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Abstract: This paper aims at characterizing a fundamental limitation on the information constraints required for multi-input
networked stabilization. A MIMO communication system is deployed for information exchange between the controller and
the plant. The communication system is modeled as a MIMO transceiver, which consists of three parts: an encoder, a MIMO
channel consisting of parallel SISO subchannels, and a decoder. We focus on the pure fading subchannels in this paper while
the case of pure AWGN subchannels has been discussed in our previous work. Inheriting the spirit of MIMO communication,
the number of SISO subchannels in the transceiver is often greater than the number of control inputs to be transmitted. The
subchannel capacities are assumed to be fixed a priori. With the encoder/decoder pair at hand, the controller designer gains an
additional design freedom on top of the controller, leading to a stabilization problem via coding/control co-design. A necessary
and sufficient condition is obtained for the solvability of this coding/control co-design problem given in terms of a majorization
type relation. A numerical example is presented to illustrate our results.
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1 Introduction

A networked control system (NCS) is a feedback system
wherein the feedback loop is closed over a communication
network subject to various information constraints such as
data rate constraint [1, 17], quantization [7, 15], fading [5],
and communication delay [10], etc. One primary issue in
networked control is to characterize a fundamental limita-
tion on the information constraints required for networked
stabilization. Such information requirement has now been
rather understood for single-input systems after numerous
investigations under different information constraints. See
[1, 17, 20] for data rate constraint, [6, 7] for quantization,
[5] for fading, [2] for signal-to-noise ratio constraint, etc. All
these studies converge to a unified fundamental limitation on
the information constraints required for stabilization given in
terms of the topological entropy of the open-loop plant, i.e.,
the logarithm of the absolute product of unstable poles for
a discrete-time plant, or the sum of the unstable poles for a
continuous-time plant.

As for the information requirement for multi-input net-
worked stabilization, consensus is far from reached in the
research community while many nice attempts have been
reported in the literature recently. See for instance [3, 7, 9,
18, 19, 22, 24]. In particular, the idea of channel/controller
co-design was initiated in [18] and followed by several
other works, for instance, [3, 24], to address the multi-input
networked stabilization. The essence therein is to employ
the twist of channel resource allocation, i.e., assuming that
the channel capacities can be allocated among different input
channels subject to a total capacity constraint. By virtue of
this additional design freedom, the minimum total channel
capacity required for networked stabilization is shown to be
given by the topological entropy of the open-loop plant. A
similar idea, although not stated explicitly, can be seen in
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[19] which considers networked stabilization over parallel
Gaussian channels subject to a total power constraint.

While most of the existing studies assume a SISO com-
munication scheme between the controller and the plant, the
huge success of MIMO technology in communication theory
and practice has caught our attention. Generally speaking,
a MIMO communication system refers to a multi-input
multi-output communication structure deployed to break
the capacity limit of the conventional SISO communication
scheme. It has been widely used in wireless communication
where spacial diversity can be exploited to increase the data
transmission capacity [21]. Our of curiosity, we raise the
following questions: What will happen if MIMO control
meets MIMO communication? Will that lead to more design
flexibilities and bring in new advantages?

Driven by these questions, we have initiated the use of
MIMO communication systems for information exchange in
networked control in our previous work [4]. Therein the
networked stabilizability via MIMO transceivers with pure
AWGN subchannels has been investigated. In this paper, we
shall extend the study to the case of pure fading subchannels.
To be more specific, the control inputs are now transmitted
through a MIMO transceiver which consists of an encoder,
a MIMO channel, and a decoder. One essence of MIMO
communication is that the number of SISO subchannels in
the transceiver is often greater than the number of data
streams. When applied to networked control, this means
that the number of subchannels is greater than the number
of control inputs. We assume that the subchannel capacities
are fixed a priori and, thus, cannot be freely allocated as
in [3, 18, 24]. Nevertheless, the encoder/decoder pair now
gives a substituted design freedom. The controller designer
needs to design the encoder/decoder pair and the controller
jointly so as to stabilize the system, leading to a stabilization
problem via coding/control co-design.

