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Abstract

In this paper a new method to construct all contractive matrix completion to a block trian-
gular matrix is given. This new method uses only elementary matrix operations, and has the
advantages of better numerical reliability and ease in implementation on computers.
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1. Introduction

In this paper we address the following problem: Given a block matrix

M =




M11 M12 · · · M1l

M21 M22 · · · M2l

...
...

. . .
...

Ml1 Ml2 · · · Mll


 , (1)
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characterize all block lower triangular matrices of the form

T =




T11 0 · · · 0
T21 T22 · · · 0
...

...
. . .

...

Tl1 Tl2 · · · Tll


 (2)

satisfying

‖M + T ‖ < 1.

Here the norm used is the spectral norm, namely, the largest singular value.
This problem, in addition to being interesting mathematically, arises in the H∞

control of periodic/multirate systems [4,9,10]. The common approach to controller
design involving periodic/multirate systems is to apply a technique called lifting [8]
to convert the design problem into an equivalent linear, time-invariant one; however,
the resultant linear, time-invariant problem has to satisfy a new design condition,
the so-called causality constraint [4,7]. Roughly speaking, the causality constraint
requires that the direct feedthrough terms in the lifted controllers be block lower
triangular under certain coordinate transformations [4,7]. The study of the set of all
H∞ suboptimal controllers in the periodic/multirate framework intrinsically relates
to the matrix completion problem just described, see [9,10] for the connection.

Let us introduce some notation related to the matrices in (1) and (2). Let the size
of Mij be mi × nj . The ordered sets of integers {m1, . . . , ml} and {n1, . . . , nl} are
denoted by m̃ and ñ, respectively. The set of matrices of the form in (1) is denoted by
M(m̃, ñ). The set of all block lower triangular matrices of the form in (2) is denoted
by T(m̃, ñ). The set of all (block) strictly lower triangular matrices, namely, matrices
of the form in (2) with

Tii = 0, i = 1, . . . , l,

is denoted by Ts(m̃, ñ).
The following theorem is known in various forms [1–3,6,12].

Theorem 1. Let M ∈ M(m̃, ñ). The following statements are equivalent:

(a) There exists T ∈ T(m̃, ñ) such that ‖M + T ‖ < 1.
(b)

max
1�i�l

∥∥∥∥∥∥∥



M1(i+1) · · · M1l

...
...

Mi(i+1) · · · Mil




∥∥∥∥∥∥∥ < 1.

(c) There exists

W =
[
W11 W12
W21 W22

]
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with W11 ∈ T(m̃, m̃), W12 ∈ T(m̃, ñ), W21 ∈ Ts(ñ, m̃), and W22 ∈ T(ñ, ñ)

such that

W ∗JW = G∗JG,

where

G =
[
I M

0 I

]
, J =

[
I 0
0 −I

]
.

(d) There exists

P =
[
P11 P12
P21 P22

]
with P11 ∈ T(m̃, ñ), P12 ∈ T(m̃, m̃), P21 ∈ T(ñ, ñ), P22 ∈ Ts(ñ, m̃), and P12,

P21 both invertible such that[
M + P11 P12

P21 P22

]
is unitary.

If W or P is obtained as in (c) or (d) in Theorem 1, the set of all T ∈ T(m̃, ñ)

such that ‖M + T ‖ < 1 is characterized by results in either of the following two
theorems.

Theorem 2. Let M ∈ M(m̃, ñ) and assume condition (c) in Theorem 1 is satisfied.
Then the set of all T ∈ T(m̃, ñ) such that ‖M + T ‖ < 1 is given by{

T = Q1Q
−1
2 :

[
Q1
Q2

]
= W−1

[
U

I

]
, U ∈ T(m̃, ñ), and ‖U‖ < 1

}
. (3)

The proof of Theorem 2 can be done following the developments in [2,3], which
are rather heavy. A more elementary proof is given in [10].

Theorem 3. Let M ∈ M(m̃, ñ) and assume condition (d) in Theorem 1 is satisfied.
Then the set of all T ∈ T(m̃, ñ) such that ‖M + T ‖ < 1 is given by{

T = P11 + P12U(I − P22U)−1P21: U ∈ T(m̃, ñ) and ‖U‖ < 1
}
. (4)

Proof. Since the matrix[
M + P11 P12

P21 P22

]
is unitary and P12, P21 are invertible, it follows from [11] that the map

U �→= M + P11 + P12U(I − P22U)−1P21

is a bijection from the open unit ball of M(Fm×n) onto itself. What is left to show is
that T = P11 + P12U(I − P22U)−1P21 ∈ T(m̃, ñ) iff U ∈ T(m̃, ñ). The “if” part
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follows from simple matrix manipulation. For the “only if” part, assume T = P11 +
P12U(I − P22U)−1P21 ∈ T(m̃, ñ) for some U ∈ M(m̃, ñ); we need to show that
U too belongs to T(m̃, ñ). Simple algebra gives

