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Abstract-  A general AC P M  (Permanent  Magnet) 
motor  control system consists of a mot ion  controller, 
a current tracking amplifier, a feedback encoder a d  
the motor  itself. The  mot ion  controller generates two 
analog commands t o  the current tracking amplifier 
and the three phase currents are reproduced at the 
motor  terminals. However, D C  offsets are always 
present at the motor  terminals due t o  the D A C  (Dig- 
ital t o  Analog Converter) offsets of the mot ion  con- 
troller and the current sensor offsets of the current 
tracking amplifier. These current offsets generate si- 
nusoidal torque disturbance and hence produce veloc- 
i t y  ripples. Such  a disturbance cannot be rejected by 
using a simple PI (Proportional plus Integral) con- 
trol. Furthermore, the current offsets drift with t ime  
and temperature so that a n  off-lane compensation does 
not work satisfactorily. In this paper, a n  optimal ro- 
bust T D F  ( T w o  Degree of freedom) regulator contain- 
ing the internal model of the  sinusoidal disturbance i s  
proposed t o  accomplish disturbance rejection and con- 
stant speed tracking. 
Key words: Internal model principle, AC perma- 
nent magnet motor , velocity ripple elimination, cur- 
rent offsets, sinusoidal disturbance. 

1 Introduction 
Precision speed control systems are crucial in numer- 
ous industrial applications. For example, one typical 
application can be found in the feed control of ma- 
chine tools in the manufacturing industry, where ac- 
curate smooth position and speed control are required 
for contour accuracy and small surface roughness of 
the products [l]. 

AC PM (Permanent Magnet) motors are attractive 
candidates for high performance industrial control ap- 
plications such as the one stated above. In general, an 
AC PM control system consists of a motion controller, 
a current tracking amplifier, a feedback encoder and 
the motor itself. Fig. 1 shows the block diagram of a 
typical AC PM motor control system. 

However, DC offsets are always present at the mo- 
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Figure 1: AC PM Motor Control System 

tor terminals due to the DAC (Digital to Analog 
Converter) offsets of the motion controller and cur- 
rent sensor offsets of the current tracking amplifier. 
These current offsets generate sinusoidal torque dis- 
turbance and hence produce velocity ripples. Such 
a disturbance cannot be rejected by using a simple 
PI (Proportional plus Integral) control. Furthermore, 
the current offsets drift with time and temperature 
so that an off-line compensation does not work sat- 
isfactorily. In [2], an adaptive scheme based on the 
Lyapunov function method was developed to estimate 
the amplitudes of the periodic disturbances and then 
use the amplitude information to minimize the torque 
ripples of AC PM motor. In [SI, another adaptive 
scheme was developed to first identify the amplitude 
and the phase of the periodic disturbance and then 
use this information to cancel the repetitive vibra- 
tions. In this paper, a simple but effective method, 
based on a TDF (Two Deuce of Freedom) control 
structure and IMP (Internal Model Principle) [6], is 
employed to solve the probleim of robust disturbance 
rejection and tracking without estimating the ampli- 
tude and the phase of the sinusoidal disturbance ex- 
plicitly. 

The paper is organized as follows. Section 2 gives 
a brief review on the vector control of AC PM mo- 
tors and the current offset diisturbance modeling. In 
Section 3, the use of the IMP is proposed to solve the 
sinusoidal disturbance problem. Then a two stage 
TDF controller design procedure is given to achieve 
a desired tracking performance and reject the sinu- 
soidal disturbance simultaneously. The LQR (Lin- 
ear Quadratic Regulator) design methodology is em- 
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ployed in the first stage to place the closed poles op- 
timally and then a 3 t 2  norm optimization algorithm 
is proposed in the second stage to achieve a desired 
transient response. Section 4 presents the simulation 
results of the proposed method. In Section 5 ,  ex- 
perimental results are compared with the simulation 
results to validate our control methodologies. Some 
concluding remarks are given in Section 6. 

