} largest canonical angles. We will denote the metric on Gm,n and
Gn−m,n defined by Φ using the same symbol ρ. We then have ρ(X ,Y) = ρ(X⊥,Y⊥)
for X ,Y ∈ Gm,n.

Corollary 3.4. Let ρ be the angular metric on Gm,n and that Gn−m,n corre-

sponding to symmetric gauge function Φ on R
min{m,n−m}. Then for X , X̃ ∈ Gm,n and

Y, Ỹ ∈ Gn−m,n,

Φ(θ(X̃ , Ỹ) − θ(X ,Y)) ≤ ρ(X̃ , X ) + ρ(Ỹ,Y).

Proof. It follows immediately from the fact that

θi(X̃ , Ỹ) = π/2 − θmin{m,n−m}−i+1(X̃ , Ỹ⊥)
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 517

and

θi(X , Y) = π/2 − θmin{m,n−m}−i+1(X ,Y⊥).

In the rest of this section, we work towards a metric counterpart of the result in
(III) on the robustness of the matrix rank. Following [16], we define the nullity and
deficiency of subspaces X and Y to be

nul(X ,Y) := dim(X ∩ Y) and def(X ,Y) := codim(X + Y),

respectively. Clearly, def(X ,Y) = nul(X⊥,Y⊥) and in the case when dimX +dimY =
n, we have def (X ,Y) = nul (X ,Y). Also, X ⊕ Y = F

n if and only if nul(X ,Y) = 0
and def(X ,Y) = 0.

The robustness of the nullity and deficiency is of great interest in mathematics
[16], statistics [13], and control theory [9], [25], [33], [37]. In particular, if we have
subspaces X ∈ Gm,n and Y ∈ Gl,n with nul (X ,Y) < k for some 1 ≤ k ≤ min{m, l} and

if we also know the perturbed versions X̃ ∈ Gm,n and Ỹ ∈ Gl,n satisfy ρ1(X , X̃ ) ≤ α

and ρ2(Y, Ỹ) ≤ β, we wish to obtain the tightest condition on α and β to ensure
nul (X̃ , Ỹ) < k. The same problem can be considered for the deficiency. The following
theorem solves these problems for the special case when m = l.

Theorem 3.5. Let ρ be the angular metric corresponding to symmetric gauge
function Φ. Let X ,Y ∈ Gm,n. Then for α ≥ 0, β ≥ 0, and 1 ≤ k ≤ m,

1. nul (X̃ , Ỹ) < k for all X̃ and Ỹ satisfying ρ(X , X̃ ) ≤ α and ρ(Y, Ỹ) ≤ β if
and only if

α + β < Φ [0, . . . , 0, θm−k+1(X ,Y), . . . , θm(X ,Y)] ;

2. def (X̃ , Ỹ) < k for all X̃ and Ỹ satisfying ρ(X , X̃ ) ≤ α and ρ(Y, Ỹ) ≤ β if
and only if

α + β < Φ [0, . . . , 0, θn−m−k+1(X⊥,Y⊥), . . . , θn−m(X⊥,Y⊥)] .

Proof. We only need to prove statement 1. Statement 2 follows from def(X ,Y) =
nul(X⊥,Y⊥). Suppose nul (X̃ , Ỹ) ≥ k. Then θj(X̃ , Ỹ) = 0, j = m− k + 1, . . . ,m. By
Corollary 3.3,

δ := Φ(0, . . . , 0, θm−k+1(X ,Y), . . . , θm(X ,Y))

≤ Φ(θ(X ,Y) − θ(X̃ , Ỹ)) ≤ ρ(X , X̃ ) + ρ(Y, Ỹ) ≤ α + β.

This shows that if

α + β < δ,

then nul (X̃ , Ỹ) < k.
Now assume that α + β ≥ δ. Then there exist α1 ∈ [0, α] and β1 ∈ [0, β]

such that α1 + β1 = δ. By the CS decomposition, there exist X =
[
X1 X2

]
and

Y =
[
Y1 Y2

]
, where the columns of X1 = [x1 · · · xm] and X2 = [xm+1 · · · xn] form

orthonormal bases of X and X⊥, respectively, and the columns of Y1 = [y1 · · · ym]
and Y2 = [ym+1 · · · yn] form orthonormal bases for Y and Y⊥, respectively, such that

Y = X

⎡
⎢⎣

cos(diag θ(X ,Y)) − sin(diag θ(X ,Y)) 0

sin(diag θ(X ,Y)) cos(diag θ(X ,Y)) 0

0 0 I

⎤
⎥⎦ .(3.10)

D
ow

nl
oa

de
d 

03
/3

1/
21

 to
 1

43
.8

9.
10

5.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



518 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

Let λ = α1/δ; then 1−λ = β1/δ. Also abbreviate θj(X ,Y) by θj , j = 1, 2, . . . ,m.
Define

x̃j = xj cos(λθj) + xm+j sin(λθj), j = m− k + 1, . . . ,m,

X̃ = span(x1, . . . , xm−k, x̃m−k+1, . . . , x̃m), Ỹ = span(y1, . . . , ym−k, x̃m−k+1, . . . , x̃m).