P −1
12 (T − P11)P

−1
21 = [

I + P −1
12 (T − P11)P

−1
21 P22

]
U. (5)

Since

I + P −1
12 (T − P11)P

−1
21 P22 = I + P −1

12 P12U(I − P22U)−1P21P
−1
21 P22

= I + U(I − P22U)−1P22

= (I − UP22)
−1,

it follows that I + P −1
12 (T − P11)P

−1
21 P22 is invertible. Hence from (5)

U = [
I + P −1

12 (T − P11)P
−1
21 P22

]−1
P −1

12 (T − P11)P
−1
21 .

Therefore U belongs to T(m̃, ñ). �

For a contractive matrix A, define the entropy of A by

I(A) = − ln det[I − A∗A].
The characterizations in Theorems 2 and 3 also give easy expression to the T which
minimizes I(M + T ).

Theorem 4. Let M ∈ M(m̃, ñ) and assume condition (c) or (d) in Theorem 1 is
satisfied. Then the unique T satisfying ‖M + T ‖ < 1 which minimizes I(M + T ) is
given by T = P11 or T = −W−1

11 W12.

Establishing and applying these results rely on a constructive proof of Theorem
1. The equivalence of (a) and (b) in Theorem 1 follows from the Arveson’s distance
formula [5]. There have been several proofs [2,3,10,12] for the equivalence of (b),
(c), (d) in the literature, all taking the route (b) ⇒ (c) ⇒ (d) ⇒ (b). The key step is (b)
⇒ (c) in which a method to construct W needs to be given. The methods in [2,3,10]
are based on J -unitary matrices or J -spectral factorizations whereas the method in
[12] may be considered as a finite-dimensional analogue of Schur’s algorithm. These
constructions are all quite involved. Once W is given, P in Theorem 1(d) can be
computed easily as

P =
[

−W−1
11 W12 W−1

11

W22 − W21W
−1
11 W12 W21W

−1
11

]
.

However, in many applications the characterization in Theorem 3 is preferred
because it connects better to the results on H∞ control in the literature. Hence it
is desirable to have a way to compute P directly and more efficiently. In this paper
we will give a direct, simple constructive proof of (b) ⇒ (d) in Theorem 1 based on
elementary matrix operations. This, together with an easy expression of W in terms
of P ,
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W =
[

P −1
12 −P −1

12 P11

P22P
−1
12 P21 − P22P

−1
12 P11

]
,

facilitates a different proof for the equivalence of (b), (c), and (d). Numerical expe-
rience shows that the new construction indeed is easier to implement on computers
and requires less computation time.

2. Construction of P

In the following, we assume the condition in Theorem 1(b) is satisfied and present
the new construction of P given in Theorem 1(d).

Lemma 1. Assume the matrices E, F, and H, of appropriate dimensions, satisfy
the conditions:

[E F ]
[
E∗
F ∗

]
= I,

∥∥∥∥
[
F

H

]∥∥∥∥ < 1.

Then there exists a matrix G satisfying∥∥∥∥
[
E F

G H

]∥∥∥∥ � 1,

[G H ]
[
E∗
F ∗

]
= 0,∥∥[G H ]∥∥ < 1.

An explicit formula for this matrix is

G = −HF ∗(EE∗)−1E.

Proof. It follows from [6] that there exists a matrix G such that∥∥∥∥
[
E F

G H

]∥∥∥∥ � 1.

Among all such G characterized in [6] in terms of a free contractive matrix, the
“central” one obtained by setting the free contractive matrix to zero is

G = −HF ∗(I − FF ∗)−1E = −HF ∗(EE∗)−1E.

Using this G, we have

[G H ]
[
E∗
F ∗

]
= −HF ∗(EE∗)−1EE∗ + HF ∗ = 0.

and

[G H ]
[
G∗
H ∗

]
= HF ∗(EE∗)−1FH ∗ + HH ∗ = H(I − F ∗F)−1H ∗ < I.
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The last inequality follows from

∥∥∥∥
[
F

H

]∥∥∥∥ < 1. �

To avoid awkward notation, we redefine[
A B

C D

]
:=

[
P11 P12
P21 P22

]
.

Then [
M + A B

C D

]

=




M11 + A11 M12 · · · M1l B11 0 · · · 0
M21 + A21 M22 + A22 · · · M2l B21 B22 · · · 0

...
...

. . .
...

...
...

. . .
...

