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.A.bstract: In this paper~ \ve show that a general discrete time Riccati equation can be
solved by finding a deflating subspace of a 2n x 2n matrix pencil. In many applications,
the data in t.he Riccati equation is formed from the squares of the ra\v physical data.
In this case, ~"e show that continuous-time and discrete-time Riccati equations can be
solved without squaring the raw data by finding deflating subspaces of larger matrix
pencils. Exanlples show that the solutions vlithout squaring the data. have numerical
advantages over the existing solutions of Riccati equations using the generalized
cigenspace approach. Copyright © 1999 IFAC
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1. INTRODUCTION

For a matrix pair (..4, B) E cnxn x Cnxm and a
IIermitian matrix

[~* ~] E C(Tl+m) X (n-Lm) ,

the associated continuous time algebraic Riccati
equation (CARE) is of the form (assuming R to
be nonsingular)

.(4~X + XA + Q - (XB + S)R-1(B* X + S*) ~ 0
( 1)

and the aSRociated discrete tiIne algebraic Rlccati
equation (DAB.E) is of the form (assuming KerRn
KerB == {O})

A>I< X A - X + Q - (A* X B + S)(B* X B + R)-l

x (B* ..YA+S*) ==0. (2)

A Hermitian solution X of CARE (1) is said
to be stabilizing if all eigenvalues of A + BF,
where F = -R-l (B* X +S*) is the corresponding
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state feedback gain, have negative real parts.
A Hermitian solution X of DARE (2) is said
to be stabilizing if all eigenvalues of A + BF,
"""here F == -(B*XB +R)-1(B*X~4+8*) is the
corresponding state feedback gain, are inside the
unit circle. The stabilizing solu tiOIl~ if exist.s, is
unique.

The solution of ...J\.RE has been extensively studied.
T\vo recent collections of ¥.rorks (Bitt1anti et al.,
1991; Patel et al., 1994) contain good survey
papers on this topic. There are several ~rays to find
the stabilizing solution of an ARE. Among them
the so-called Schur method has gained popularity
in recent years.

The Schur method for C~4.RE (1) is based on
the fact that the graph of the unique stabilizing
solution of (1), if exists~ is equal to the invariant
subspace of the 2n x 2n Hamiltonian matrix

[
A - BR-IS"" -BR-lB* ]
-Q + SR-1S* -~4'" + SR-l B* (3)

corresponding to the eigenvallles ~rith negative
real parts. This fact:. apart from its theoretic
interest, ha.s been the basis of the general purpose
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Riccati solvers in, such as, MATLAB Cont.rol
System Toolbox.

'The Schur nlethod for DARE (2) leads to gen
eralized eigenproblems. If R is nonsingular~ the
graph of the unique stabilizing solution of (2), if
cxists~ is equal to the deflating subspace of 2n x 2n
symplectic matrix pencil

([
A - BR- 1 S* 0] [1 BR-1B* ])
-Q + SR-lS* I ' 0 ..4~ - SR- 1 B*

(4)

corresponding to the eigenvalues inside the unit
circle (Pappas et al.~ 1980~ Emami-Nacilli and
Frankliu, 1980). However~ applications where R
is singular occur frequently. To cope with this,
it is proposed in the literature (Emami-Naeini
and Franklin, 1980; \fan Doorcn, 1981) and im
plenlcnted in MArrLAB Control System Toolbox
to find the stabilizing solution using the following
(2n + m) x (2.n + m) matrix pencil

([ ~4 0E] [100])Q -I S , 0 -A* 0 .
S* 0 R 0 -B* 0

In this case, the graph of the stabilizing solution}
if exists, is equal to the space spanned by the £rst
2n coordinates of the deflating subspace of (5)
corresponding to the eigenvalues inside the unit
circle. This although pragmatically overCOIIleS the
difficulty brought about by the singular or near
singular R, it leaves SOITIe disappointlllent: the use
of (2n + rn) x (2n + m) pencil is theoretically
unpleasant (lack of symmetry) and numerically
undesirable (presence of bigger matrices). In this
paper) we sho1,v that it is possible to solve (2) using
a 2n x 2n matrix pencil.

l'or a given Hermitian matrix

it is al\\rays possible to carry out factorization

[~ ~] = [g:] J [C D] (6)

Vv·here J is a signature matrix such as

J=[~~I]
or some other nonsingular IIermitian matrix. In
many applications, such as 112 and 1io.') control
and various factorizations of rational matrices, the
raw data for a Riccati equation is given in terms of
(..4,B,C,D,J) instead of (A,B,Q,R,S). In this
case, CARE (1) becomes

