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Abstract: In this paper, the model predictive control law for sampled-data systems is presented. 
Compared to the standard model predictive controller, the new controller considers the 
intersampling behavior of the continuous system. First we convert the hybrid optimization 
problem to an equivalent discrete-time one and solve it using dynamic programming. Then we 
show that the controller is stabilizing. Copyright © 1999 IFAC 
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1 INTRODUCTION 

Recently, model predictive control (MPC), also 
known as receding horizon control and moving 
horizon control, has become a popular technique to 
control systems and achieved a significant level of 
industrial success in practical process control 
applications. The main idea ofMPC is as follows. At 
sampling time k, the M (called input horizon) future 
control moves that optimize the open-loop 
performance objective over some output horizon are 
calculated. Only the first one of the M computed 
control moves is implemented. At the next sampling 
time, the optimization problem is reformulated and 
solved with new measurements obtained from the 
system. Now, a great deal of results on stability 
(Clarke and Scattolini, 1991~ Rawlings and Muske, 
1993; Kouvaritakis et al., 1992; Zheng and Morari, 
1995), robustness (Zafiriou, 1990; Gencelli and 
Nikolaou 1993; Zheng and Morari, 1993; Kothare, et 
al., 1996), and applications (Richalet, 1993; Camaco 
and Bordons, 1995) of the model predictive control 
have been presented. A fairly complete discussion of 
several design techniques based on MPC and the 
current state of model predictive control can be 
found in the review articles (Garcial et al., 1989, 
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Kwon, 1994). 

With the great advantages in computer 
technology, today digital (;ontrollers are more 
compact, reliable, flexible and often less expensive 
than analog ones. Note that significant progress has 
been made in modern analysis and synthesis for 
sampled-data feedback systems, where a continuous
time plant is controlled by a digital controller with 
appropriate hold and sample devices. By taking into 
account of the intersample behaviors, a sampled-data 
feedback control system combines both continuous 
and discrete-time dynamic subsystems. So it is a 
hybrid system with hybrid input and output signals. 
Although both the plant and controller are time
invariant, the sampled-data system is a time-varying 
system. Many researchers have investigated various 
problems in sampled-data control, such as the :a" H2 
and robust control problems (Bamieh and Pearson, 
19913, 1992b; Kabamba and Hara, 1993; Chen and 
Francis, 1991, 1996; Toivonen, 1992; Sun et al. 
1993; Sivahsankar and Khargonekar, 1993, 1994; 
Hayakawa et al. 1994; Khargonekar and 
Sivahsankar, 1991; Hagiwara and AraId, 1995; 
Khammash, 1993; Dullerud, 1993, 1996). More 
complete discussions can be found in Hara et al. 
(1996) and Chen and Frances (1995). 
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Although MPC has many advantages, it usually 
uses a discrete time model only based on the 
behavior at the sampling instants. So it ignores the 
intersample behavior. To obtain a high performance 
digital controller for a continuous-time system, it is 
necessary to consider the hybrid nature of the 
problem. That is, the design should be a direct 
sampled-data design. The main contribution of this 
paper is that it presents a technique of designing a 
digital model predictive controller directly for 
sampled-data systems. The paper is organized as 
follows. In Section 2, we discuss some background 
material about sampled-data feedback systems and 
infinite horizon MPC. In Section 3 and 4, we 
formulate the controllaw of the MPC for sampled
data systems and show that the control law we obtain 
is stabilizing. Finally, in Section 5, the paper is 
concluded. 

2 BACKGROUND 

2.1 Sampled-Data Feedback Control Systems 

First, we give a brief introduction to sampled-data 
systems. For more details, we refer the reader to 
Chen and Francis (1995). A typical sampled-data 
feedback control system is shown in Fig.I. Let us 
note the following points: 

n[kJ 
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• u(/), y(t), e(/), r(t), d(t) are continuous-time 
signals of the control input, plant output, 
reference command, tracking error and 
disturbance input. Continuous-time signals will 
be represented by 0 around an independent 
variable, whereas discrete-time signals will be 
represented by bracket O. 