To one’s delight, the utilization of MIMO communication
does bring in new vitality to the study of networked control.
A fundamental limitation has been obtained in [4] for the



information requirement for networked stabilizability via
MIMO communication over AWGN subchannels given in
terms of a majorization type condition. In this paper, we
show that the same fundamental limitation also holds in the
case of pure fading subchannels. Notice that majorization
is a rather old topic in mathematics [11] and has been
frequently used in statistics in the past 100 years. However,
its engineering applications only appear recently, notably in
wireless communication, information theory, operations re-
search, and smart grid, etc. The application of majorization
in control theory remains quite scattered in the literature.
One relevant work can be seen in [14], in which majorization
is utilized to investigate the remote state estimation with
communication costs for a first-order linear time-invariant
system.

The rest of this paper is organized as follows. Section 2
formulates the problem to be studied. Section 3 gives some
preliminary knowledge. The main result of this work is
presented in Section 4. A numerical example is worked out
in Section 5. Finally, the paper is concluded in Section 6
with some perspectives. Most notation in this paper is more
or less standard and will be made clear as we proceed.

2 Problem Formulation

Consider the NCS shown in Fig. 1. Here, the plant [A|B]
is a continuous-time linear time invariant system described
by the state space model

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

where A ∈ Rn×n and B ∈ Rn×m. Assume that [A|B]
is unstable but stabilizable. Let the state x(t) be avail-
able for feedback. Due to the transmission error in the
communication network, the received control signal u(t)
is only a distorted version of v(t). In this case, whether
feedback stabilization can be achieved critically depends on
the transmission accuracy of the communication network. In
fact, a general concern of networked stabilization is to find a
fundamental limitation on the quality of the communication
network so as to render stabilization possible.
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Figure 1: State feedback via communication network.

Note that most existing studies on multi-input networked
stabilization [3, 7, 9, 18, 19, 24] assume a SISO communica-
tion scheme between the controller and the plant, i.e., each
control input is transmitted via a dedicated SISO channel.
On the contrary, in this paper, we are motivated by the huge
success of MIMO communication and wish to explore the
potential advantages brought about by utilizing a MIMO
communication system in networked control.

A typical MIMO communication system, also referred to
as a MIMO transceiver, is depicted in Fig. 2. It consists
of three parts: an encoder matrix T , a MIMO channel, and a
decoder matrix R, where the MIMO channel is characterized
by a channel matrix H and a multiplicative stochastic noise

κ followed by an additive white Gaussian noise d. The
communication engineers aim at designing the encoder and
the decoder so as to make the received signal u approximate
the transmitted signal v as accurately as possible. To make
the most of the advantages of MIMO communication, the
transceiver is often built in such a way that the dimensions
of q and p are much higher than the dimension of v and u.
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Figure 2: MIMO transceiver, a typical MIMO communica-
tion system.

In connection with the NCS concerned, we are curious to
ask: What will happen if MIMO communication is used in
networked control? Does it offer new advantages? Does it
lead to new design flexibilities?

Another main motivation of this work comes from the fol-
lowing concern. Recall that the channel resource allocation
as in [3, 18, 24] is based on a crucial assumption that the
channel capacities can be allocated among different input
channels subject to a total capacity constraint. What if the
individual channel capacities are indeed given a priori and
not allocatable? In that case, is it possible to explore some
other design freedoms so as to stabilize the NCSs?

Both motivations lead us to the problem below. Instead
of using a SISO communication scheme, we use a MIMO
transceiver as shown in Fig. 2 to transmit the control signals.
For simplicity, we assume that the channel matrix H is
identity. In fact, all the later developments can be extended
directly to the case of a known nonsingular H . When H
is identity, the MIMO channel simply becomes a collection
of l parallel general fading SISO subchannels, where each
subchannel is characterized by a multiplicative stochastic
noise κi cascaded with an additive noise di. In the spirit of
MIMO communication, we assume that the number of SISO
subchannels is greater than or equal to the number of data
streams to be transmitted, i.e., l ≥ m. Later we will see
that l < m may also be valid in some cases. The current
communication system is shown in Fig. 3.
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Figure 3: A MIMO transceiver as a MIMO communication
system in MIMO control.