Also define

X̃1 = [x1 · · · xm−k x̃m−k+1 · · · x̃m] , Ỹ1 = [y1 · · · ym−k x̃m−k+1 · · · x̃m] .

Then the columns of X̃1 and Ỹ1 form orthonormal bases of X̃ and Ỹ, respectively.
Furthermore,

XH
1 X̃1 = diag(1, . . . , 1, cos(λθm−k+1), . . . , cos(λθm)).

It follows that

ρ(X , X̃ ) = Φ(0, . . . , 0, λθm−k+1, . . . , λθm) = α1 ≤ α.

From (3.10), we see that yj = xj cos θj + xm+j sin θj , j = m− k + 1, . . . ,m. Hence

Y H
1 Ỹ1 = diag(1, . . . , 1, cos((1 − λ)θm−k+1), . . . , cos((1 − λ)θm)).

Similar to the above, we have

ρ(Y, Ỹ) = Φ [0, . . . , 0, (1 − λ)θm−k+1, . . . , (1 − λ)θm] = β1 ≤ β.

Since

Ỹ H
1 X̃1 = diag(cos θ1, . . . , cos θm−k, 1, . . . , 1),

it follows that

θ(X̃ , Ỹ) = (θ1, . . . , θm−k, 0, . . . , 0);

which implies that nul(X̃ , Ỹ) ≥ k. This proves the necessity of the condition.
We believe that carefully formulated similar statements to those in Theorem 3.5

for the case when m �= l are also valid, though a proof is not available yet at this
moment. Nevertheless, the important special case when l = n−m can be treated as
in the proof of Theorem 3.5 by following Corollary 3.4 instead. We state this as a
corollary.

Corollary 3.6. Let ρ be the angular metric on Gm,n and that on Gn−m,n cor-
responding to a symmetric gauge function Φ on R

min{m,n−m}. Let X ∈ Gm,n and
Y ∈ Gn−m,n. Then for α ≥ 0, β ≥ 0 and 1 ≤ k ≤ min{m,n−m},

1. nul (X̃ , Ỹ) < k for all X̃ ∈ Gm,n and Ỹ ∈ Gn−m,n satisfying ρ(X , X̃ ) ≤ α and

ρ(Y, Ỹ) ≤ β if and only if

α + β < Φ
[
0, . . . , 0, θm−k+1(X ,Y), . . . , θmin{m,n−m}(X ,Y)

]
;

2. def (X̃ , Ỹ) < k for all X̃ ∈ Gm,n and Ỹ ∈ Gn−m,n satisfying ρ(X , X̃ ) ≤ α and

ρ(Y, Ỹ) ≤ β if and only if

α + β < Φ
[
0, . . . , 0, θm−k+1(X⊥,Y⊥), . . . , θmin{m,n−m}(X⊥,Y⊥)

]
.
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 519

4. When the triangle inequalities become equalities. Whenever we have
an inequality, the analysis of the cases when the inequality becomes an equality is of
special importance. Such analysis often reveals extra insight and structures possessed
by the inequality. It also exhibits how sharp the inequality is. In applications, these
extreme cases often represent either the worst or the best cases where special attention
is needed. In the following, the equality cases for the triangle inequalities for the
angular metrics and the gap metrics will be analyzed and compared. They will be
characterized in terms of the direct rotations between the subspaces involved, which
can be viewed as a natural generalization of the equality case relating three one-
dimensional subspaces in R

n. The proofs in this section turn out to be quite technical.
We suggest that readers skip the proofs in their first reading.

In this section, we first characterize those triples of subspaces X ,Y,Z ∈ Gm,n

such that

ρ(X ,Z) = ρ(X ,Y) + ρ(Y,Z),(4.1)

i.e., the triangle inequality becomes an equality, either for a particular angular metric
or for all angular metrics. An angular metric ρ = Φ ◦ θ is said to be strictly convex if
Φ is a strictly convex symmetric gauge function, i.e., Φ(ξ + ζ) = Φ(ξ) + Φ(ζ) only if
ξ and ζ are linearly dependent. The following theorem shows that if (4.1) is satisfied
for a strictly convex angular metric, then Y has to be an intermediate position on the
path when X is rotated to Z by a direct rotation, which in turn implies that (4.1) is
satisfied for all angular metrics.

Theorem 4.1. For X ,Y,Z ∈ Gm,n, the following statements are equivalent:
1. Equation (4.1) holds for all angular metrics.
2. Equation (4.1) holds for a strictly convex angular metric.
3. There exists a direct rotation from X to Z,

X exp

[
0 −C

CH 0

]
XH ,

where C =
[
diag θ(X ,Z) 0m,n−2m

]
, and λ ∈ [0, 1] such that

Y = X exp

[
0 −λC

λCH 0

]
XHX .

Proof. It is obvious that statement 1 implies statement 2. We only need to prove
that statement 2 implies statement 3 and that 3 implies 1. We do the latter first. If

Y = X exp

[
0 −λC

λCH 0

]
XHX ,

then a direct rotation from X to Y is

R = X exp

[
0 −λC

λCH 0

]
XH

and one from Y to Z is

S =

(
X exp

[
0 −λC

λCH 0

])
exp

[
0 −(1 − λ)C

(1 − λ)CH 0

]

×
(
X exp

[
0 −λC

λCH 0

])H

= X exp

[
0 −C

CH 0

]
XHX exp

[
0 λC

−λCH 0

]
XH .
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520 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

Then θ(X ,Y) = λθ(X ,Z) and θ(Y,Z) = (1 − λ)θ(X ,Z). This immediately implies
(4.1) for all angular metrics.