• u[k), y[k], e[kJ, n[k] are digital signals of the 
output of the controller, error at sampling 
instants and measurement noise, respectively, 

• Let h be the sampling period. S and H are the 
ideal sampler and hold operator respectively, 
That is 

SeCt) = e(kh) = elk]; k = 0, I, 2, ... 
(Hu)(kh+8) == H(O)u[k] = u(kh+B); 0 <0.;;. h. 

In this paper, we use the usual zero order hold, Le. 
B(O) = I. 

The purpose of the sampled-data control design is to 
find a stabilizing digital controller which gives 
desirable property, In the control design, the error 
e(t) rather than the e[k] is considered, In other 
words, we have to take into account the 
intersampling behavior in sampled~data design. 

d(t) 
.-----1----..................................... " .... . 
E 
i 

r(t) + e(t) I , 
! 
~ 

y(t) 

I. ........................................................... ___ ......................... . 

Figure 1: A Typical Sampled-data Feedback SysIem 

2.2 Model predictive control 

Consider the discrete-time linear system 

x[k + 1] = Adx[k] + Bdu[kJ, 

y[k] = Cdx[k] 
where u[k]!I!'f'" is the control input, x[k]iJ?F" is the 
state of the plant and y[k]!It$P is the plant output. At 
each sampling time k we determine u[k+ilk], 
i=O, ... ,M'-l, by minimizing the objective function 
Jp[k], subject to some constraints on the control 
input, and sometimes also on the state or output, 
where Jp[k] is a given norm presentation related to 
x[k+ilk], i = 0, ... , P - 1, and u[k+JIk], i = 0, ... , M -
1, (y[k+ilk] can be expressed by x[k+ilk]). Here the 
notation is general: 
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x[k+ilk] = predicted value of the state at time 
k+i based on the information 
available at time k; x[klk] refers to 
the state measured at time k 

u[k+ilk] = control input at time k+i, computed 
by the optimization problem at time 
k; u[klk] is the control input to be 
implemented at time k 

P = prediction horizon 
M = control horizon 

In the model predictive framework, only the 
first computed control move u[kjk] is implemented. 
At time k+l, the optimization is resolved with new 
measurements from the plant. The purpose of 
taking new measurements at each time step is to 
compensate for unmeasured disturbances and 
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model uncertainty. This is the main feature of the 
model predictive control. 

3 MPC FOR SAMPLED-DATA 
SYSTEMS 

Let (~, Bc, Cc) be a given continuous-time system 
i(t) = Aox(t) + B.u(t), 

y(t) = C,lI.(t), 
(1) 

x(O)=lI.o . uER"' , lI.ER·, yeRP 

Let h be the sampling period. At each sampling time 
kh, assume that exact measurement of the state of the 
system is available, i.e., x(khlkh) = x(kh), and Mh is 
the control horizon, i.e. 

u(kh+~kh) = 0, "'tt>Mh. 
The problem is to design the control input 
u(kh+~kh), 0 ~ t ~ Mh, such that the following 
quadratic objective function 

min J= r"'[xT{t~(t)+uT(t)Ru(t)l .... 
u(Ich+,Ich).Q,;,,;Mh Jkh Ii )'LA. pc 

is minimized, where Q and R are positive definite, 
symmetric weighting matrices. Here we use infinite 
horizon optimization to guarantee the nominal 
stability. Using the zero order hold, the objective 
function can be rewritten as 

';"k+'lj;~.M-/ = ([xT(t)Qx(t)+uT(t)Ru(t)}h (2) 

Note that this is a hybrid optimization problem since 
both the continuous-time and discrete-time signals 
are involved in (1). 