We focus on the pure fading effect in the subchannels
in this paper. The case of pure AWGN subchannels has
been discussed in a parallel work [4] wherein a necessary
and sufficient condition has been obtained for the networked
stabilizability. Later in this paper we indicate that the same
condition holds in the case of pure fading subchannels except
for a different definition of subchannel capacities. The case
of general fading subchannels with both multiplicative noise
and additive noise is under our current investigation.



Specifically, now consider each SISO subchannel as a
pure fading channel as in Fig. 4, where the input signal

- -κi(t)
piqi

Figure 4: A pure fading subchannel.

qi is subject to a stochastic multiplicative white noise κi(t)
with mean E[κi(t)]=µi>0 and autocovariance E[(κi(t)−
µi)(κi(t+τ)−µi)] = σ2

i δ(τ). The mean-square capacity of
such a fading channel is defined as

Ci =
1

2

µ2
i

σ2
i

. (1)

The total channel capacity is given by C = C1+C2+· · ·+Cl.
We assume that the subchannel capacities are fixed a priori.
However, we do not assume any kind of monotonicity among
them. For future use, denote

M = diag{µ1, µ2, . . . , µl}, Σ2 = diag{σ2
1 , σ

2
2 , . . . , σ

2
l }.

Since the subchannel capacities are now fixed a priori, the
channel resource allocation as in [3, 18, 24] can no longer be
performed. Nevertheless, the encoder matrix T and decoder
matrix R in the MIMO transceiver now serve as substituted
design freedoms. They can be freely designed subject to a
mild constraint:

RMT = I,

which simply says that the received signal u has the same
mean as the transmitted signal v. The controller designer
is to jointly design the controller and the encoder/decoder
pair so as to stabilize the system, leading to a stabilization
problem via coding/control co-design.

With the MIMO transceiver in the loop, the closed-loop
system takes the form as shown in Fig. 5, where κ(t) =
diag{κ1(t), κ2(t), . . . , κl(t)} stands for the stochastic mul-
tiplicative noises in the fading subchannels. The state-space

F - T - κ(t) - R - [A|B]
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Figure 5: NCS with MIMO communication.

description of the closed-loop system is given by

ẋ(t) = [A+BRκ(t)TF ]x(t),

which, to be rigorous, should be written in standard Itô form:

dx(t) = (A+BF )x(t)dt+
l∑

i=1

σiBRiTiFx(t)dωi(t),

where Ri is the ith column of R, Ti is the ith row of T ,
and ωi, i = 1, 2, . . . , l, are independent Wiener processes.
Denote by X(t) = E[x(t)x(t)′] the state covariance. By
Itô’s formula [13], the evolution of X(t) is governed by the
following matrix differential equation:

Ẋ(t) = (A+BF )X(t) +X(t)(A+BF )′

+BR[Σ2⊙(TFX(t)F ′T ′)]R′B′,

where ⊙ means Hadamard product. We say that [A|B] is
mean-square stabilizable if there exist a state feedback gain
F and an encoder/decoder pair such that the closed-loop
system is mean-square stable, i.e., limt→∞ X(t) = 0.

We are interested in finding a fundamental limitation on
the subchannel capacities Ci, i = 1, 2, . . . , l, such that the
networked stabilization can be accomplished.

Before proceeding, let us recall the notion of topolog-
ical entropy [1–3, 19] of a continuous-time linear system
ẋ(t) = Ax(t), which is defined as the quantity H(A) =∑

R(λi)>0 λi, where λi are the eigenvalues of A.

3 Preliminary

Some preliminary knowledge is presented in this section
for preparation.

3.1 Cyclic decomposition
Let A be an n × n real matrix. Its minimal polynomial

is defined to be the monic polynomial α(λ) of least degree
such that α(A) = 0. The matrix A is said to be cyclic if
its minimal polynomial has degree n. The following lemma
gives the cyclic decomposition of a linear system, which
plays an essential role in later developments.