..4* ...Y + XA + c~ le - (XB + C* JD)

x (D* J D)-l (B* X + D* JC) = 0, (7)

and DARE (2) becomes

~4* X A - X + C* J C - (A* X B + C* J D)

x (B:':}(B + D* JD)-l(B· X ..4 + D* Je) :::;; O.
(8)
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Although matrices of the form C* JC and DJD*
appear in the equation, it is desirable to avoid
this kind of squares in the numerical solution
due to finite vlordlength reasons. As soon as the
matrix squares are formed, the number of accurate
digits is lost by half. No matter what method in
solving AREs (1) and (2) is used to solve ~-\REs

(7) and (8), it is impossible to recover such loss
of accuracy. The readers ITlay \vish to examine
Examples 1-2 in Section 5 for better appreciation
of this point. In this paper} we will show that
AREs (7) and (8) can be solved via (2n + m +
p) x (2n + m + p) matrix pencils without forming
the matrix squares explicitly. Examples sho\v that
the proposed ne~r method does behave better
numerically.

An immediate criticism of this proposed method
is the involvement of matrices of large dimensions.
This is indeed a new problem created in address
ing an old problem. On one hand v..~e \vould like
to argue that the computer wordlength is a more
precious resource than thee computing tirrle. On
the other hand, we ~;o-ill show that the (2n + m, +
p) x (2n + rn + p) matrix pencil is always sparse
and structured~ so iteration method can be used
to find the required eigenspace.

2. SOLUTION OF THE DISCR,ETE TIME
ARE, '!IA 2I\l x 2-,-~T PENCIL

Since KerB n KerR ~ {O}, there exists syulnletric
matrix X o such that B* ....YoB + R is nonsingular.
Let

[~~ ~] = [A*~~1o~XO ~:i~~] + [~ ~]
and let X be the stabilizing sol u tion of the follov/
ing Riccati equation

~4*XA-X +Qo- (A'" XB+So)(B* X B.+Ro)-l

x (B* X~4 + So) == o.
T'hen it is easy to sec that X = X + Xo is a
stabilizing solution of (2). Hence the follo\ving
theorem follows immediately.

Theorem 1. Let Ko be any Hcrmitian matrix such
that B* XoB + R is nonsingular and

[
Qo So ]=[A* ...~oA - X o ~4-*)(oB] [Q s. ]
So R o B*XoA B'1<XoB + S* R .

Let [~] span the deflating subspace of

([
A - BR-

1
S* DJ [1 BR-1B* ])

~Q + Sok1So I 'OA" - S~R;lB*
(9)

corresponding to the stable cigenvalues. Then (2)
has a stabilizing solution if and only if l/i is
invertible. In this case, the stabilizing solution is
given by X = Xo + v'2 \./1- 1

.
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One may prefer a matrix pencil which directively
leads to X without the extra addition X + ...,Yo.
This is possible.

Theorem 2. Let X o be any Herlnitian Inatrix such

that R o := El XoB + R is IloIlsingular and [~~]
span the deflating subspace of

([
..4-BRolS~ 0]
-Q + SRn] s~ I ~

II - BR-1n* BR-1B* ])
SRr;lJ*X o A* - 8Rijl B* (10)

corresponding to the stable eigcnvalues. Then (2)
has a stabilizing solution if and only if U1 is
invertible. In this case~ the stabilizing solution is
given by -t¥ == U2 U1-

1
.

3. SOLUTION \\rITHOUT SQ"LARE-UP

\\ihen (6) holds~ CARE (1) becomes CARE, (7).
It is desirable to solve CARE (7) without forming
Q,S,R.

Consider nlatrix pencil

([ ~ ~ _~. ~~.l] ,[g g~ ~]) (11)

o 0 -B* -D* 0 0 0 0

Proposition 1. The matrix pencil (11) has p +
m eigenvalues at infinity and the rest of the
2n eigenvalues are finite and symnletric to the
imaginary axis.

Let v' be the deflating subspace of (11) corre
sponding to the finite eigenvalues ~vith negative

::~:~::t:fan[~e]t,ap:::o:::c::s:~e:I:Yw:::
1/4

that of (11).