The discretized system of (A." Bo, Cc) is as 
follows 

where 

x[k +1]= AdX[k]+ Baulkl 
y(k]=Ccx[k] 

x [k ] = x (kh) Y [k ] = y (kh ) 

Ad =e A\ Bd = (SoheAtdt)B . 
From (1) and (3), we have 

(3) 

x(kh +t)=eA'x[k]+ J; eA(I-T)d'f" BU[k], (4) 

where 0 ::;; t ::;; h, Now we are ready to give the main 
result of this section. 

Theorem 1 Consider the stable system CA." Bc, Cc) 
in (1) together with the objective function (2). The 
optimal discrete state feedback controller can be 
obtained as follows 

u[k+ilk] = -F[i]x[k+ilkJ (5) 

F[iJ=Pz2+Al~+1)A."tl(A/~i +1jBd +Qi] (6) 
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s(i]=(Bd -AdF{ilf' s(i+1XBd -AaFfiD 
+FT(i~~iJ+Ql1-F~~! -~2F{i], (7) 

i=l, .. M-l 

(8) 

(9) 

QI2 =[S:eA/tQ(J~eA"TdT}t]Bc (to) 

Q 22 =B/[ 1(!eA/Td.}\leA.Td.}tfc+hR 
(11) 

(12) 

Proof At first, we will convert the hybrid 
optimization problem to a discrete-time one, then use 
the dynamic program to obtain the solution. Since 
Mh is the control horizon, there is no control input 
after Mh sampling interval. For any t > 0, we have 

x~+kh+tlkh) 
==eAc(t-Mh)x(Mh+khlkh) (13) 
= eAc(t-Mh)x[M +klk] 

The objective function can be rewritten as 

J = t:+M)h [xT (t)Qx(t)+ UT V )Ru(t )}it 

+ ((HO ) xT (t)Qx(t}it 
JII:+M h 

M -I r<k+I+l y, r ]" 
= ~~k+I" LxT {t}Qx{t} + UT (t}Ru(t)pr 

+ xr~+M1k(.c:eAT(t-Mh)~A(t-Mh)dt)x[k+Mjk] 

M-I 

= LJj +xT[k+Mlk]QX[k+Mlk] 
/=0 

where 

J j = xT [k + ilk:Pllx[k +ilk] 

+ 2XT [k + ilk ]Q12U[k +ilk] 

+uT [k +ilk]Qz2u[k + ilk] 

The hybrid optimization problem (2) is now 
converted to a discrete-time one 

M-l 

u[ol~-11J= ~Ji+xTl'c+MJk~X[k+MJk] (14) 
, 

Using discrete dynamic programming, the result can 
be obtained. 0 

Note that the equivalent discrete objective 
function includes a crossover term which differs 
from the discrete MPC case. 
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Remark 1. The formulas for computing the matrices 
Qn, Q\2, Q22 in (9)-(11) can be done using matrix 
exponential as in Franklin and PowelI (1980) and 
Chen and Francis (1995). We will give the explicit 
formulas for QIl, Q12, Qn in the following. 

Lemma 1 (Chen and Francis, 1995) Let All and A22 

both be square and define 

[F\~(t) F;~)l= exp{{ A~l 
Then 

Fll (t) = e lAu , 

Fn (t) = e lA12 , 

F (t) - r e(t-,,)Au A et:A22 dT 12 - Jo 12 . 

For the system (1), Define 

P12 ] 
P 22 

Proof For any matrix A, we know that 

'e" d, = [r 0),[ ~ :J,[~l 
It is then straightforward to obtain the corollary by 
Lemma 1. 0 

Remark 2. Integrate the following equation from 0 
to 00 

d' T T T _etA, Qe tA, = A etA, Qe tA, + etA, QetAc A 
~ G C 

Since exp(tAc) converges to zero (A.: is stable). we 
have 

A/ Q +QAc +Q = 0 (15) 

Then Q can be computed via the equation (15). 

Remark 3. The MPC algorithm for sampled-data 
systems is then obtained from Theorem 1. 

i. Compute QIl, Q12, Q22, Q in (9-12). The 

explicit formulas of QIl, Q12, Q22, Q is given 
in remark 1 and remark 2. 

ii. Get the state measurement x(kh) at the 
sampling time kh, compute S[k], F[k] from (6)
(8) and compute the optimal control law from 
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(5). Only the first element u[klk] is sent to the 
process. 

