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Abstract— This paper proposes a convex approach to the
Frisch-Kalman problem that identifies the linear relations
among variables from noisy observations. The problem was
proposed by Ragnar Frisch in 1930s, and was promoted
and further developed by Rudolf Kalman later in 1980s.
It is essentially a rank minimization problem with convex
constraints. Regarding this problem, analytical results and
heuristic methods have been pursued over a half century.
The proposed convex method in this paper is demonstrated to
outperform several commonly adopted heuristics when the noise
components are relatively small compared with the underlying
data.

I. INTRODUCTION

The identification from noisy data has become an impor-
tant problem of statistics and, via applications, of economet-
rics, biometrics, psychometrics and so on. Among various
problems with different models on the data and noise, the
Frisch-Kalman problem (scheme) [1]–[3], which is rooted
in the work of Charles Spearman [4] in 1904, has attracted
much attention and been investigated since 1930s [1]–[3],
[5]–[9].

Given a finite family of n (random) variables
{ω1, ω2, . . . , ωn} that are linearly dependent, we call
them the true or underlying data, and in general, we have
no direct access to their exact values. Instead, we can
measure or observe their values in a noisy environment.
The observed data {x1, x2, . . . , xn} are corrupted by noise
variables {δ1, δ2, . . . , δn} additively, i.e.,

xi = ωi + δi, i = 1, 2, . . . , n.

One may ask naturally: can we identify the linear relations
among the true data from the observed (noisy) data samples?
For this purpose, what else do we need to know about the
data and noise? A well-established answer to the problems
is given by the Frisch-Kalman scheme.

Denote by Σ the covariance matrix of the observed data
{xi}, which may be obtained from repeated experiments and
measurements. Denote by Ω and ∆ the covariance matrices
of the true data {ωi} and noise {δi}, respectively. The key
assumption in the Frisch-Kalman scheme is that the noise
components are mutually uncorrelated and independent from
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the true data, in which case the following decomposition
holds:

Σ = Ω + ∆,

and ∆ is nonnegative and diagonal. Such a decomposition is
called the factor analytic decomposition [6], [10] as is used
in a statistical method — the factor analysis. The Frisch-
Kalman scheme suggests one way to identify the linear
relations via the minimization of the rank of Σ − ∆ over
all possible noise covariance matrices ∆. Regarding this
scheme, a particularly important problem, which aims at
finding the exact class of the observed covariance matrices
Σ such that the maximum corank of Σ − ∆ over all ∆ is
one, has been investigated since 1940s [2], [3], [6], [7], [9],
[11].

The Frisch-Kalman problem is essentially a rank min-
imization problem with convex constraints. It is closely
related to the low-rank matrix completion problem [12]–
[14], where one wishes to complete a partially known matrix
so that its rank is as small as possible. The nuclear norm
minimization [13] has been pursued as a suitable heuristic
for general rank minimization problems. In terms of the
Frisch-Kalman problem, the nuclear norm heuristic reduces
to the well-studied minimum trace factor analysis [5], [6],
[9], [15]. As generalizations to the nuclear norm, a family of
low-rank inducing norms, called the r∗-norms [16], [17] or
spectral r-support norms [18], have been recently proposed,
which improve the performance of the nuclear norm heuristic
for rank minimization problems. In addition to the low-rank
inducing norms, other surrogates have been studied for the
rank function, for example, the logarithm of the determinant
(log-det) [19].

In this paper, we propose a convex approach to the Frisch-
Kalman problem by first reformulating the problem into
a norm minimization problem with a rank constraint, then
relaxing it into a convex problem that is essentially a semi-
definite programming (SDP) [20]. The reformulated Frisch-
Kalman problem additionally penalizes the variances of noise
components, which is motivated by the application scenarios
when the noise are well-bounded with respect to the under-
lying data. For example, population census and mapping in
developed countries [21], channel estimations in slow fading
channels [22], long-term global surface temperature measure
[23], and so on. Comparisons with the existing heuristic
methods, including the nuclear norm minimization [13], the
r∗-norm minimization [16] and the log-det heuristic [19],
show that the proposed method has high success rates and
strictly outperforms the others when the noise components
are well bounded with respect to the underlying data.



The rest of the paper is organized as follows. In Section II,
basic notation and preliminary results are introduced. In
Section III, the main algorithm is developed. In Section IV,
comparisons with the existing heuristic methods are shown
via simulations. Finally, in Section V, the study is concluded
and future research directions are introduced.