Lemma 1 Given a stabilizable linear system [A|B] with
A ∈ Rn×n and B ∈ Rn×m, there exist nonsingular matrices
P and Q such that

[P−1AP |P−1BQ]

=



A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 Ak


∣∣∣∣∣∣∣∣∣∣


b1 ∗ · · · ∗ ∗

0 b2
. . .

...
...

...
. . .

. . . ∗ ∗
0 · · · 0 bk ∗


, (2)

where Ai, i = 1, 2, . . . , k, are cyclic with minimal polynomi-
als αi(λ), such that α1(λ) = α(λ) and αi+1(λ)|αi(λ) for
i = 1, 2, . . . , k − 1. Moreover, the subsystems [Ai|bi], i =
1, 2, . . . , k, are stabilizable.

For the details, one can refer to [8] for the cyclic decom-
position of a matrix and [23] for the cyclic decomposition
of a linear system. Note that the number k as in Lemma 1
is referred to as the cyclic index of A and is unique. The
minimal polynomials αi(λ), i = 1, 2, . . . , k, are also unique.
In addition, from the relation αi+1(λ)|αi(λ), it follows that
the spectrum of Ai+1 is contained in the spectrum of Ai.
Consequently, there naturally holds H(A1) ≥ H(A2) ≥
· · · ≥ H(Ak).

Remark 1 The subsystems [Ai|bi], i = 1, 2, . . . , k, are
hereinafter referred to as the cyclic subsystems of the system
[A|B]. The role of nonsingular matrices P and Q can be
considered as linear transformations in the state space and
input space, respectively. The following implication can be
inferred from Lemma 1. In the cyclic decomposition (2),
A1 contains the greatest number of unstable eigenvalues
of A that can be stabilized by a single control input up
to linear transformations in the input space; likewise, A1

together with A2 contains the greatest number of unstable
eigenvalues of A that can be stabilized by two control inputs



up to linear transformations in the input space; and so on so
forth.

3.2 Majorization
For x, y ∈ Rn, we denote by x↑ and y↑ the rearranged

versions of x and y so that their elements are arranged in
a non-decreasing order. We say that x is majorized by y,
denoted by x 4 y, if

k∑
i=1

x↑
i ≥

k∑
i=1

y↑i , k = 1, 2, . . . , n− 1,

n∑
i=1

x↑
i =

n∑
i=1

y↑i .

(3)

If the last equality in (3) is changed to an inequality ≥, then
x is said to be weakly majorized by y from above, denoted
by x 4w y. Furthermore, if all the inequalities ≥ in (3),
including the last equality, are changed to strict inequalities
>, then x is said to be strictly weakly majorized by y from
above, denoted by x ≺w y. Note that when two vectors are
compared via majorization or weak majorizations, the order
of the elements in the vectors is irrelevant.

The physical interpretation of majorization is often very
interesting in applications. It orders the level of fluctuations
when the averages are the same. In other words, x4 y says
that the elements of x are more even or, less spread out,
than the elements of y. For a comprehensive treatment of
majorization, one can refer to [16].

4 Main Result

An explicit characterization of information requirement
for multi-input networked stabilization via MIMO commu-
nication is presented in the following theorem. The proof is
omitted here for brevity.

Theorem 1 [A|B] is mean-square stabilizable via MIMO
communication, if and only if[
C1 C2 · · · Cl

]′
≺w

[
H(A1) H(A2) · · · H(Ak) 0 · · · 0

]′
, (4)

where H(Ai), i = 1, 2, . . . , k, are the topological entropies
of the cyclic subsystems [Ai|bi] as in (2).

Two interesting corollaries are deduced from Theorem 1
as below. The proofs are omitted here for brevity.

Corrollary 1 If the cyclic decomposition of A has only one
unstable cyclic block, i.e., A1, then [A|B] is mean-square
stabilizable via MIMO communication if and only if C >
H(A).

Notice that Corollary 1 includes the single-input system as
a special case. It simply suggests that in stabilizing a single-
input system via MIMO communication, a total capacity
requirement is all one needs. How the individual subchannel
capacities are distributed is irrelevant in this case.