Hi. Return to Step ii at the next sampling time 
(k+1)h. 

4 STABILITY ANALYSIS 

In this section, we will show that the above control 
law is stabilizing just like in the discrete-time case. 
To this end, we need the following lemma. 

Lemma 2 Consider the system (A.:. Bc> Cc) in (1) 
together with the objective function (2). Assume the 
sampling period h is not pathological, then the 

. [ Q11 Q12J' . . h Q Q matnx T lS posltive, w ere 11, 12, 
Q I2 Q 22 

Q22 are obtained from (9)-(11). 

Proof Denote 

a(t)= eAt, p(t)== S: eA1:Bd •. 

Then for Vx E Rn,y E R m, 

[xT yT [~~~ ~:~ I;] 
=XTQlIX+yTQJ/ x+xTQJzy+yTQnY 

= r xT aT (t)Qa(t)xdt+ S: yT pT (t1J.p{t)ydt 

+ SOh xT aT (t)Qp(t)ydt+ J: yT pT (i)Qa(t)xdt 

+yT (hR)y 

= IHt )XII~ +JB{t )yll~ + (a{t)x, p(t)y) + yT (hR)y 

= I~(t)x+ P~)yll~ +yT (hR)y (16) 

Note that Q>O and R>O, hence, [QI ~ 
QI2 

positive-definite. 0 

QIZ ] . 
Qn IS 

Theorem 2 For stable A.: and .M:<:: 1, assume the 
sampling period h is not pathological, then the 
model predictive controller given by (5)-(8) is 
stabilizing. 

Proof Since Ac is stable and h is not pathological, 
(~ Bd) is stable too. 

Let x • [k + ilk 1 U • [k + jlk] denote the optimal state 

and input at time (k+J)h computed from (5-8) at time 
kh. The optimal value of the objective function at 
time kh is then 
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J"[k]':: X·T [k]Qu x· [k] 

+ 2x·T [k~12U *[k]+u·T [k ~22U +[k] 

+ ,*00 kT {t)QX*(t)+U.-r ~)Ru·(t)~t 
J(k+l)h 

(17) 

Suppose there is no disturbances, then at time 
(k+ l)h, the initial condition of the state is 

x[k +1]= x +[k +llk]. 
Therefore the objective function is 

J[k +IJ = r-<» Jx*T (t)Qx .. (t)+u *T {t)Ru + (t)Vt 
J(k+l" 

if the following input sequence is used at time (k+ l)h 

~ "[k +~klu +[k +2ikl···, u*[k+M -l,klo . 

Since the optimal objective function .I[k+l] at time 
(k+ l)h is no worse than J[k+1] , we have 

J* [k + 1] s: J[k + 1] = J+ [k]-Jo 

= J*lk]-[xT [kl uT[klfQ~1 QI2][X[kn 
t Q l2 Q 22 u[kU 

(18) 
The sequence .I[k] is therefore nonincreasing. It 
converges because it bounded below by zero. From 
Lemma 2, we have that both x[k] and u[k] converge 
to zero for k > ko, which is large enough. So the 
controller is stabilizing from (4). 0 

Remark 4. We only give the algorithm and the 
stability proof for stable systems. However, it is easy 
to extend these results to unstable systems in the 
same way as Rawlings (1993). In this case, the 
problem can be solved via dynamic programming 
with constraints. 

Remark 5. The phenomena of a pathological sample 
period can be found in Chen and Frands (1996). 

5 CONCLUSION 

The model predictive controller for sampled-data 
systeUlS is presented in this paper. The most 
attractive advantage of the proposed controller is that 
it considers the mtersarnple behavior of the system 
and shows a better performance than that in the 
discrete-time case. The controller is also stabilizing 
as the same as in the discrete-time case. 
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