2 Vector Control and Disturba- 
nce Modeling 

A three phase AC PM motor can be modeled in d - q 
frame by the following equations [7]: 

DC current offsets present at the motor terminals due 
to motion controller DAC offsets and the current am- 
plifier sensor offsets. Then I, = - ( Ia  + I b )  is the third 
phase current offset. Let i:, ii and iE be the desired 
currents at the motor terminals. By following the 
derivation in [3], when the three phase currents with 
offsets enter into the motor, the electro-mechanical 
torque for surface PM rotor type AC servo motors 
( L ,  = Ld [9]) can be decomposed into two parts as 
follows: 

where 
r e  = T,' + ~ 0 0  (7) 

(8) 
3 P  r* = --Ami; 

e 2 2  
is the desired torque and i t  is the desired current 
which contains only i:, ig and i;. The offset torque 

(3) 

(4)  

3 P  
2 2  re = ---[Ami, - (Lq - Ld)idiq] 

dw 
7 e - n  = J m Z t B m w  

where the parameters and variables have the following 
meanings: 

stator winding resistance 
number of poles (even number) 
d - q frame stator inductances 
moment of inertia 
friction constant 
constant magnetic flux 
d - q frame stator voltages 
d - q frame stator currents 
electro-mechanical torque 
load torque 
rotor mechanical speed 
rotor electrical speed. 

If a sufficiently fast current tracking loop is used, 
(1) and (2) can be eliminated. In this case, id and 
iq become the system inputs. Furthermore, the vec- 
tor control technique suggests to set id = 0. This 
converts the nonlinear AC PM motor system into a 
linear system: 

3 P  
2 2  

re - 71 = J m z  + Bmw 

( 5 )  

(6) 

= --Amiq 

dw 

where A, is a constant magnetic flux. 
When the motor current amplifier is connected to 

the power source and the two current reference com- 
mands from the motion controller are kept at zero, 
a DC offset current induced by current sensor offsets 
and the motion controller DAC offsets may be present 
in one or both of the closed loop controlled phases and 
thus also in the third one [4]. Let l a ,  I b  be the two 

where Oe(t) = e,(O)+J; we(t)dt is the electrical angle. 
When the motor is performing a constant speed 

tracking with reference w,., we (t)  can be approximated, 
at least after certain transient period, by a constant 
wd = $wr. This shows that roff can be approximated 
by a sinusoidal function: 

7.0 = Ad cos(wdt - (bd) (10) 

where Ad is the magnitude of the disturbance while 
& is the phase of the disturbance. 

In summary, after employing the vector control al- 
gorithm and the formulation of the sinusoidal distur- 
bance, the model of a vector controlled AC PM motor 
is given by Fig. 2. Here, U = it is the input current, 
y = w is the output velocity, Kt = $:Am is the equiv- 
alent torque constant, 7-l is the load torque which can 
be considered as an unknown constant disturbance, 
r,,! is the torque disturbance due to current offsets 
which can be approximated by a sinusoidal function 
with known frequency Wd and unknown magnitude 
and phase. Our goal is to design a good controller 
so that the output speed tracks a constant reference 
and rejects the disturbance r0g and 71. Such a good 
controller is required to be robust, i.e. to perform the 
tracking and disturbance rejection even when the the 
system parameters vary slightly, to have good tran- 
sient response, and to have a simple structure, i.e. to 
have an order as small as possible. 

3 Controller Design 
The problem to accomplish robust tracking and dis- 
turbance rejection is called a robust regulator prob- 
lem. The key idea to solve a robust regulator prob- 
lem is, based on the IMP, to have the controller to 
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Figure 2: System Model with Disturbances 

include the modes of the reference and disturbance. 
We also propose to use TDF controller structure to 
achieve better transient responses and easier designs. 
A TDF controller has a structure shown in Fig. 3. 
One of its advantages, in comparison with the usual 
one degree of freedom or unity feedback structure, is 
that the tracking performance depends only on K1, 
and the robustness and the disturbance rejection per- 
formance depends only on Kz. Hence K1 and K2 can 
be independently designed with different considera- 
tion. We also give a simple yet systematic two stage 
optimization design procedure for the optimal robust 
TDF regulators which yields low order controllers. 