II. PRELIMINARIES

A. Notation
Let R be the real field, and Rn be the linear space of n-

dimensional vectors over R. For x ∈ Rn, its Euclidean norm
is denoted by ‖x‖.

For matrix A ∈ Rm×n, its element in the ith row and jth
column is denoted by [A]ij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n,
its transpose is by AT , its range is by

R(A) := {y ∈ Rm| y = Ax for some x ∈ Rn},

its kernel is by

K(A) := {x ∈ Rn| Ax = 0},

and its kth singular value is by σk(A), k = 1, 2, . . . , l, in a
nonincreasing order, where l = min{m,n}. The largest and
smallest singular values are specially denoted by σ̄(A) :=
σ1(A) and σ(A) := σl(A), respectively. The operator norm
(spectral norm) and the Frobenius norm of A are respectively
denoted by

‖A‖ := σ̄(A) and ‖A‖F :=

√√√√ l∑
k=1

σ2
k(A).

The r-norm [16] of A, r = 1, 2, . . . , l, is defined via

‖A‖r :=

√√√√ r∑
i=1

σ2
i (A).

Clearly, ‖A‖F = ‖A‖l. Denote its singular value decompo-
sition (SVD) as

A = USV T =

l∑
i=1

σi(A)uiv
T
i ,

where U, V are unitary. For A,B ∈ Rm×n, their inner
product is defined via

〈A,B〉 := tr(ATB).

For X ∈ Rn×n, the diagonal matrix that keeps the diagonal
terms of X is denoted by diag(X). For x ∈ Rn, the diagonal
matrix with its ith diagonal term given by xi is denoted by
diag∗(x).

Some frequently used special sets of matrices are as
follows.
• Denote by Sn the set of all symmetric matrices in Rn×n.
• Denote by Sn0 the set of symmetric matrices in Rn×n

with zero diagonals.
• Denote by Sn+ (Sn++, resp.) the set of all positive semi-

definite (definite, resp.) matrices in Rn×n.
• Denote by Dn the set of all diagonal matrices in Rn×n.
• Denote by Dn+ the set of all nonnegative diagonal

matrices in Rn×n.

B. Standard Low-Rank Approximation

Let A ∈ Rm×n and l = min{m,n}. Consider the
following standard rank approximation problem:

min
B
{‖A−B‖F | rank(B) ≤ r} , (1)

for r = 1, 2, . . . , l. Based on the Schmidt-Mirsky theorem
[24, Chapter IV], all solutions to problem (1) is given by

svdr(A):=

{
r∑
i=1

σi(A)uiv
T
i

∣∣∣∣∣ A =

l∑
i=1

σi(A)uiv
T
i is SVD

}
,

which is called the set of all standard rth order SVD-
approximation to A. Clearly, for every B ∈ svdr(A), it holds
that

rank(B) = r. (2)

When σr(A) > σr+1(A), svdr(A) is a singleton and its only
element is denoted by

[A]r :=

r∑
i=1

σi(A)uiv
T
i .

The optimal value to the problem is given by

min
B
{‖A−B‖F | rank(B) ≤ r} =∥∥[σr+1(A) · · · σl(A)

]∥∥ =
√
‖A‖2F − ‖A‖2r.

C. Frisch-Kalman Problem

The Frisch-Kalman problem is defined via the following
optimization [1]–[3], [9].

Definition 1. Given Σ ∈ Sn++, determine

mr(Σ) := min
Ω,∆
{rank(Ω)| Σ = Ω + ∆,

Ω ∈ Sn+,∆ ∈ Dn+}.
(3)

A matrix ∆ is said to be feasible to problem (3), if ∆
is diagonal and Σ ≥ ∆ ≥ 0. A trivial upper bound to the
problem is given by mr(Σ) ≤ n− 1, which can be obtained
by selecting a feasible ∆ = σ(Σ)I . The Frisch-Kalman
problem is, in general, non-convex, and many heuristic
convex approaches have been proposed and investigated [6],
[9], [13], [14].

III. PROPOSED CONVEX APPROACH

In this section, we develop a convex approach to solving
the Frisch-Kalman problem.