Theorem 3. CARE (7) has a stabilizing solution if
and only if VI is invertible. In this case, the unique
sta.bilizing solution of (7) is given by ..;Y == VT3 V1-

1

and the corresponding feedback gain is given by
F == \/2. \/1-

1 •

The DARE (8) can also be solved without squares.
Consider matrix pencil

([~ ~ ~ g], [~g .1. ~l]). (12)

o 0 0 0 0 0 B· D*

Proposition 2. The matrix pencil (12) has at least
p eigenvalues at 0, at least ra at 00 ~ and the rest
2n eigenvalues are symmetric to the unit circle.
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Let U be the deflating subspace of (12) corre~

sponding to the eigenvalues inside the unit circle.

Then it. is easy to see that span [ ~] C U. Let V

be any complement of span [ ~] in U and let a

[
V~VT~:I j.basis of V be given by the columns of v

Theorem 4. The Riccati equation (8) has a sta
bilizing solution if and only if vi is invertible. In
this case~ the unique stabilizing solution of (8) is
given by X == VI'3l;;.-1 and the corresponding state
feedback gain is given by F == V2 V1-

1
.

4. THE PO\~lER ?vfETHOD

An immediate criticism of the proposed use of
(2n+m+p) x (2n+rn+p) pencils in solving A.. R,E
is the involvenlent of Inatrices of large dimensions.
This is indeed a new problem created in address
ing an old problem. On one hand we would like
to argue that the computer \vordlength is a more
precious resource than the computing time. On
the other hand~ we see that the (2n + m + p) x
(2n + m + p) matrix pencil is always sparse and
structured. It is hopeful that the sparseness and
the structure can be utilized to reduce the com
putational complexity. In this section, ,ve present
a crude Inethod based on power iteration to find
the required eigenspaces of the matrix pencils
involved.

Let us first consider the problem of finding
the cigenspace corresponding to the m domi
nant eigenvalues of a general regular n x TI. pair
(.1."\1, N). First let us assume that N is nonsingu
lar_ In this case~ the eigenvaJues and correspond
ing eigenspaces are identical to those of ]\,r-.-l AI.
The follovling algol'ithm~ called block or subspace
po\ver iteration, is vlell kllOVilll for the eigenspace
of the dominant eigenvalues (Saad, 1992).

Algorithm 1.

Start. Choose an initial m dimensional subspace
Vo.

Iteration. lTntil convergence, compute V i+l =::;;

N-l A-fVi .

For generic initial subspace~ this algorithm \vill
converge to the required eigenspace if IATn (1\1, 1V) ~

> IAm.+l (.A1, l\F) I.
Now let us consider the matrix pencil (1)). The
eigenspace that ~"e are interested in is the one
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corresponding to the eigcnvalucs on the left hand
side of the complex plane. \\le need to transform
the problem so that these eigenvalues become
dominant ones~ Observe that the map (11.10 , No) --+
(Al0 +0'2'Vo, Ala -aNa) \vhere a > 0 maps all eigen
values in the left hand side of the complex plane
to the outside of the unit circle. This technique is
called shifting. After shifting~ matrix pencil (11)
becomes

Since t.he pair (J.'V[, N) is still sparse and struc
tured, both lv/V and _lV-IV can be computed
efficiently without forming (At, N) explicitly.

For the pencil (12) , we are interested in the
eigenspacc corresponding to the eigcnvaIues inside
the unit circle. ApparentlYi shifting can also be
used to transform these eigenvalues to the domi
nant ones. The map (.l\lo)1Vo) --+ (1\/0 - 01\10 ~ Mo
o.1\lo) for -1 < a < 1 does the job. In this ca.se, it
amounts to consider the follov..-ing matrix pair.

The sparseness of the matrix pair (13) is maxi
mized if n == 0 is chosen, but it results in a singular
N. Experiment shows that AIgorithnl 1 still works
if N- 1V is interpreted as the preimage of V under
.i\l. This leads the following conjecture.

Conjecture 1. Let Algorithrll 1 be applied to a
regular matrix pencil ( ...'Vf~ lV). If IAm(M, N)I >
IATn +l {Iv!, N)I, then for generic Vo, Vi converges
to V.

The effort in proving this conjecture is under'h~ay.