3.1 Optimal Robust TDF Regulators 
and Two Stage Optimization De- 
sign 

In Fig. 3, let G be a SISO (Single Input Single Out- 
put), first order and strictly proper plant described 
by the following transfer function: 

where a(s) = s + a1 and b(s) = b l .  The TDF con- 
troller can be written as: 

where 

l ( s )  
q ( s )  

= sn, + Z1s"'-1 + * * * + z,, 
qOsn' + qlSnl--l + * * . + qnl = 

h(s) = hOSni  + h1~'"l-l + + hni. (13) 

With the above definitions, Fig. 3 can be converted 
into Fig. 4. The polynomials l ( s ) ,  q(s) and h(s) are 
designed in two stages. The first stage is to design 
l ( s )  and h(s)  by using LQR methodology so that the 

d 

Figure 3: General TDF Controller Structure 

closed loop poles are placed optimally. The second 
stage is to design q(s)  such that the overall transfer 
function # can follow a desired system model. 

In the first stage design, i!(s) and h(s) are designed 
by using the state space equations. The SISO, first 
order and strictly proper plant G can be represented 
by the following state space equations: 

k ( t )  = Az( t )  -I- BU(t) + Ed(t)  (14) 
= C 4 t )  

where A, B,  C, E E R ,  u(t)  E R is the input, y ( t )  E R 
is the output which is to be regulated, z ( t )  E R is the 
state which is linear proportional to the output in a 
first order system, z ( t )  = C-ly(t). d ( t )  E R is the 
disturbance which is not measurable. It is assumed 
that the disturbance vector d ( t )  satisfies the following 
equations: 

d( t )  = C,z,(t), &(t) = A,z,(t) (15) 

where z,(t) E Rnw, the pigr (C,, A,) is observable. 
The reference signal r ( t )  satisfies the following equa- 
tions: 

r ( t )  = CrZr( t ) ,  &(t)  = ArZr(t)  (16) 

where zp(t )  E R"., the pair (C,,A,) is observable. 
We assume further that all the eigenvalues of A ,  and 
A, are in the closed right-half complex plane. 

It is required to construct a controller for the sys- 
tem (14), using the available measurement y ( t )  so 
that the resulting controlled system is stable and the 
error steady-state value is zero (i.e. asymptotic regu- 
lation takes place) for all disturbances d ( t )  satisfying 
(15) and ~ ( t )  satisfying (16). 

Now we shall state the necessary and sufficient con- 
ditions for the existence of a solution to the problem 
of designed robust controllers for solving the servo- 
mechanism problem stated above. 

Let the minimal polynomials of A,  and A, be de- 
noted by m,(s) and m,(s). Let m(s) be the monic 
least common multiple of m,(s) and m,(s). Let 

n, 

m(s) = snm + mlSn"--l + - * * + m,, = H(s - Xi> 

(17) 
i=l 

where Xi, i = l , . . .  ,n,, ,are the roots of m(s). Then 
we define a controllable pair matrices (0, p) such that 
R has eigenvalues Xi, i =: 1, . . , n,, and is chosen 
to ensure that the matrix pair (0, p) is controllable. 

I 

L.p-t-1 
Figure 4: TDF Controller Structure 
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Theorem 3.1 [f O]A robust cont-oller which solves 
the servo-mechanism problem stated above. can be fo- 

d 

I 
System 

und if and only if the following conditions are satis- 
fied: 

I-- 1. (A ,  B )  is a stabilizable pair 

2. (C ,A)  is  a detectable pair 

3. rank = 2 , i = 1 , 2  ,..., n,. 