A. Reformulation and Relaxation

Consider the factor analytic decomposition Σ = Ω + ∆.
In the context of Frisch-Kalman scheme, Ω ∈ Sn+ is the
unknown covariance matrix of some linearly dependent true
data variables, and hence it is expected to have a low rank.
The matrix ∆ is the covariance matrix of an uncorrelated
noise vector, and hence it must be nonnegative diagonal.
Finally, Σ ∈ Sn++, as the sum of Ω and ∆, is the covariance
matrix of the noisy data under the assumption that the data
and noise are independent. In many practical situations, the



variances of the noise may be much smaller than those of the
true data. To take advantage of the additional preknowledge,
we may penalize the “size of noise” as in the following
reformulation of Frisch-Kalman problem.

Given an integer r ∈ [1, n], we reformulate the Frisch-
Kalman problem into the following norm minimization prob-
lem with a rank constraint:

min
Ω
{‖Σ− Ω‖2F | rank(Ω) ≤ r, Σ ≥ Ω ≥ 0,

Σ− Ω ∈ Dn}.
(4)

Here, the object function is simply the sum of squares of
all the entries in the diagonal matrix Σ − Ω. The rank
function is moved from the object function in (3) to the
constraints in (4). If this problem is feasible, then we obtain
immediately mr(Σ) ≤ r. In other words, we can search for
mr(Σ) via solving a sequence of feasibility problems of (4)
with different levels of r ∈ [1, n]. However, the reformulated
problem (4) is still non-convex. To proceed, we develop some
further relaxations in the following.

We introduce a symmetric matrix with zero diagonals,
namely, Λ ∈ Sn0 , as the dual variable. Based on the refor-
mulated Frisch-Kalman problem (4), we have the following
series of equalities and inequalities:

min
Ω
{‖Σ− Ω‖2F | rank(Ω) ≤ r,Σ ≥ Ω ≥ 0,Σ− Ω ∈ Dn}

= min
Ω

max
Λ
{‖Σ− Ω‖2F + 2〈Λ,Σ− Ω〉|

rank(Ω) ≤ r, Σ ≥ Ω ≥ 0,Λ ∈ Sn0}
≥ max

Λ
min

Ω
{‖Σ− Ω‖2F + 2〈Λ,Σ− Ω〉|

rank(Ω) ≤ r, Σ ≥ Ω ≥ 0,Λ ∈ Sn0}
≥ max

Λ
min

Ω
{‖Σ + Λ− Ω‖2F − ‖Σ + Λ‖2F + 2〈Λ,Σ〉

+ ‖Σ‖2F | rank(Ω) ≤ r,Λ ∈ Sn0}
= max

Λ
{−‖Σ + Λ‖2r + 2〈Λ,Σ〉+ ‖Σ‖2F | Λ ∈ Sn0}, (5)

where the first equality is due to that the maximization over
Λ ∈ Sn0 forces Σ − Ω to be diagonal, the first inequality
follows from the max-min inequality, the last inequality is
due to that the constraint of Σ ≥ Ω ≥ 0 is removed, and the
last equality follows from the standard SVD-approximation
to Σ + Λ in Section II-B.

Here, the problem (5) is a maximization of a concave func-
tion with convex constraints, hence it is a convex problem as
in (6), which is our targeted convex relaxation to the original
non-convex problem. Using similar tricks in [16], we can
equivalently transform (5) into the following SDP:

max
T,Λ,γ

− tr(T )− γ(n− r) + 2〈Λ,Σ〉+ ‖Σ‖2F

s.t. Λ ∈ Sn0 , T − γI ∈ Sn+, (6)[
T Σ + Λ

Σ + Λ I

]
∈ S2n

+ .

B. Proposed Algorithm

Suppose we have solved the SDP in (6) and obtained an
optimal dual variable Λ?. What is the most appropriate value
for the primal variable Ω based on the dual optimum? The

following theorem shows how we obtain the optimal primal
variable Ω? when the duality gap is zero, i.e.,

min
Ω
{‖Σ−Ω‖2F | rank(Ω) ≤ r, Σ ≥ Ω ≥ 0, Σ−Ω ∈ Dn}

= max
Λ
{−‖Σ + Λ‖2r + 2〈Λ,Σ〉+ ‖Σ‖2F | Λ ∈ Sn0}. (7)

Theorem 1. Let Σ ∈ Sn++ and equality (7) be true. Then a
solution to (4) satisfies

Ω? ∈ svdr(Σ + Λ?), (8)

where Λ? solves (6).