Corrollary 2 If C1 = C2 = · · · = Cl, then [A|B] is mean-
square stabilizable via MIMO communication if and only if
C > H(A).

Corollary 2 somehow suggests that identical subchannels
can best help each other in transmitting the signals.

Remark 2 From the majorization type condition (4), one
can observe that in some cases, it may also be possible to
stabilize the NCS with less number of SISO subchannels
than the number of control inputs. The minimum number
of SISO subchannels needed for stabilization is equal to the
number of unstable cyclic subsystems [Ai|bi] yielded from
the cyclic decomposition (2). This observation is consistent
with earlier studies [12, 23] in the literature that investigate
the minimum number of control inputs required to stabilize
a linear system. In that aspect, our result strengthens
those studies by indicating a fundamental limitation on the
information constraints required for networked stabilization
given in terms of a majorization type relation.

5 Example

A numerical example is given in this section to illustrate
the process of coding/control co-design.

Consider the following unstable system [A|B]:

A =


4 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 , B =


1 1
1 1
1 1
0 1

 ,

with initial condition x0 =
[
1 1 1 1

]′
. Clearly,

[A|B] is stabilizable. Moreover, it is already in the cyclic
decomposition form (2) with cyclic subsystems

[A1|b1] =

4 0 0
0 2 0
0 0 1

∣∣∣∣∣∣
11
1

 , and [A2|b2] = [1|1].

It follows that H(A1) = 4 + 2 + 1 = 7, and H(A2) = 1.
Consider the case when the MIMO transceiver has three

fading SISO subchannels specified by

M =

2 0 0
0 0.6 0
0 0 0.9

 , Σ2 =

0.35 0 0
0 0.2 0
0 0 0.25

 .

In view of (1), the subchannel capacities are

C1 = 5.7143, C2 = 0.9, and C3 = 1.62.

One can easily verify that the strictly weak majorization re-
lation (4) is satisfied and, thus, the mean-square stabilization
can be accomplished via certain coding/control co-design.
One such co-design is carried out as below.

For the controller design, we solve the H2 optimal com-
plementary sensitivity for each of the two cyclic subsystems
[Ai|bi], i = 1, 2, i.e., solving the following optimal control
problems:

inf
fi:Ai+bifi is stable

∥Ti(s)∥2,

where Ti(s) = fi(sI − Ai − bifi)
−1bi. This yields two

optimal feedback gains f1 =
[
−40 36 −10

]
and f2 =

−2, respectively. Let

F = diag{f1, f2} =

[
−40 36 −10 0
0 0 0 −2

]
.



As for the coding design, let

T = M− 1
2UD−1, and R = DU ′M− 1

2 ,

with

U =

0.8952 −0.1993
0 0.8944

0.4456 0.4004

 and D =

[
1 0
0 0.1

]
.

Under this coding/control co-design, the closed-loop sys-
tem is mean-square stable. As shown in Fig. 6, the Frobenius
norm of the state covariance goes to zero asymptotically.
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Figure 6: Closed-loop evolution of ∥X(t)∥F .

6 Conclusion

In this paper, we investigate the networked stabilization
via MIMO communication, leading to a coding/control co-
design problem. A fundamental limitation on the informa-
tion requirement for multi-input networked stabilization is
obtained which is given by a majorization type relation. We
conclude this paper with some perspectives that echo the
motivating questions raised in the very beginning. The use
of MIMO communication in networked control does bring
in new advantages and flexibilities:

1) The condition on the subchannel capacities for stabiliz-
ability is weakened to a great extent compared to the
existing understanding. The condition is now given in
terms of a strictly weak majorization relation as in (4).

2) The redundancy in the number of SISO subchannels
helps reduce the capacity requirement in the individual
subchannels. For instance, with MIMO communica-
tion, one can use a collection of subchannels with small
capacities to stabilize a single-input system as long as
the total capacity is greater than the topological entropy.

3) By virtue of the coding mechanism, in some cases, it
may even be possible to stabilize the NCS with less
number of subchannels than the number of the control
inputs. The minimum number of subchannels needed
is equal to the number of unstable cyclic subsystems
yielded from the cyclic decomposition.
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