When conditions (1)-(3) of the above theorem are sat- 
isfied, a robust controller can be designed using the 
available measurement y ( t ) ,  such that the resulting 
closed loop system is stable and asymptotic regula- 
tion takes place for all disturbance d ( t )  and reference 
signal r( t )  defined by (15) and (16) respectively. Such 
a controller consists of a seruo-compensator, which is 
completely determined by the disturbances and ref- 
erence signals. A block diagram implementation of 
the robust controller is shown in Fig. 5 while the in- 
put reference signal r ( t )  is ignored here. The robust 
controller satisfies the following equations : 

u(t) = -klz(t)  - k2t(t) (18) 

where [ ( t )  E Rnm is the output of the servo compen- 
sator defined by 

tit) = W ( t )  + M t )  (19) 

where fi is chosen so that (0, p) is a controllable pair. 
In the present context, the stabilizing compensator 
and the matrices kl and k2 are determined so that the 
augmented system consisting of the open loop system, 
together with the servo-compensator, is stabilized. In 
order to get the equations of the augmented system, 
let us write the system equations, together with the 
servo compensator equations, as follows: 

A +[tad 
The matrices k1 and k2 can now be designed to sta- 
bilize the augmented system = kt + Bu. Since 
( A , B )  is a stabilizable pair (by existence condition 
(1) of Theorem 3.1) and (0,p) is a controllable pair 
(by choice of p), it follows that the system (14) is 
stabilizable by means of state feedback. The LQR 
design methodology is employed here for the designs 
of kl and kz such that the cost function 

J = Lm(2Q2 + u ' R u ) d t  (21) 

1 I I 

Figure 5: First Stage Controller Design (reference sig- 
nal T is ignored) 

is minimized by a proper choice of matrices Q and R. 
kl and k2 can be found by first solving the solution, 
S, of the following Riccati equation: 

S A  + A'S - SBR-'&S + Q = 0, (22) 

then 

After kl and kz are found, the polynomials h(s) and 
l ( s )  can be evaluated since E = # is the transfer 
function realization of the following state space equa- 
tions: 

[ kl kz 1' =z R-'SB. (23) 

- h(s)  = k 2 ( ~ I  - n)-'/3 + C-'kl (24) 

where 

nl = n, 
l (s)  = Snl + 11s"'-1 + . * .  + I, ,  

- - snm + mlsnm-l+.  + m,, 
h(s) = hOSnr + hlS"'-l + * .  + hnl. 

Without loss of generality, h ( s )  will be put in the 
feedback path and & will be put in the forward path 
in the actual implementation as shown in Fig. 4. 

The second stage is to design the polynomial q ( s )  so 
that the overall transfer function can follow a desired 
model. In reference to Fig. 4, the closed loop transfer 
function can be written as: 

where 

6(s) = + 619"' + * * * + 6ng+1. 

To achieve a robust tracking performance, it requires 

Q(S) = h(s) - f(s)mr-(s) (26) 

where f(s) = f O P t  + fisnl-' +. - * + f;l is a polyno- 
mial to be designed, nf = n1 - deg m,(s) and m,(s) 
is a monic polynomial contains the unstable modes of 
T .  FinaIly, we would like our overall transfer function 
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% to follow a desired model Gm(s); therefore, f(s) 
is designed to minimize the following 3c2 norm: 

11G(4112 := 

where Gm(s) is a desired model such as a first order 
low pass system. Let the minimal controllable state 
space realization of the above transfer function be 

G ( s )  = C ( S 1 -  A)-%, (28) 

where the (A ,  B) pair is in controllable canonical form, 
c' = CO + fC1 and f = [ fo f1 ... fn, 1. The 
7-l~ norm of system G can be found by following the 
approach in [12], 

IIG(s)lli = tr(CPC') (29) 

and P is the controllability Gramian that-can be-ob- 
tgiyed from the Lyapunov equation, AP + PA' + 
BB' = 0. For a SISO system, 

tr(CPC') = cpc = cP!5p*c (30) 

and 
c'P4 = COP4 + j C l P & .  (31) * -  

6 A 
Therefore, the above minimization problem is now 
equal to minimize the following 3c2 norm: 

Then f can be easily found by the following equation 
[13]: 

f = -&p(A/q')Yl (33) 