To prove that 2 implies 3, let Φ be the strictly convex symmetric gauge function
corresponding to the angular metric satisfying (4.1), and notice that equality (4.1)
and the fact that θ(X ,Z) is weakly majorized by θ(X ,Y) + θ(Y,Z) imply

Φ(θ(X ,Y)) + Φ(θ(Y,Z)) = Φ(θ(X ,Z)) ≤ Φ(θ(X ,Y) + θ(Y,Z))

≤ Φ(θ(X ,Y)) + Φ(θ(Y,Z)).

This forces

Φ(θ(X ,Z)) = Φ(θ(X ,Y) + θ(Y,Z)) = Φ(θ(X ,Y)) + Φ(θ(Y,Z)).

Since Φ is strictly convex, it follows from the second equality above that θ(X ,Y) and
θ(Y,Z) are linearly dependent. Also since θ(X ,Z) is weakly majorized by θ(X ,Y) +
θ(Y,Z), it follows from [30] that θ(X ,Z) is in the convex hull of

{P (θ(X ,Y) + θ(Y,Z)) : P is a signed permutation matrix}.

Again since Φ is strictly convex, Φ(θ(X ,Z)) = Φ(θ(X ,Y) + θ(Y ,Z)) only if θ(X ,Z)
is one of the vertices of the convex hull, i.e., θ(X ,Z) = P (θ(X ,Y) + θ(Y,Z)) for a
particular singed permutation matrix P . Since both of them are nonnegative and
are decreasingly ordered, we have θ(X ,Z) = θ(X ,Y) + θ(Y,Z). In summary, we
conclude that there exists 0 ≤ λ ≤ 1 such that θ(X ,Y) = λθ(X ,Z) and θ(Y,Z) =
(1 − λ)θ(X ,Z).

In the following, we consider only the nontrivial case when 0 < λ < 1. By the
discussion in section 2, we know that there exists a direct rotation from X to Y given
by

R = X̂ exp

[
0 −λC

λCH 0

]
X̂H

and a direct rotation from X to Z given by

T = X̃ exp

[
0 −C

CH 0

]
X̃H ,

where X̂ = [X̂1 X̂2] ∈ Un, X̃ = [X̃1 X̃2] ∈ Un, and columns of X̂1 and those of X̃1

both form (possibly different) orthonormal bases of X . This shows that the columns
of the matrices

X1 = X̃1, Y1 = X̃N

⎡
⎣cos (diag λθ(X , Z))

sin (diag λθ(X , Z))
0n−2m,m

⎤
⎦ , Z1 = X̃

⎡
⎣cos(diag θ(X , Z))

sin(diag θ(X , Z))
0n−2m,m

⎤
⎦

form orthonormal bases of X , Y, and Z, respectively, where N = X̃HX̂ = [N1 0
0 N2

],

N1 ∈ Um, N2 ∈ Un−m.
By the definition of canonical angles, we know that there exist E,F ∈ Um such

that

cos (diag (1 − λ)θ(X ,Z))

= EZH
1 Y1F

H

= E cos(diag θ(X ,Z))N1 cos (diag λθ(X ,Z))FH

(4.2)

+ E
[
sin(diag θ(X ,Z)) 0m,n−2m

]
N2

[
sin (diag λθ(X ,Z))

0n−2m,m

]
FH .
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 521

Let

diag θ(X ,Z) = diag (φ1Im1 , φ2Im2 , . . . , φlIml
),

where π/2 = φ1 > φ2 > · · · > φl ≥ 0 and m1 + · · · + ml = m. By [27, p. 76], we have

Re tr (E cos(diag θ(X ,Z))N1 cos (diag λθ(X , Z))FH)
(4.3)

≤
l∑

j=1

mj cosφj cos(λφj),

where Re tr (·) denotes the real part of the trace. Similarly, we have

Re tr

[
E
[
sin(diag θ(X ,Z))0m,n−2m

]
N2

[
sin (diag λθ(X ,Z))

0n−2m,m

]
FH

]
(4.4)

≤
l∑

j=1

mj sinφj sin(λφj).

From (4.2), (4.3), (4.4), and the fact that

Re tr (cos (diag (1 − λ)θ(X ,Z))) =
l∑

j=1

mj cosφj cos(λφj) +

l∑
j=1

mj sinφj sin(λφj),

it follows that

Re tr (cos(diag θ(X ,Z))N1 cos (diag λθ(X ,Z))FHE)
(4.5)

=

l∑
j=1

mj cosφj cos(λφj)

and

Re tr

[[
sin(diag θ(X ,Z)) 0m,n−2m

]
N2

[
sin (diag λθ(X ,Z))

0n−2m,m

]
FHE

]

=
l∑

j=1

mj sinφj sin(λφj).