The convergenee of the power iteration depends

on 1~~TT=:(~:JV:r?I. Examples shov.r that the conver
gence can be very slovl for simple problems. It is
an interesting problem ho\v to take advantage of
the sparseness and structure of the matrix pencils
to get a uniformly better algorithrrl than the un
structured QZ algorithrn which is the most com
monly used oue to find the required cigenspaces*
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5. NUl\1ERICAL EXAI\1PLES

Two MATLAB .m files, caresys.rn and daresys.rrl,
are written \vhich implement the (2n + m +
p) x (2n + m + p) pencil methods in Section 3
for CARE (7) and DARE, (8) respectively. Both
caresys.m and daresys.m take as input variables
(A, B, C, D, J) and option which determines if the
eigenspace is computed by the QZ method or
the pO~Ner method. These programs are compared
with care.m and dare.m in the :Lv1ATLAB Control
Systems Toolbox. The computation is done in a
SPARCstation 10 using MATLAB version 5.0.

Due to time limitation, ,-ve are only able to finish
the numerical experiment for the discrete-time
case. The numerical experiment for continuous
time case is underway and will be added to the
paper in the next stage.

Traditional measure of the quality of an approxi
mate solution X is lIR(X)I~ tvhere R(X) is the left
hand side of the ARE. 'Vhen the exact solution
is unkno~rn, this is probably is the only choice.
However, how to compute RCX) becomes a new
nontrivial numerical problem v.re choose not to
address in this paper. The computation of RCJ:)
is directly related to the computation of

F == -(D* JD)-l(B* X + D*.JC)

in the continuous time case and

F = -(B"XB + D*JD)~l(B~X A + D* JC)

in the discrete time case since

R(X) = A*X +XA+C*JC + (XB + C*JD)F

and

RCX)
:::= A>l<X~4 - X + C* JC + (A* XB + C* JD)F

respectively~ In applications, it is F, not ..¥, that
is needed. In the following examples, the exact
solutions are all known. Hence 1ve use JIX - Xt1 as
the measure of the qualit.y of solutions.

Example 2. Suppose

0 0 1 1
0 0 1 1+t:
1 1 0 0
11+EO 0
0 0 1 0
0 0 0 1

and J := I. It is easy to verify that for nonz.ero
€ > 0 the unique stabilizing solution to CARE (7)
is X = I. HoV\rever, since

* [2 2+t:]
Q = CC=: 2 + € 2 + 2€ + (52

is deemed rank one if €2 is less than the machine
epsilon, the matrix

[
..4 - BR-1S* -BR-l B* ]
-Q + SR-1S* -./1.* + SR- 1B~
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is deemed to have eigenvalues on the imaginary
axis. In fact, care.m in the MATLAB Control
System Toolbox fails \vhen f: ~ 10-8 .

Example 3. Suppose

and J :::::: I. It is easy to verifv that for nonzero
t > 0 the unique stabilizing SOl~ltjon to D~t\RE (8)
is

[
2 2+£]

X ;;;:::: C* C::=; 2 + € 2 + 2£ + (2 .

HOVlever, since

Q = C~C = [2 ~ E 2-:2~; E2 J
is deemed rank one if (2 is less than the machine
epsilon~ the Inatrix pencil

( [
~ ~I ~] 'l [~ -~* g])
S* 0 R 0 -B* 0

is deemed to have generalized eigenvalues on the
irllaginary axis. Indeed, dare.m in the I\1ATLAB
Control System Toolbox fails for this example
\~ihen E ~ 10-8

.

However, daresys.m works well for € ~ 10-15~

especially when the po\ver method option is used.
The results of daresys.m for different € is SUffi

merized in Table I. It is seen that the power
method ",·orks much better than the QZ method in
this example. 'The reason is probably because the
error of !v1ATL.A..B's internal QZ program, which
can not be controlled by an user ~ is too big. The
po\ver method also converges very fast. This is
due to the fact that the generalized eigenvalues
of the matrix pencil involved has cigenvalues at
infinity and zero only. A final observation is that
}? is much more sensitive than X to computation
errors. The reason for this is not clear.

The above examples are not pathological cases.
In the so-called low-gain and high-gain design of
feedback control 1 the extreme values of the system
data occur in quite a natural way.

Exa.mple 4. A program daresynLln~ which irnple
ments the 2n x 2n pencil method for DARE,
is v.:ritten. PrograIllS daresym.m, daresys.m, and
dare.m are tested using the benchnlark exanlples
in (Benner et aI., 1996). For most of t.he examples
(examples 1-11)) they all work almost equally well.
Example 12 has the follo'Vli~ing data:
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The exact solution is given by

X=[~1:Q2]'
Table 2 gives the computation results for several
different values of Ct. The relative residue means

The data in Example 13 is given in the following
way:

2
Ao == diag(O, 1,3), vT

~ I ~ 3vv', v! == [1 1 1].