3.2 Design for the PM Motor Control 
System 

For our PM motor control system, in reference to Fig. 
4, we have a(s) = s + 2 and b(s) = 2, The state 
space equations of the PM motor control system can 
be found in (14) with the parameters A = -2, 
B = 1, C = 2 and E = &. Since T is a step 
reference, it follows that mr(s) = s. Since d contains 
a sinusoidal function of frequency Wd = and a 
constant function, it follows that m,(s) = s(s2 +wf) .  
Therefore, m(s) = s(s2+wf).  The matrix R is chosen 
to be 

1 

a = [ :  0 -ldf 0 :] 0 
(34) 

and its eigenvalues are equal to XI = 0,  XZ = -jWd 
and A3 = jwd. Here, 0 = [ 0 0 1 1' is chosen 
such that (0, p) is a controllable pair. Now (A,  B )  = 

(-2,l) and (C, A) = ( %, -,p) are stabilizable 
and detectable pairs respectively. Furthermore, 

for i = 1,2,3. It concludes that our problem is solv- 
able by Theorem 3.1. It follows. that the matrices A 
and B defined in (20) are equal to 

- L o  0 0 

a =  [ im 0 1  :] (35) 
2 0 --w; 0 

and 
2 = [ 1  0 0 0 1 '  

Now we can choose the matrices R and Q to place 
our closed loop poles by optimizing the function de- 
fined in (21). As suggested by [ll], for a single input 
system, one can choose R = 3. and Q = pww' with 
the zeros of w'(s1- A)-lB coinciding with (n - 1) 
closed loop poles. Then one can choose p to move 
the remaining closed loop pole towxds infinity. The 
smaller p is, the less accurate will be the pole posi- 
tioning. After designing kl and k2 by solving (22) 
and (23), the polynomials h(s) and l ( s )  can be found 
by the following equations: 

where l ( s )  = s3 +U;S and h(s)  = hos3 + hls2 + h2s + 
h3. 

By following .the design procedure in Section 3.1, 
the second stage is to design the polynomial q(s)  de- 
fined in (25) such that the 3c2 norm in (27) can be op- 
timized. Since mr(s) = s in our application, it follows 
that f(s) = f0s2 + fis + fi in (26). Consequently, the 
final step is to design f(s) so that the overall trans- 
fer function from T to y can follow a desired model 
Gm(s). The first order system G,(s) = & is cho- 
sen to be the desired model and from (28), 

B = [ l  0 0 0 0 1 '  (38) 
and 
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where .f = [ fo f1 f2 1. Finally, .f can be found in 
(33). 

4 Simulation Results 
A 200W AC PM motor is used in our simulations and 
experimental tests. The motor parameter is listed in 
Table 1. 
To show our controller effectiveness, a traditional PI 

controller is always used for comparison. In addition, 
a -0.1A current offset is assumed presenting at  phase 
1 of the motor terminal and a 0.05A current offset is 
assumed presenting at  phase 2 of the motor terminal. 

4.1 Simulation Results for the Opti- 
mal Robust TDF Regulator 

Assume that the reference speed is wr = 100 rpm 
= 10.472 rades-'. Then Ldd = 3 xwr = 41.88 rades-'. 
R = 1 and Q = pww', where p = 100 and 

w = [ 1 1000 100 1 ] 

are chosen. After solving (22) and (23), kl = 536.7456 
and 

k2 = [lo4 955.9113 13.92391 

can be found. The four closed loop poles are located 
at -2.37x102fj2.47x102, -89.42 and -11.25. Now 
Z(s) and h(s) defined in (37) can be evaluated as 

Z(s) = s3 + 1754.6s 
h(s)  = 0 . 0 4 5 7 ~ ~  + 13 .9239~~  + 1036.1s + 10000. 

The next step is to design the polynomial q ( s )  so 
that our overall transfer function can follow a desired 
model Gm(s)  = &. By following the design pro- 
cedure proposed in the previous section, we get 

f (s) = 0 . 0 3 8 4 ~ ~  + 9.5331s + 92.6318 
4 s )  = h(s)  - f(s)mr(s) 

= 0 . 0 0 7 3 ~ ~  + 4 . 3 9 0 8 ~ ~  + 943.4261s + 10000 

and the three zeros of the overall system are located 
at - 2 . 9 5 ~  102fj1.98x102 and -11.17. 