Suppose D = N1 cos (diag λθ(X ,Z))FHE. It follows from the same lines as in
the proof of [27, p. 76] that D = diag (D1, . . . , Dl), where Dj ∈ Mmj . Then we have

Re tr (cos(diag (θ(X ,Z)D))) = Re tr (diag (cosφ1D1, . . . , cosφlDl))

= Re tr (cosφ2D2) + · · · + Re tr (cosφlDl)

≤
m2∑
i=1

cosφ2σi(D2) + · · · +
ml∑
i=1

cosφlσi(Dl)

(4.6)

≤
l∑

j=2

mj cosφj cos(λφj),
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522 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

where the second last inequality holds since

Re tr (cosφjDj) ≤
mj∑
i=1

cosφjσi(Dj)

for each j = 2, . . . , l and the last inequality follows from the fact that the singular
values of all Dj , j = 1, . . . , l, all together are the singular values of cos(diag λθ(X ,Z)).

Comparing (4.5) and (4.6), we see that inequalities in (4.6) have to be equalities.
This is possible only if

Re tr (cos(φj)Dj) =

mj∑
i=1

cos(φj)σi(Dj) = mj cosφj cos(λφj)

for j = 2, . . . , l. So there must exist Pj ∈ Umj such that Dj = cos(λφj)Pj with
Re trPj = mj . Hence Dj = cos(λφj)Imj , j = 2, . . . , l. After determining D2, . . . , Dl,
the singular values D1 have no choice but to equal cos(λφ1), i.e., D1 = cos(λφ1)W
for some W ∈ Um1 . Hence we have proved that

N1 cos (diag λθ(X ,Z))FHE = diag (cos(λφ1)W, cos(λφ2)Im2 , . . . , cos(λφl)Iml
)

=

[
W 0
0 Im−m1

]
cos(diag λθ(X ,Z)).

Similarly, we can prove that

N2

[
sin (diag λθ(X , Z))

0

]
FHE =

[
sin(diag λθ(X ,Z))

0n−2m,m

]
.

Define

X = X̃

[
W 0
0 In−m1

]
.

Then

X exp

[
0 −C

CH 0

]
XH

is also a direct rotation from X to Z. We can see that

Y1F
HE = X̃

[
N1 0
0 N2

]⎡
⎣cos (diag λθ(X ,Z))

sin (diag λθ(X ,Z))
0

⎤
⎦FHE = X

⎡
⎣cos (diag λθ(X , Z))

sin (diag λθ(X , Z))
0

⎤
⎦ .

This shows

Y = X exp

[
0 −λC

λCH 0

]
XHX .

The following example shows a case when direct rotations from X to Y are not
unique and hence the paths from X to Y they define are not unique.

Example 1. Let X ,Y,Z ∈ Gm,2m be spanned by the columns of matrices

[
I
0

]
,

[
(cosα)U
(sinα)V

]
,

[
0
I

]
,
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 523

respectively. Here α ∈ [0, π/2] and U, V ∈ Um. Then θ(X ,Y) = (α, . . . , α), θ(Y,Z) =
(π/2−α, . . . , π/2−α), and θ(X ,Z) = (π/2, . . . , π/2). The triangle equality holds for
all angular metrics ρ = Φ ◦ θ for all α,U, V .

Notice that for the gap metric,

sin θ1(X ,Z) = sin θ1(X ,Y) + sin θ1(Y,Z)

if and only if Y = X or Y = Z. Also we can show that

Φ(sin θ(X ,Z)) = Φ(sin θ(X ,Y)) + Φ(sin θ(Y,Z))

for a strictly convex symmetric gauge function Φ if and only if Y = X or Y = Z.
Hence the triangle equality holds for a gap metric Φ ◦ sin θ, where Φ is either Φ1 or
any strictly convex symmetric gauge function, only in the trivial cases. The same
thing can be said for the Hausdorff metrics.

The Ky Fan k-functions are not strictly convex, so one can expect that X ,Y,Z ∈
Gm,n may take more general positions when (4.1) is satisfied only for a Ky Fan func-
tion. This is indeed the case. It is easy to prove that

Φm(θ(X ,Z)) = Φm(θ(X ,Y)) + Φm(θ(Y,Z))

if there exists a direct rotation from X to Z

X exp

[
0 −C

CH 0

]
XH ,

where C =
[
diag θ(X ,Z) 0m,n−2m

]
, and Λ = diag (λ1, . . . , λm), where λj ∈ [0, 1]

such that

Y = X exp

[
0 −ΛC

CHΛ 0

]
XHX .