Proof. Since equality (7) is true, all the inequalities above
(5) are actually equalities. Hence a solution to (4) necessarily
solves the following problem:

min
Ω
{‖Σ + Λ? − Ω‖2F − ‖Σ + Λ?‖2F + 2〈Λ?,Σ〉

+ ‖Σ‖2F | rank(Ω) ≤ r}. (9)

By the standard SVD-approximation shown in (1), the solu-
tion to (4) satisfies

Ω? ∈ svdr(Σ + Λ?),

which completes the proof.

As we see from the theorem, Ω? may be selected as an
appropriate candidate to test the feasibility of (4). In this
case, we may first obtain an Ω? ∈ svdr(Σ + Λ?), then check
whether Ω? is feasible to (4). It is clear that rank(Ω?) = r
due to (2), hence it suffices to check whether Σ ≥ Ω? ≥ 0
and Σ− Ω? ∈ Dn.

Based on the above developments, we propose the follow-
ing algorithm involving only convex optimizations to solve
the Frisch-Kalman problem.

Algorithm 1 Proposed Method to Frisch-Kalman Problem

Step 1 Given Σ ∈ Sn++. Set the initial searching rank as
r ∈ [1, n− 1].

Step 2 Compute Λ? via the SDP in (6).
Step 3 Compute an Ω? ∈ svdr(Σ + Λ?). Check whether

Σ ≥ Ω? ≥ 0 and Σ−Ω? ∈ Dn. If not, let r := r+1
and go to Step 2.

Step 4 An upper bound of the Frisch-Kalman problem (3)
is obtained as r? := rank(Ω?) ≥ mr(Σ).

As the Frisch-Kalman problem is relaxed in Algorithm 1,
some conditions under which the relaxation is tight have
been investigated, which are omitted here due to the space
limitation. The detailed developments and demonstrations
can be found in [25].

C. Application to Shapiro Problem

Consider the following variant of the Frisch-Kalman prob-
lem, called the Shapiro problem [6], where the constraint that
∆ is nonnegative is relaxed. Investigation into such a relaxed
problem brings about more direct understanding on how the
off-diagonal entries of Σ affect the minimization of its rank.



Definition 2 (Shapiro Problem). Given Σ ∈ Sn++, determine

mrs(Σ) := min
Ω,∆
{rank(Ω)| Σ = Ω + ∆,

Ω ∈ Sn+,∆ ∈ Dn}.
(10)

Actually, Shapiro and Frisch-Kalman problems share
many similar properties. Naturally, we can apply the above
algorithm to Shapiro problem with slight modifications, i.e.,
replacing Step 3 with
Step 3∗ Compute Ω? ∈ svdr(Σ + Λ?). Check whether
Ω? ∈ Sn+ and Σ − Ω? ∈ Dn. If not, let r := r + 1 and
go to Step 2.

The obtained rank r? satisfies that mrs(Σ) ≤ r?.

D. Extension to the Complex-Valued Case

Denote by H+ (H++, resp.) the set of all positive semi-
definite (definite, resp.) matrices in Cn×n. The Frisch-
Kalman problem can be extended to the case with complex-
valued matrices as follows.

Definition 3 (Complex-Valued Frisch-Kalman Problem).
Given Σ ∈ Hn++, determine

mr(Σ) := min
Ω,∆
{rank(Ω)| Σ = Ω + ∆,

Ω ∈ Hn+,∆ ∈ Dn+}.
(11)

In this case, we may directly apply Algorithm 1 to
the above problem by suitably replacing all the involved
symmetric matrices with the Hermitian ones.

IV. COMPARISON WITH EXISTING METHODS

Various heuristic methods have been investigated for solv-
ing rank minimization problems. In this section, we compare
our proposed method with several mostly adopted existing
methods on solving the Frisch-Kalman problem.

A. Nuclear Norm Minimization

In the context of factor analysis, nuclear norm (trace)
minimization has been pursued as a suitable heuristic; see,
for instance, [6], [9], [13]. The nuclear norm of a matrix
is defined as the sum of all its singular values. With this
heuristic, the Frisch-Kalman problem is relaxed into

min
∆
{tr(Σ−∆)| ∆ ∈ Dn+,Σ ≥ ∆ ≥ 0}. (12)

One way to analyze the corresponding conditions on tight
relaxation, i.e., when the solutions to (12) solve the Frisch-
Kalman problem, is via investigating the restricted isometry
property (RIP) [13] of an associated linear operator. How-
ever, it can be shown with some simple calculation that
the RIP conditions are not applicable to the Frisch-Kalman
problem.