Table 1: Motor Parameter 

Jm 

Bm 
Am 

L, 
P 

Kt = ;$Am 

Encoder resolution 

0.144 x 10-4kg.m2 
5.416 x 10-4Nm/rad.s-1 

0.0283Wb 
11.5mH 
11.5mH 

8 
0.1698Nm/A 

8000 countslrev 

Fig. 6 shows the simulation results comparison b& 
tween the proposed optimal robust TDF regulator 
and a PI controller with kp = 0.01 and ki = 0.08. 
It can be observed that the velocity ripples due to 
DC current offset can be rejected by the proposed 
controller completely in steady state. 

In summary, the optimal robust TDF regulator can 
reject the sinusoidal disturbance with guaranteed out- 
put tracking response. On the contrary, a PI speed 
controller fails to reject the sinusoidal disturbance. 
This is expected since the PI controller doesn't con- 
tain all modes of the disturbance. 

5 Experimental Results 
Experiments are performed to verify the effectiveness 
of our proposed controllers. Fig. 1 shows the basic 
setup of our experiment. A dSAPCE DS1102 DSP 
controller board is used as our motion controller. In 
connection with MATLAB real time workshop and 
SIMULINK, a fast prototyping working environment 
is achieved and hence the code development time can 
be saved. The DSP controller implements all control 
algorithms with a sampling frequency 2kHz. In every 
control cycle, the controller reads the motor encoder, 
performs the control algorithm calculation and then 
outputs two current reference commands i, and i b  to 
the current tracking amplifier. An Advanced Motion 
Controls Inc. S30A40B current tracking driver is used 
and the three phase AC PM motor is from Sanyo 
Denki with the parameters listed in Table 1. 

An experiment is conducted with command refer- 
ence speed equal to 0.4 Hz square waves with am- 
plitude 100 rpm = 10.472 radas-'. The controller is 
the same as in Section 4. Fig. 7 shows the velocity 
output when only a PI controller with kp = 0.01 and 
ki = 0.08 is used. It is clear that the output velocity 
contains ripples with the peak value equals to 30% of 
the command value. Fig. 8 shows the velocity out- 
put when the optimal robust TDF regulator is used. 
The velocity output ripples are reduced to the mo- 

I 

Figure 6: Simulation Results Comparison between 
the Optimal Robust TDF Regulator and the PI Con- 
troller, wr = 100 rpm 
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tor encoder resolution, which is, the best we can do. 
In our system, the motor encoder resolution is equal 
to 8000 counts/rev and our servo loop sampling fre- 
quency is 2kHz; therefore, the smallest velocity rip- 
ples are equal to - = 1.5708 rades-l. The 
output velocity ripples are believed to be further re- 
duced if a higher resolution encoder is used. 

Our experimental results match well with the sim- 
ulation results in the last section. They validate that 
the controller proposed in Section 3 can reject the 
sinusoidal disturbance and achieve a desired output 
tracking performance at the same time. 

6 Conclusions 
In this paper, the optimal robust TDF regulator for 
AC PM motors based on the IMP is demonstrated 
to be an effective method to eliminate the velocity 
ripples that are created by DC current offsets. Fur- 
thermore, by following our proposed systematic opti- 
mal robust TDF regulator design method, both the 
velocity tracking and the disturbance rejection re- 
quirement can be achieved simultaneously. A velocity 
ripple-free output is crucial to some constant speed 
requirement applications such as machine feed con- 
trol and assembly line application, etc. 

Notice that the controller design in Section 3 de- 
pends on the reference speed, w?. In some application 
which requires variable speed reference, the adaptive 
version of the proposed controller for online adjust- 
ment in response to the change in speed reference 
is required. We are now working on this direction 
so that an adaptive controller can be developed for 
varying speed references. 
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