It would be nice to determine whether the condition is also necessary.
In contrast, for the gap metrics corresponding to the Ky Fan k-functions, we have

the following results.
Proposition 4.2. Let X ,Y,Z ∈ Gm,n. The equality

Φk(sin θ(X ,Z)) = Φk(sin θ(X ,Y)) + Φk(sin θ(Y,Z))(4.7)

holds for a particular k with 1 ≤ k ≤ m if and only if the collection

{θ1(X ,Y), . . . , θk(X ,Y), θ1(Y,Z), . . . , θk(Y,Z)}

contains θ1(X ,Z), . . . , θk(X ,Z) together with additional k zeros.
Proof. The sufficiency is clear. To prove the necessity, denote αj = θj(X ,Y), βj =

θj(Y,Z), and γj = θj(X ,Z), j = 1, . . . ,m. Equality (4.7) becomes

k∑
j=1

sin γj =

k∑
j=1

(sinαj + sinβj).(4.8)

Let the columns of X1, Y1, Z1 form orthonormal bases for subspaces X ,Y,Z, respec-
tively. Denote

L = X1X
H
1 − Y1Y

H
1 ,

M = Y1Y
H
1 − Z1Z

H
1 ,

N = X1X
H
1 − Z1Z

H
1 .
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524 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

Then the eigenvalues of L are sinα1, . . . , sinαm,− sinαm, . . . ,− sinα1, 0, . . . , 0. Sim-
ilar statements hold for M and N . Let U ∈ Un satisfy UNUH = diag (N1, N2), where
N1 ∈ Mk has eigenvalues sin γ1, . . . , sin γk. Let L1 and M1 be the leading k × k
submatrices of ULUH and UMUH , respectively. Since

ULUH + UMUH = UNUH ,

it follows that

trL1 + trM1 = trN1.

It is well known that eigenvalues of a Hermitian matrix majorize its diagonal elements;
see, for example, [20]. Then

trL1 ≤
k∑

j=1

sinαj , trM1 ≤
k∑

j=1

sinβj .(4.9)

Equality (4.8) forces the equality signs in (4.9) to hold. By the extremal prop-
erty in [19, Lemma 4.1], we have ULUH = diag (L1, L2) such that L1 has eigen-
values sinα1, . . . , sinαk and UMUH = diag (M1,M2) such that M1 has eigenvalues
sinβ1, . . . , sinβk. Consequently, the unitary Hermitian matrices

2UX1X
H
1 UH − I, 2UY1Y

H
1 UH − I, 2UZ1Z

H
1 UH − I,

whose differences are block diagonal, must share the same off-diagonal block, i.e., they
take the respective forms

[
X11 D
DH X22

]
,

[
Y11 D
DH Y22

]
,

[
Z11 D
DH Z22

]
,

where D ∈ Mk,n−k. If we replace U by diag (V1, V2)U and properly choose V1 ∈ Uk

and V2 ∈ Un−k, we can diagonalize D by a singular value decomposition. Hence
we can assume without loss of generality that D =

[
diag (d1Ir1 , . . . , dlIrl) 0k,n−2k

]
,

where 0 = d1 < · · · < dl ≤ 1.
Since

X11X
H
11 + DDH = X2

11 + DDH = Ik,

it follows that there exist certain unitary Hermitian matrices Pj and 0 ≤ gl < · · · <
g1 = 1 satisfying g2

j + d2
j = 1, j = 1, . . . , l, such that X11 = diag (g1P1, . . . , glPl).

Similarly, Y11 = diag (g1Q1, . . . , glQl) and Z11 = diag (g1R1, · · · , glRl), where Qj , Rj

are unitary Hermitian matrices.
Consider matrices P1, Q1, R1. Let W1 ∈ Ur1 be chosen such that W1Q1W

H
1 =

diag (Is1 ,−It1) := Js1,t1 . Since W1P1W
H
1 −W1Q1W

H
1 ≥ 0, it follows that W1P1W

H
1 =

diag (Is1 , F1) with F1 ∈ Ut1 . Similarly, since W1Q1W
H
1 − W1R1W

H
1 ≥ 0, we have

W1R1W
H
1 = diag (G1,−It1) with G1 ∈ Us1 . Thus,

W1(P1 −Q1)W
H
1 = diag (0s1 , F1 + It1), W1(Q1 −R1)W

H
1 = diag (Is1 −G1, 0t1).

Applying the same arguments to Pj , Qj , Rj , we have Wj ∈ Urj such that WjQjW
H
j

= Jsj ,tj and

Wj(Pj −Qj)W
H
j = diag (0sj , Fj + Itj ), Wj(Qj −Rj)W

H
j = diag (Isj −Gj , 0tj )
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UNITARILY INVARIANT METRICS ON THE GRASSMANN SPACE 525

for j = 2, . . . , l. Consequently, letting W = diag (W1, . . . ,Wl) yields

WL1W
H =

1

2
diag (0s1 , F1 + It1 , . . . , 0sl , Fl + Itl),

WM1W
H =

1

2
diag (Is1 −G1, 0t1 , . . . , Isl −Gl, 0tl),

where s = s1 + · · · + sl, t = t1 + · · · + tl, and t + s = k. This gives

WN1W
H = WL1W

H +WM1W
H =

1

2
diag (Is1 −G1, F1 + It1 , . . . , Isl −Gl, Fl + Itl).

Now it is easy to see that L1 has at most t nonzero eigenvalues sinα1, . . . , sinαt and
M1 has at most s nonzero eigenvalues sinβ1, . . . , sinβs, and they constitute the largest
k eigenvalues of N1, which are sin γ1, . . . , sin γk. This completes the proof.