B. Low-Rank Inducing r∗-norm

A series of matrix norms, called the r∗-norms (or spectral
r-support norms) [16]–[18], are defined by

‖M‖l∞,r∗ := max
‖X‖l1,r≤1

〈X,M〉, (13)

where X,M ∈ Rm×n, r = 1, 2, . . . ,min{m,n}, and

‖X‖l1,r :=

r∑
k=1

σk(X)

is the Ky Fan r-norm. When r = 1, ‖X‖l1,1 reduces to
the spectral norm and its dual norm ‖M‖l∞,1∗ reduces to
the nuclear norm. Therefore, the r∗-norms include the well-
known nuclear norm as a special case. With these low-rank
inducing norms, the Frisch-Kalman problem may be relaxed
into

min
∆
{‖Σ−∆‖l∞,r∗| ∆ ∈ Dn,Σ ≥ ∆ ≥ 0}. (14)

Via similar developments in [17], we can transform (14) into
the following SDP:

min
W,∆,γ

γ

s.t. W ∈ Sn+, ∆ ∈ Dn+, Σ−∆ ∈ Sn+,[
γI −W Σ−∆
Σ−∆ I

]
∈ S2n

+ ,

tr(W ) = γ(n− r).

(15)

When applying it to the Frisch-Kalman problem, we search
for the lowest-rank solution by sequentially solving (15) with
r = 1, 2, . . . , n.

C. Log-Det Heuristic

The logarithm of the determinant has been used as a
smooth approximation for the rank function; see, for in-
stance, [19]. For X ∈ Sn+, the function log det(X + δI),
where δ > 0, is used as a smooth surrogate for rank(X).
Since log det(X + δI) is actually non-convex in X , local
minimization methods are proposed in [19] by solving trace
minimization problems iteratively. In this case, the Frisch-
Kalman problem is approximately solved via the following
iterations:
∆0 = 0, δ > 0,Wk = (Σ−∆k + δI)−1,

∆k+1 = arg min
∆
{tr(Wk(Σ−∆))| ∆ ∈ Dn,Σ ≥ ∆ ≥ 0}.

D. Simulation Result

We compare the proposed algorithm with the existing
methods, including the nuclear norm, r∗-norms and log-det
heuristics, based on randomly generated data for both Ω̂ and
∆. The detailed randomization is given by the following
steps.

1) Generate matrix X ∈ Rr×n with [X]ij being standard
i.i.d. Gaussian random variables, i.e., [X]ij ∼ N(0, 1).
Compute Ω̂ = XTX .

2) Generate d ∈ Rn with di, i = 1, 2, . . . , n, being i.i.d.
and uniformly distributed on [0, 1]. Generate ∆̃ with
prescribed norm ‖∆̃‖F = ‖∆‖F according to

∆̃ =
‖∆‖F
‖d‖

diag∗(d), (16)

such that Σ = Ω̂ + ∆̃ > 0.
Given randomly generated matrices Σ ∈ Sn++, we check

whether the heuristic methods will solve the Frisch-Kalman
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Fig. 1: Success rates for the proposed, the nuclear norm,
r∗-norms and log-det heuristics to solve the Frisch-Kalman
problem in (3), respectively, where Σ is randomly generated
as described in the context with parameters n = 10, r = 5,
and T = 100.

problem. For each level of ‖∆‖F , we repeat the the above
procedures for T times, and count for the success rates. Here,
the “success rate” refers to the percentage of experiments in
which the recovered rank r? satisfies that r? ≤ r.

It can be seen from Fig. 1 that the success rates for
the proposed method highly depend on the “size of noise”,
namely, the value ‖∆‖F , while those of the other heuristics
do not. When ‖∆‖F is close to zero, the success rate of
Algorithm 1 approaches one. Practically, we may consider a
suitable combination of all these heuristics.

V. CONCLUSION AND FUTURE WORK

A heuristic convex method is proposed for the century-
old Frisch-Kalman problem. Simulation results show that the
method is accurate under the condition that the noise com-
ponents are relatively small compared with the underlying
data.

For future research, the proposed method may be improved
via, for example, the combination with other heuristics, pre-
processing on the observed data to remove possible outliers
and so on. Another direction is to apply the method or the
underlying ideas to solve more general rank minimization
problems, such as the low-rank matrix completion, the data
compression and so on.
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