Ml1 + Al1 Ml2 + Al2 · · · Mll + All Bl1 Bl2 · · · Bll

C11 0 · · · 0 0 0 · · · 0
C21 C22 · · · 0 D21 0 · · · 0
...

...
. . .

...
...

...
. . .

...

Cl1 Cl2 · · · Cll Dl1 Dl2 · · · 0




.

We need to choose Aij , Bij , Cij , for i � j , and Dij for i > j . This will be done in
the following order: In the ith step, determine those blocks in the (l + i)th row and
the ith row:

Step 1: Set C11 = I , M11 + A11 = 0, and choose B11 so that[
M12 · · · M1l B11

]
is a co-isometry. Theorem 1(b) implies that any B11 chosen in this way is nonsingu-
lar.

Step i, i = 2, . . . , l − 1: Set Ci1 = 0 and choose the rest of the (l + i)th row so
that it is a co-isometry and is orthogonal to all of the previously determined rows.
This requires[

Ci2 · · · Cii Di1 · · · Di(i−1)

]∗
to be an isometry onto the kernel of



M12 · · · M1i B11 · · · 0
...

...
...

. . .
...

M(i−1)2 + A(i−1)2 · · · M(i−1)i B(i−1)1 · · · B(i−1)(i−1)

C22 · · · 0 D21 · · · 0
...

...
...

...

C(i−1)2 · · · 0 D(i−1)1 · · · 0




.
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Then set Mi1 + Ai1 = 0 and choose[
Mi2 + Ai2 · · · Mii + Aii Bi1 · · · Bi(i−1)

]
in such a way so that


M12 · · · M1i M1(i+1) · · · M1l B11 · · · 0
...

...
...

...
...

. . .
...

M(i−1)2 + A(i−1)2 · · · M(i−1)i M(i−1)(i+1) · · · M(i−1)l B(i−1)1 · · · B(i−1)(i−1)

Mi2 + Ai2 · · · Mii + Aii Mi(i+1) · · · Mil Bi1 · · · Bi(i−1)

C22 · · · 0 0 · · · 0 D21 · · · 0
...

. . .
...

...
...

...
. . .

...

Ci2 · · · Cii 0 · · · 0 Di1 · · · Di(i−1)




is a contraction and its ith block row is orthogonal to all other block rows. This is
possible following Lemma 1, condition (b), and the fact that


M12 · · · M1i M1(i+1) · · · M1l B11 · · · 0
...

...
...

...
...

. . .
...

M(i−1)2 + A(i−1)2 · · · M(i−1)i M(i−1)(i+1) · · · M(i−1)l B(i−1)1 · · · B(i−1)(i−1)

C22 · · · 0 0 · · · 0 D21 · · · 0
...

. . .
...

...
...

...
. . .

...

Ci2 · · · Cii 0 · · · 0 Di1 · · · Di(i−1)




is a co-isometry. Finally determine Bii so that[
Mi2 + Ai2 · · · Mii + Aii Mi(i+1) · · · Mil Bi1 · · · Bii

]
is a co-isometry. By Lemma 1, any Bii chosen in such a way is nonsingular.

Step l: Set Cl1 = 0 and choose the rest of the 2lth row so that it is orthogonal to
all the previously determined rows. This requires[

Cl2 · · · Cll Dl1 · · · Dl(l−1)

]∗
to be an isometry onto the kernel of



M12 · · · M1l B11 · · · 0
...

...
...

. . .
...

M(l−1)2 + A(l−1)2 · · · M(l−1)l B(l−1)1 · · · B(l−1)(l−1)

C22 · · · 0 D21 · · · 0
...

...
...

...

C(l−1)2 · · · 0 D(l−1)1 · · · 0




.

Finally set[
Ml1 + Al1 · · · Mll + All Bl1 · · · Bl(l−1)

] = 0

and Bll = I .
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The above construction guarantees that the matrix[
M + A B

C D

]
(6)

is unitary, B is invertible, and D ∈ Ts(ñ, m̃). The invertibility of C follows from that
of B and the fact that the matrix in (6) is unitary.

3. Concluding remarks

The new procedure reported in this paper has the advantage of simplicity and
computational efficiency. More specifically, if we compare this new procedure with
the method based on J -spectral factorizations, we see that the new computation does
not involve squaring matrix data in that there is no need to compute matrices of the
form A∗A. The procedure can be implemented using little more than the singular
value decomposition. Squaring matrices is undesirable from a numerical point of
view since it reduces the number of significant digits by half. The computation of G

in Lemma 1 appears to require EE∗, but actually (EE∗)−1E can be computed using
the singular value decomposition of E without explicitly forming EE∗.

In conclusion, the new procedure is numerically more efficient and reliable.
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