If equality (4.7) holds for k = 1, then either Y = X or Y = Z. This implies
that the equality (4.7) holds for all 1 ≤ k ≤ m. If equality (4.7) holds for any other
k but not for k = 1, then both θk(X ,Y) = θk(Y,Z) = 0. In this case, θj(X ,Y) =
θj(Y,Z) = 0 for all j ≥ k. This implies that θj(X ,Z) = 0 for all j > k since otherwise

we would have
∑k+1

j=1 θj(X ,Z) >
∑k+1

j=1 θj(X ,Y) +
∑k+1

j=1 θj(Y,Z). This shows that
(4.7) holds when k is replaced by k + 1, k + 2, . . . ,m. Because of this, we can define
the smallest k with (4.7) satisfied as kmin. Then kmin = 1 if and only if Y = X or
Y = Z. When kmin > 1, we know that θkmin(X ,Z) > 0 but θkmin+1(X ,Z) = 0. This
means that dimX ∩ Z = m− kmin.

Theorem 4.3. The equality (4.7) holds for some k with 1 ≤ k ≤ m if and only
if there exists a direct rotation from X to Z,

X exp

[
0 −C

CH 0

]
XH ,

where C =
[
diag θ(X ,Z) 0m,n−2m

]
, and Λ = diag (λ1, . . . , λm), where λj ∈ {0, 1}

such that

Y = X exp

[
0 −ΛC

CHΛ 0

]
XHX .

Proof. The sufficiency is clear. To simplify the proof of the necessity, we will
prove the following fact first: if kmin > 1, then X ∩ Z ⊂ Y ⊂ X + Z. Adopting the
same notation as in the proof of Proposition 4.2, we choose unitary matrix UH =[
UH

1 UH
2 UH

3

]
such that the columns of UH

2 span X ∩ Z and those of UH
3 span

(X + Z)⊥. Then

UX1X
H
1 UH = diag (X̃, I, 0), UZ1Z

H
1 UH = diag (Z̃, I, 0),

which gives

UNUH = diag (X̃ − Z̃, 0, 0),

where X̃ − Z̃ has eigenvalues sin γ1, . . . , sin γkmin
,− sin γkmin

, . . . ,− sin γ1. Further-
more, U1 can be chosen so that

UNUH = diag (N11, N22, 0, 0),
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526 LI QIU, YANXIA ZHANG, AND CHI-KWONG LI

N11 > 0 and N22 < 0. Because of

ULUH + UMUH = UNUH ,

using twice the majorization and extremal property argument as in the beginning of
the proof of Proposition 4.2, we can see that

ULUH = diag (L11, L22, 0, 0), UMUH = diag (M11,M22, 0, 0).

This shows

UY1Y
H
1 UH = UMUH + UZ1Z

H
1 UH = diag (diag (M11,M22) + Z̃, I, 0),

i.e., the orthogonal projection onto Y is identity when restricted to X ∩Z and is zero
when restricted to (X + Z)⊥. Therefore, X ∩ Z ⊂ Y ⊂ X + Z.

Back to the proof of the necessity, we assume without loss of generality that
kmin = m > 1 since the case when kmin = 1 is trivial and it follows from X ∩ Z ⊂ Y
that for the case when 1 < kmin < m, we can work on kmin-dimensional subspaces
X0 = X �(X ∩Z),Y0 = Y�(X ∩Z),Z0 = Z�(X ∩Z) instead. With this assumption,
sin θm(X ,Z) > 0. We also assume without loss of generality that n = 2m since it
follows from Y ⊂ X +Z that we can always confine our attention to a 2m-dimensional
subspace of F

n containing X ,Y,Z ⊂ X + Z.
We will carry further the idea in the proof of Proposition 4.2. We know that

the eigenvalues of X11 − Z11 are given by 2 sin γ1, . . . , 2 sin γm which are all positive
and X11 − Z11 = diag (g1(P1 − R1), . . . , gl(Pl − Rl)). Since Wj(Pj − Rj)W

H
j =

diag (Isj −Gj , Fj +Itj ), j = 1, . . . , l, where Gj and Fj are unitary Hermitian matrices,
we can see that gj > 0, Fj = Itj , and Gj = −Isj . Hence Pj = Irj and Rj = −Irj .

Notice that matrices 2UX1X
H
1 UH − I, 2UY1Y

H
1 UH − I, 2UZ1Z

H
1 UH − I are uni-

tary Hermitian whose traces are all zero. Also notice that gl = 1 and dl = 0. Hence
if we replace U by

diag (W1, . . . ,Wl, W̃1, . . . ,Wl)U

with some properly chosen W̃1, we will have

2UX1X
H
1 UH − I =

[
P D
D −P

]
, 2UY1Y

H
1 UH − I =

[
Q D
D −Q

]
,

and 2UZ1Z
H
1 UH − I =

[
−P D
D P

]
,

where

P = diag (g1Ir1 , . . . , glIrl) and Q = diag (g1Js1,t1 , . . . , glJsl,tl).

Therefore, we have

2UX1X
H
1 UH =

[
I + P D
D I − P

]
, 2UY1Y

H
1 UH =

[
I + Q D
D I −Q

]
,

and 2UZ1Z
H
1 UH =

[
I − P D
D I + P

]
.
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Since the column space of UX1X
H
1 UH is the same as the column space of UX1, we

have

UX = span

[
I + P
D

]
, UZ = span

[
D

I + P

]
.