"" [~I] [0 lA == \; A oV, B = I, C ::=: 0 ; D;:::::: y'CiI .

The exact solution is

X Trd· ( 1 + VS 9 + V85) TT=- v· lag a,a--
2
--,a 2 ,,'.

Table 3 sho\vs the computation results. "Then
a ::::;;; 1014 ~ both dare and daresym give the warn
ing message ~'I\1ay not find symnletric solution;
spectrum too near unit circle. 'i , but daresys \"\lorks
perfectly. The relative error means

/IX - XUFIU--Yltf'.
The relative residue means

IIR(..¥) IIFIIIXII F·

6. CONCLUSION

In this paper, \v'e first proved that a general
regular D..~RE can be solved by using a 2n x 2n
matrix pencil. This result is presented mainly to
give a parallel development to the CARE theory.
It also indicates that there is not much reason to
use the (2n + m) x (2n + m) lllatrix pencil (5) in
solving the DARE (2).

The main point of this paper is that square of
data should be avoided in numerical computation.
'~le have shown that in the case when the raw
data for the Riccati equation is given in terms
of (A, B, C, D, J) instead of (A, B, Q, R, S), it
is possible to compute the solution of Riccati
equations without squaring the data even though
the squares appear in the equation. The study
carried out here is preliminary. It is of interest to
see if there are other methods without square-up
with better numerical properties and h01V ",re can
improve the numerical properties of the methods
developed in this paper ~ Furt.her study in the
foUawing directions is underlvay;

(1) Carry out further numerical experiment to
compare the ..A.RE solvers based on the ma
trix pencils (11) and (12) and those based
on the traditional matrix pencils with data.
square-up~
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daresys (QZ) daresys (po'wer)
E :::::: 10-8 "X-XIIF 1.95 X 10-15 1.54 X 10- 15

I~·F - F1,IF 5.44 X 10- 16 9.61 X 10- 10

[ == 10- 12 IIX-XJIF 2.58 X 10- 9 8.82 X 10- 16

HF - FltF 1.32 X 108 1.05 x 10- 15

£==10- 14 liX -XHF 2.78 x 10- 3 1.78 X 10- 15

1'1~'-FlIF L20 X 1013 1.48 X 10-15

E :::::: 10- 15 i/J( ~ XIJF 6.86 X 10- 2 9.93 X 10- 16

I:·F - FHF 4.32 X 1014 1.04 x 10-H;

Table 1. For Example 2.

14th World Congress of IFAC

dare dares:ym daresys

0:: ~ 106 x-}{ (g~ ] [g2.2122° X 107 ] r g ~1
Relative residue 4.8828 X 10- 1(5 2.2122 X lO~5 1.2207 X 10- 16

o = 1010 -/y-x 1~ 8.241~ x J06 J Completely v..Tong t~ ~ J
Relative residue 8.2416 x 10-14 Completely wrong l~OOOO x 10- 2u

Table 2. Example 12 in [3]

dare daresym daresys
o :::: 106- Relative error 2.5238 X 10- 11 5.2532 X 10- 15 1.3222 X 10- 15

relative resjdue 4.8828 X 10 Hi 4.7712 X 10- 100 1.1008 X 10 15

0' :::: ]010 Relative error 1.4289 x 10- 7 1.2733 X 10- 7 1.0192 X 10- 14

Relative residue 1.3024 x 10- 1 3.8965 X ] 0-"( 9.8596 X 10- 1 :1

a = 10 14 Relative error 4.1923 X 10-4 7.2512 X 10-4 2.3031 X lO~15

Relative residue 3.7490 x 10-4 6.5812 X 10- 4 2.6729 X lO--TO

Table 3. Example 13 in f3)

(2) "That can be said about the structure of
the matrix pencils (11) and (12)? Ho\v can
we use the structure and sparseness to sim
plify computation and to increase accu
racy? Is there a structure preserving QZ
decomposition ,vhich can be used to find
the cigcnspace needed? For structure pre
serving Schur decomposition vrith applica
tion in solving AREs~ see (Paige and Van
Loan~ 1981; Byers, 1986; Bunse-Gerstner and
Fa;3bender, 1997).

(3) Extend our results to possibly accoIIIIDodate
descriptor sy~terns (,"vith an E matrix in
the appropriate places in the _~REs) or sin
gular AREs (singular R in continuous-time
ca~e and KerB n KerR ¥ {O} in discrete
tirne case). See (Arnold, III and Laub~ 1984;
Ionescu et al., 1997) for motivation and ex
isting literature.
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