Normalizing the bases and using trigonometry, we get

UX = span

[
cos 1

2 (π2 I − C)
sin 1

2 (π2 I − C)

]
, UZ = span

[
cos 1

2 (π2 I + C)
sin 1

2 (π2 I + C)

]
.

Let ΘX = 1
2 (π2 I − C) and ΘZ = 1

2 (π2 I + C). Then ΘZ = ΘX + C. Immediately,

[
cos ΘZ
sin ΘZ

]
= exp

[
0 −ΘX

ΘH
X 0

]
exp

[
0 −C

CH 0

]
exp

[
0 ΘX

−ΘH
X 0

] [
cos ΘX
sin ΘX

]
.

Therefore,

exp

[
0 −ΘX

ΘH
X 0

]
exp

[
0 −C

CH 0

]
exp

[
0 ΘX

−ΘH
X 0

]

is a direct rotation from UX to UZ. Set

Λ =
1

2
[Im − diag (Jtl,sl , . . . , Jt1,s1)] .

Then [
I + Q
D

]
(I − Λ) +

[
D

I −Q

]
Λ

= exp

[
0 −ΘX

ΘH
X 0

]
exp

[
0 −ΛC

CHΛ 0

]
exp

[
0 ΘX

−ΘH
X 0

] [
I + P
D

]

which spans UY. Finally, if we let

X = UH exp

[
0 −ΘX

ΘH
X 0

]
,

then

X exp

[
0 −C

CH 0

]
XH

is a direct rotation from X to Z, and

Y = X exp

[
0 −ΛC

CHΛ 0

]
XHX .

Summarizing the discussions in this section, we conclude that the triangle in-
equalities for the angular metrics are tighter than those for the gap metrics in the
sense that for a strictly convex symmetric gauge function or a Ky Fan k-function Φ,
if

Φ(sin θ(X ,Z)) = Φ(sin θ(X ,Y)) + Φ(sin θ(Y,Z)),

then

Φ(θ(X ,Z)) = Φ(θ(X ,Y)) + Φ(θ(Y,Z)).
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5. Related questions and extensions. In this section, we will discuss three
issues. The first is on the extremal properties of the direct rotation between two
subspaces. The second is on possible generalization of the inequalities in the form of
(3.7) and (3.8). The third is on the possibility to use functions more general than the
symmetric gauge functions to define metrics on Gm,n.

As we have seen in section 2, for X ,Y ∈ Gm,n, m ≤ n/2, a direct rotation from
X to Y is a map of the form

R = X

⎡
⎣Γ −Σ 0

Σ Γ 0
0 0 In−2m

⎤
⎦XH = exp

[
X

[
0 −A

AH 0

]
XH

]
,

where A =
[
diag θ(X ,Y) 0m,n−2m

]
∈ Mm,n−m and X =

[
X1 X2

]
is a special uni-

tary matrix such that the columns of X1 span X and those of X2 span X⊥. Subspaces
X ,Y are said to be acute if the canonical angles in between are all less than π/2, or
equivalently, X ∩Y⊥ = {0}. It was shown in [3] that the direct rotation between acute
subspaces is unique.

Davis and Kahan [3] studied some extremal properties of R among all unitary
transformations from X to Y. They showed that R differs from the identity map in
the least amount in some sense; in particular, for all unitarily invariant norm ‖ · ‖,

1. ‖(I − V )|X ‖ is minimized when V = R,
2. ‖(I − V )(I − V H)‖ is minimized when V = R,
3. ‖I − V ‖ is minimized when V = R if θ1(X ,Y) ≤ π/3.

A byproduct of the development in section 2 results in another extremal property,
which roughly says that the direct rotation rotates the vectors in F

n with the smallest
amount of angles. For a unitary matrix V , let log(V ) be defined to be the unique
skew-Hermitian matrix G with spectrum in i(−π, π] such that V = exp(G).

Theorem 5.1. Let ‖ · ‖ be a unitarily invariant norm. Assume V is a unitary
matrix satisfying V X = Y. Then ‖ log(V )‖ is minimized when V = R.

Proof. The proof will be sketchy since it follows from the same idea as in the
development of section 2. We know that V only differs from R locally in X and X⊥;
i.e., there exists a unitary matrix Q = diag (Q1, Q2) with Q1 ∈ Um and Q2 ∈ Un−m

such that

V = X exp

[
0 −A

AH 0

]
QXH .

Hence

XHV X = exp

[
0 −A

AH 0

]
Q.(5.1)

Taking the inverse, we get

XHV HX = QH exp

[
0 A

−AH 0

]
.

Multiplying J = diag (Im,−In−m) from both sides and noticing that J commutes
with Q, we get

JXHV HXJ = QH exp

[
0 −A

AH 0

]
.(5.2)
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Multiplying (5.1) and (5.2), we obtain

exp

[
0 −2A

2AH 0

]
= XHV XJXHV HXJ.

Let G = log(V ), we have

exp

[
0 −2A

2AH 0

]
= exp

[
U1GUH

1 + U2G
HUH

2

]

for some U1, U2 ∈ Un. The rest of the proof follows from that of Theorem 3.1.
The extremal property of the direct rotation for ‖ log(V )‖ is free of the unpleasant

condition required in that for ‖I − V ‖.
Example 2. Compare the reflection V = [ cos θ sin θ

sin θ − cos θ ] and direct rotation R =

[ cos θ − sin θ
sin θ cos θ ] mapping span [ 10 ] to span [ cos θsin θ ]. Clearly π = ‖ log(V )‖2 ≥ ‖ log(R)‖2 =

2θ, whereas ‖I−V ‖2 = 2 and ‖I−R‖2 = 4 sin(θ/2), which can be ordered either way
depending on θ, as pointed out in [3].

The second issue concerns the possible extension of inequalities in the form of
(3.7)–(3.8) on canonical angles between three subspaces, which resemble the corre-
sponding inequalities (3.1)–(3.2) on singular values of matrix sums. In the case when
θ(X ,Y) and θ(Y,Z) are sufficiently small so that θ1(X ,Y)+θ1(Y,Z) < π/2, inequal-
ities (3.7)–(3.8) immediately follow inequalities (3.1)–(3.2) after taking the logarithm
from both sides of (2.5). There are some recent results on developing more inequalities
of the form

∑
t∈T

σt(C) ≤
∑
r∈R

σr(A) +
∑
s∈S

σs(B),(5.3)

where R = {r1 < · · · < rk}, S = {s1 < · · · < sk}, T = {t1 < · · · < tk} are increasingly
ordered subsets of {1, . . . ,min{m,n}} with the same cardinality k ≤ min{m,n} [8].
An example of a family of such inequalities beyond those in (3.1)–(3.2) is given by
R,S, T satisfying rk + sk ≤ min{m,n} + k and tj = rj + sj − j for 1 ≤ j ≤ k. It is
natural to conjecture that

∑
t∈T

θt(X ,Z) ≤
∑
r∈R

θr(X ,Y) +
∑
s∈S

θs(Y,Z)(5.4)

whenever the sets R,S, T make inequality (5.3) satisfied (with min{m,n} replaced
by m). However, this is not immediately clear, even in the case when θ(X ,Y) and
θ(Y,Z) are sufficiently small, due to the unpleasant fact that the right-hand side of
(2.5) involves the sum of three terms, two of which are related to θ(Y,Z).

The last issue is whether we can use more general functions of the canonical angles
to define unitarily metrics on Gm,n. One may consider a function Ψ : [0, π/2]m →
R and define δ(X ,Y) = Ψ(θ(X ,Y)) for X ,Y ∈ Gm,n. It would be interesting to
determine the necessary and sufficient conditions on Ψ for δ to be a metric on Gm,n.
Evidently, such a function δ always satisfies δ(X ,Y) = δ(Y,X ) and δ(UX , UY) =
δ(X ,Y) for all U ∈ Un. To ensure that δ(X ,Y) ≥ 0 so that equality holds if and only
if X = Y, the function Ψ must satisfy the following condition:

(P1) Ψ is positive, i.e., Ψ(ξ) ≥ 0 for all ξ ∈ [0, π/2]m, and the equality holds if and
only if ξ = 0.
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To ensure triangle inequality, the following is necessary:

(P2) Ψ is subadditive, i.e., Ψ(ξ+ζ) ≤ Ψ(ξ)+Ψ(ζ) for any ξ, ζ ∈ [0, π/2]m satisfying
ξ + ζ ∈ [0, π/2]m.

Suppose Ψ also satisfies the following:

(P3) Ψ is strongly Schur convex (or strongly isotone), i.e., Ψ(ξ) ≤ Ψ(ζ) whenever
ξ, ζ ∈ [0, π/2]m and ξ is weakly majorized by ζ.

Then we have

δ(X ,Z) = Ψ(θ(X ,Z)) ≤ Ψ(θ(X ,Y) + θ(Y,Z))

≤ Ψ(θ(X ,Y)) + Ψ(θ(Y,Z)) = δ(X ,Y) + δ(Y,Z),

i.e., function δ satisfies the triangle inequality and hence is a unitarily invariant metric.
This may allow us to go a small step beyond the set of symmetric gauge functions.
However, it is not clear at this stage what functions satisfy (P1), (P2), and (P3) other
than symmetric gauge functions and those of the form f ◦Φ1, where f is an increasing
subadditive scalar function. Also, (P3) is far from a necessary condition for δ to be a
metric on Gm,n. It is not satisfied by the gap metrics defined in (3.3), where Ψ(ξ) =
Φ(sin ξ), nor the Hausdorff metric defined in (3.4), where Ψ(ξ) = Φ(2 sin(ξ/2)). It
would be interesting to weaken the condition (P3) so that it is satisfied by all known
metrics so far, or even becomes necessary.

Example 3. Consider Ψ(ξ1, ξ2) = sin ξ1 +sin ξ2. Then the corresponding function
δ is the gap metric on G2,n corresponding to the Ky Fan 2-function. However, for
ξ = (π/4, π/4) and ζ = (π/2, 0), it follows that ξ is majorized by ζ, but Ψ(ξ) =

√
2 >

1 = Ψ(ζ).
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